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Outline

2-D Elements: Plain Stress and Plane Strain

CST Element Stiffness

Body and Surface Forces

Examples

LST Element Stiffness

Comparison of Elements
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Types of Modeling

Types of Modeling

1-D 3-D2-D

Plane stress Plane strain
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2-D Elements

 2-D elements:

 Plane stress: plates with holes, fillets

 Plane strain: a long underground box

 Plane Stress:

 the normal stress (σz) and the shear stresses (τxz and τyz) 

perpendicular to the plane are assumed to be zero

 For thin members when loads act only in the x-y plane
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2-D Elements

 Plane Strain:

 the strain normal to the x-y plane (εz) and the shear strains 

(γxz and γyz) are assumed to be zero

 For long members with constant cross-sectional area 

subjected to loads that act only in the x and/or y directions 

and do not vary in the z direction.



2015-Applied FEM 6

2-D Elements

 General 3-D stress-strain relations

 For 2-D problems: 
Strain vs. Stress Stress  vs. Strain 
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Plane Stress
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Plane Strain
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2-D Elements

 For plane stress:

 For plane strain:
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CST Element Stiffness

 Counterclockwise node labeling (i, j, m)

 Linear displacement functions:
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CST: displacement
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CST: displacement
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CST: displacement
Similarly,

To express u and v in simpler form, we define
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CST: displacement

where [N] is given by
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CST: Shape Functions

Finally, Ni , Nj , Nm = 1 for all x and y locations on the surface of the element so that

u and v will yield a constant value when rigid-body displacement occurs.



2015-Applied FEM 16

the beam elements beyond the loading 

are stress-free. Hence these elements 

must be free to translate and rotate 

without stretching or changing shape.

CST: Shape Functions

Cantilever beam modeled using constant-strain triangle elements
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CST: Shape Functions
The strains associated with the 2D element are given by

For the displacements, we have

The derivatives of the shape functions are
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CST: Element Strain
Therefore, we have

Finally, we have
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CST: Element Strain

where

Finally, in simplified matrix form, we have

The B matrix is independent of the x and y coordinates. It depends solely

on the element nodal coordinates. The strains are constant; hence, the

element is called a Constant-Strain Triangle (CST).
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 Total Potential Energy

 Strain energy

 Potential energy of the body forces:

 Potential energy of concentrated loads:

 Potential energy of surface tractions:

    D 

CST: Stiffness
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CST: Stiffness
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 Derivation with respect to displacement

 Stiffness Matrix

 Constant thickness

 Integrand is not a function of x or y 

CST: Stiffness
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Example 1
Evaluate the stiffness matrix for the plane stress element. Let thickness t = 1 in.

Assume the element nodal displacements have been determined to be u1 = 0.0, v1 =

0.0025 in., u2 = 0.0012 in., v2 = 0.0, u3 = 0.0, and v3 = 0.0025 in. Determine the

element stresses.  6E  30 10 psi,    0.25  

We first obtain the ’s and ’s as follows: 
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Example 1
We obtain matrix  asB

For plane stress conditions
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Example 1
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 Constant body force:

Element with centroidal coordinate axes

CST: Body force
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CST: Traction force
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CST: Body & traction force

1 2 3 2 3

1 1

with   1,    2,     3,                - 0

Similarly  0  a

i j and m x y y x

 

    

 

Therefore, we obtain
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 Substituting x=a and integrating

CST: Body & traction force



2015-Applied FEM 30

Example 2

6

For a thin plate subjected to the surface traction, determine the nodal displacements and 

the element stresses. The plate thickness t = 1 in., E = 30 10  psi, and  = 0.30.
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CST Element Defects

 In bending problems, the mesh of CST elements will produce a model

that is stiffer than the actual problem.

 As we will observe from the results shown for a beam-bending problem

modeled by CST and LST elements, the CST model converges very

slowly to the exact solution. This is partly due to the element predicting

only constant stress within each element, when for a bending problem,

the stress actually varies linearly through the depth of the beam.
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CST Element Defects

 For a beam subjected to pure bending, the CST has a spurious or false

shear stress and hence a spurious shear strain in parts of the model that

should not have any shear stress or shear strain. This spurious shear

strain absorbs energy; therefore, some of the energy that should go into

bending is lost. The CST is then too stiff in bending, and the deformation

is smaller than actually should be. This phenomenon developing in one

or more modes of deformation is sometimes described as shear locking

or parasitic shear.

 In problems where plane strain conditions exist and the Poisson’s ratio

approaches 0.5, a mesh can actually lock, which means the mesh then

cannot deform at all.



2015-Applied FEM 33



2015-Applied FEM 34



2015-Applied FEM 35

 LST Element

Linear-Strain Triangular Element 
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 The number of coefficients equals the total number of 

degrees of freedom

LST Element
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LST Element
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LST Element
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LST Element

where the 's and 's are now functions of x and y as well as of the nodal coordinates. 
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Example LST Stiffness Determination
To illustrate some of the procedures outlined in previous Section for deriving

an LST stiffness matrix, consider the following example. Figure shows a

specific LST and its coordinates. The triangle is of base dimension b and

height h, with midside nodes.
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Example LST Stiffness Determination
We calculate the coefficients a1through a6 by evaluating the displacement u 

at each of the six known coordinates of each node as follows:
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Example LST Stiffness Determination

Similarly, for v we obtain 
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Example LST Stiffness Determination
These shape functions are then given by
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Example LST Stiffness Determination

The stiffness matrix for a constant-thickness 

element can now be obtained
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Comparison: LST & CST
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Comparison: LST & CST
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Comparison: LST & CST
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 6.10 a,c

 6.11

 6.13

 8.3

 8.5

Exercise


