Delphi Technique

- The Delphi Technique is used to derive a consensus among a panel of experts who make predictions about future developments
- Provides independent and anonymous input regarding future events
- Uses repeated rounds of questioning and written responses and avoids the biasing effects possible in oral methods, such as brainstorming

Interviewing

- Interviewing is a fact-finding technique for collecting information in face-to-face, phone, email, or instant-messaging discussions
- Interviewing people with similar project experience is an important tool for identifying potential risks

SWOT Analysis

- SWOT analysis (strengths, weaknesses, opportunities, and threats) can also be used during risk identification
- Helps identify the broad negative and positive risks that apply to a project



Risk Register

- The main output of the risk identification process is a list of identified risks and other information needed to begin creating a risk register
- A risk register is:
 - A document that contains the results of various risk management processes and that is often displayed in a table or spreadsheet format
 - A tool for documenting potential risk events and related information
- Risk events refer to specific, uncertain events that may occur to the detriment or enhancement of the project

Risk Register Contents

- An identification number for each risk event
- A rank for each risk event
- The name of each risk event
- A description of each risk event
- The category under which each risk event falls
- The root cause of each risk

Risk Register Contents (continued)

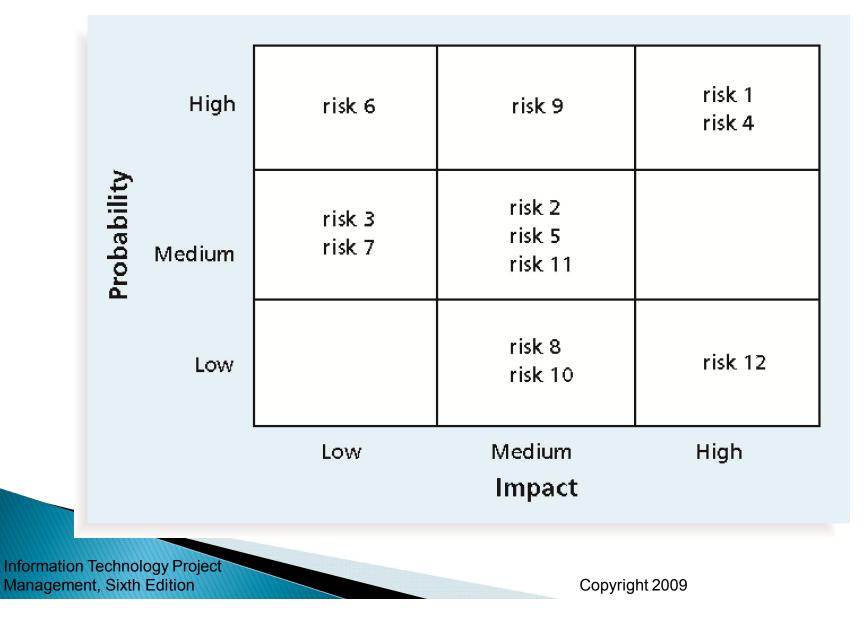
- Triggers for each risk; triggers are indicators or symptoms of actual risk events
- Potential responses to each risk
- The risk owner or person who will own or take responsibility for each risk
- The probability and impact of each risk occurring
- The status of each risk

Table 11-5. Sample Risk Register

No.	Rank	Risk	DESCRIPTION	CATEGORY	Rоот	TRIGGERS	POTENTIAL	Risk	PROBABILITY	Імраст	S TATUS
			E		CAUSE		RESPONSES	OWNER			
R44											
R21	2										
R7	3										

Performing Qualitative Risk Analysis

- Assess the likelihood and impact of identified risks to determine their magnitude and priority
- Risk quantification tools and techniques include:
 - Probability/impact matrixes
 - The Top Ten Risk Item Tracking
 - Expert judgment



Probability/Impact Matrix

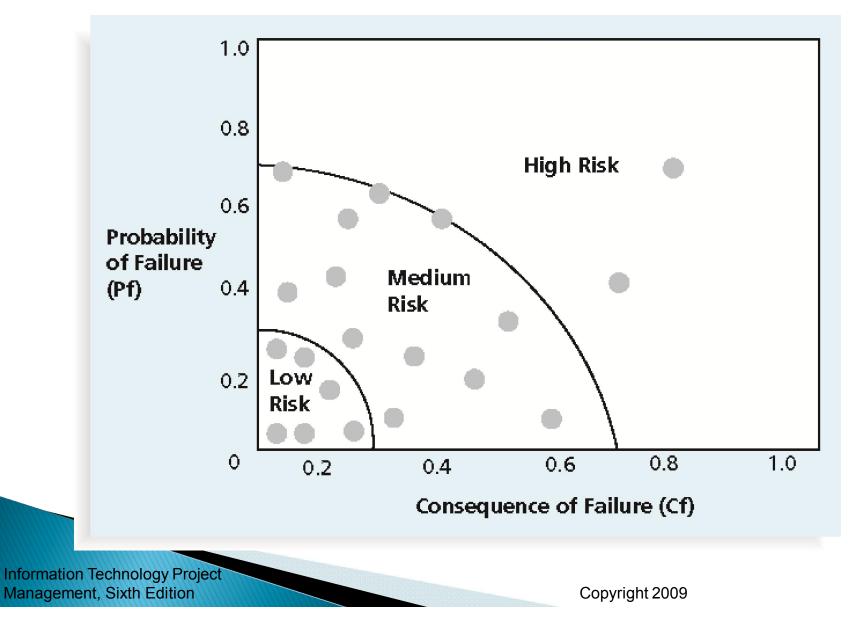

- A probability/impact matrix or chart lists the relative probability of a risk occurring on one side of a matrix or axis on a chart and the relative impact of the risk occurring on the other
- List the risks and then label each one as high, medium, or low in terms of its probability of occurrence and its impact if it did occur

Figure 11-5. Sample Probability/Impact Matrix

Figure 11-6. Chart Showing High-, Medium-, and Low-Risk Technologies

Top Ten Risk Item Tracking

- Top Ten Risk Item Tracking is a qualitative risk analysis tool that helps to identify risks and maintain an awareness of risks throughout the life of a project
- Establish a periodic review of the top ten project risk items
- List the current ranking, previous ranking, number of times the risk appears on the list over a period of time, and a summary of progress made in resolving the risk item

Table 11-6. Example of Top Ten Risk Item Tracking

MONITHIN DANIZING

RISK EVENT	Rank This Month	Rank Last Month	NUMBER OF MONTHS	RISK RESOLUTION PROGRESS
Inadequate planning	1	2	4	Working on revising the entire project management plan
Poor definition	2	3	3	Holding meetings with project customer and sponsor to clarify scope
Absence of leadership	3	1	2	After previous project manager quit, assigned a new one to lead the project
Poor cost estimates	4	4	3	Revising cost estimates
Poor time estimates	5	5	3	Revising schedule estimates

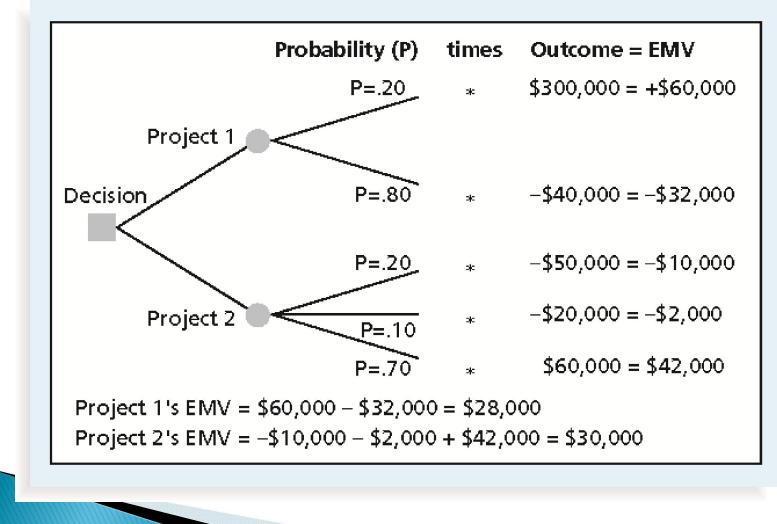
Information Technology Project Management, Sixth Edition

Copyright 2009

Watch List

- A watch list is a list of risks that are low priority but are still identified as potential risks
- Qualitative analysis can also identify risks that should be evaluated on a quantitative basis

Performing Quantitative Risk Analysis


- Often follows qualitative risk analysis, but both can be done together
- Large, complex projects involving leading edge technologies often require extensive quantitative risk analysis
- Main techniques include:
 - Decision tree analysis
 - Simulation
 - Sensitivity analysis

Decision Trees and Expected Monetary Value (EMV)

- A decision tree is a diagramming analysis technique used to help select the best course of action in situations in which future outcomes are uncertain
- Estimated monetary value (EMV) is the product of a risk event probability and the risk event's monetary value
- You can draw a decision tree to help find the EMV

Figure 11-7. Expected Monetary Value (EMV) Example

Sensitivity Analysis

- Sensitivity analysis is a technique used to show the effects of changing one or more variables on an outcome
- For example, many people use it to determine what the monthly payments for a loan will be given different interest rates or periods of the loan, or for determining break-even points based on different assumptions
- Spreadsheet software, such as Excel, is a common tool for performing sensitivity analysis

Figure 11-9. Sample Sensitivity Analysis for Determining Break-Even Point

[Α	В		C	D	E	F	G	Н	
	1							1			
	2	\$300,000		Prof	it Analysis				Units Sold	Revenue	Expense
	3	\$300,000							0	\$0	\$25,000
	4	\$250,000							500	6,000	29,000
	5	\$200,000							1,000	12,000	33,000
	6								1,500	18,000	37,000
	7	\$150,000							2,000	24,000	41,000
	8	\$100,000							2,500	30,000	45,000
	9								3,000	36,000	49,000
	10	\$50,000							3,500	42,000	53,000
	11	\$0							4,000	48,000	57,000
	12		0	5,000	10,000	15,000	20,000	i.	4,500	54,000	61,000
	13				Units Sold				5,000	60,000	65,000
	14		11.2		#4 0	2			5,500	66,000	69,000
	15 16	Sales Price	e per Onr	C.	\$12			i.	6,000	72,000	73,000
	16							3	6,500	78,000	77,000
	17	Manual and a set of	in Cost	man Linite	01				7,000	84,000	81,000 85,000
	10	Manufactur	ning Cost	per Onit.	\$8			5	7,500 8,000	90,000 96,000	89,000
	20								8,500	102,000	93,000
	20	Fixed Mont	this Ever	nco:	\$25,000			i.	9,000	102,000	97,000
	22	T IXED WOR	uny Expe	,noc.	φ20,000			8	9,500	114,000	101,000
	23								10,000	120,000	105,000
	24	Break-Ever	n Point (L	Inits Sold):	6,250			8	10,500	126,000	109,000
	25	Revenue at			\$75,000				11,000	132,000	113,000
	26								11,500	138,000	117,000
	27								12,000	144,000	121,000
	28								12,500	150,000	125,000
	29							8	13,000	156,000	129,000
	30								13,500	162,000	133,000
	31								14,000	168,000	137,000
	32								14,500	174,000	141,000
Information Tech Management, S								С	opyright 200	09	

Planning Risk Responses

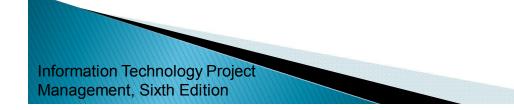
- After identifying and quantifying risks, you must decide how to respond to them
- Four main response strategies for negative risks
 - Risk avoidance
 - Risk acceptance
 - Risk transference
 - Risk mitigation

Table 11-7. General Risk Mitigation Strategies for Technical, Cost, and Schedule Risks

TECHNICAL RISKS Emphasize team support and avoid stand-alone project structure	Cost Risks Increase the frequency of project monitoring	SCHEDULE RISKS Increase the frequency of project monitoring				
Increase project manager authority	Use WBS and CPM	Use WBS and CPM				
Improve problem handling and communication	Improve communication, project goals understanding, and team support	Select the most experienced project manager				
Increase the frequency of project monitoring	Increase project manager authority					
Use WBS and CPM						

Residual and Secondary Risks

- It's also important to identify residual and secondary risks
- Residual risks are risks that remain after all of the response strategies have been implemented
- Secondary risks are a direct result of implementing a risk response



Monitoring and Controlling Risks

- Involves executing the risk management process to respond to risk events
- Workarounds are unplanned responses to risk events that must be done when there are no contingency plans
- Main outputs of risk monitoring and control are:
 - Risk register updates
 - Organizational process assets updates
 - Change requests
 - Updates to the project management plan and other project documents

Using Software to Assist in Project Risk Management

- Risk registers can be created in a simple Word or Excel file or as part of a database
- More sophisticated risk management software, such as Monte Carlo simulation tools, help in analyzing project risks
- You can purchase add-ons for Excel and Project 2007 to perform simulations

Chapter Summary

Project risk management is the art and science of identifying, analyzing, and responding to risk throughout the life of a project and in the best interests of meeting project objectives

Main processes include:

- Plan risk management
- Identify risks
- Perform qualitative risk analysis
- Perform quantitative risk analysis
- Plan risk responses
- Monitor and control risks

