INTRODUCTION
In parallel with Petrol as a driving resource in this world, Data is becoming an increasingly decisive resource in modern societies, economies, and governmental organizations. Gradually and steadily, it is being world-wide recognized that data and talents are playing key roles in modern businesses.

As an interdisciplinary area, Data Science draws scientific inquiry from a broad range of subject areas such as statistics, mathematics, computer science, machine learning, optimization, signal processing, information retrieval, databases, cloud computing, computer vision, natural language processing and etc. Data Science is on the essence of deriving valuable insights from data. It is emerging to meet the challenges of processing very large datasets, i.e. Big Data, with the explosion of new data continuously generated from various channels such as smart devices, web, mobile and social media.

Data Systems are posing many challenges in exploiting parallelism of current and upcoming computer architectures. Data volumes of applications in the fields of sciences and engineering, finance, media, online information resources, etc. are expected to double every two years over the next decade and further. With this continuing data explosion, it is necessary to store and process data efficiently by utilizing enormous computing power. The importance of data intensive systems has been raising and will continue to be the foremost fields of research. This raise brings up many research issues, in forms of capturing and accessing data effectively and fast, processing it while still achieving high performance and high throughput, and storing it efficiently for future use. Innovative programming models, high performance scalable computing platforms, efficient storage systems and expression of data requirements are at immediate need.

DSS (Data Science and Systems) was created to provide a prime international forum for researchers, industry practitioners and domain experts to exchange the latest advances in Data Science and Data Systems as well as their synergy. 2017 is the 3rd event following the success in 2015 (DSDIS 2015) and 2016 (DSS 2016).

SCOPE AND TOPICS
A. Data Science
Foundational theories and models of data science
Foundational algorithms and methods for big data
Data classification and taxonomy
Data metrics and metrology
Machine learning and deep learning
Data analytics
Data provenance
Fault tolerance, reliability, and availability
Security, privacy and trust in Data

B. Data Processing Technology
Data sensing, fusion and mining
Data representation, dimensionality reduction, processing and proactive service layers
Data capturing, management, and scheduling techniques
Stream data processing and integration
Knowledge discovery from multiple information sources
Statistical, mathematical and probabilistic modeling and theories
Information visualization and visual data analytics
Information retrieval and personalized recommendation
Parallel and distributed data storage and processing infrastructure
MapReduce, Hadoop, Spark, scalable computing and storage platforms
Security, privacy and data integrity in data sharing, publishing and analysis
Replication, archiving, preservation strategies
Stream data computing
Meta-data management
Remote data access

C. Data Systems
Storage and file systems
High performance data access toolkits
Programming models, abstractions for data intensive computing
Compiler and runtime support
Future research challenges of data intensive systems
Real-time data intensive systems
Network support for data intensive systems
Challenges and solutions in the era of multi/many-core platforms
Green (power efficient) data intensive systems
Data intensive computing on accelerators and GPUs
Productivity tools, performance measuring and benchmark for data intensive systems
Big Data, cloud computing and data intensive systems

D. Data Applications
HPC system architecture, programming models and run-time systems for data intensive applications
Innovative applications in business, finance, industry and government cases
Data-intensive applications and their challenges
Innovative data intensive applications such as health, energy, cybersecurity, transport, food, soil and water, resources, advanced manufacturing, environmental Change, and etc.


IMPORTANT DATES
Paper Submission Deadline: June 15, 2017
Authors Notification: August 15, 2017
Camera-Ready Paper Due: September 15, 2017
Early Registration Due: September 15, 2017
Conference Date: December 18 - 20, 2017

PAPER SUBMISSION GUIDELINE
Submissions must include an abstract, keywords, the e-mail address of the corresponding author and should not exceed 8 pages for main conference, including tables and figures in IEEE CS format. The template files for LATEX or WORD can be downloaded here. All paper submissions must represent original and unpublished work. Each submission will be peer reviewed by at least three program committee members. Submission of a paper should be regarded as an undertaking that, should the paper be accepted, at least one of the authors will register for the conference and present the work. Submit your paper(s) in PDF file at the submission site.
  
PUBLICATIONS
Accepted and presented papers will be included into the IEEE Conference Proceedings published by IEEE CS Press. Authors of accepted papers, or at least one of them, are requested to register and present their work at the conference, otherwise their papers may be removed from the digital libraries of IEEE CS after the conference.

Distinguished papers presented at the conference, after further revision, will be published in special issues of Journal of Network and Computer Applications, Future Generation Computer Systems, Journal of Computer and System Sciences and IEEE Transactions on Emerging Topics in Computing.

Explore Existing Conferences Across the World or Publish a Conference to Showcase It Globally in VePub.
 

This is an animated dialog which is useful for displaying information. The dialog window can be moved, resized and closed with the 'x' icon.

These items will be permanently deleted and cannot be recovered. Are you sure?