Introduction to the Finite Element Method

Lecture 6: 2-D Elements: Triangular element

Mohammad Javad Ashrafi, PhD

Mechanical Engineering Department

Outline

Types of Modeling

2-D Elements

- 2-D elements:
- Plane stress: plates with holes, fillets
- Plane strain: a long underground box
- Plane Stress:
- the normal stress $\left(\sigma_{z}\right)$ and the shear stresses ($\tau_{x z}$ and $\tau_{y z}$) perpendicular to the plane are assumed to be zero
- For thin members when loads act only in the $x-y$ plane

2-D Elements

- Plane Strain:
- the strain normal to the $x-y$ plane $\left(\varepsilon_{z}\right)$ and the shear strains $\left(\gamma_{x z}\right.$ and $\left.\gamma_{y z}\right)$ are assumed to be zero
- For long members with constant cross-sectional area subjected to loads that act only in the x and/or y directions and do not vary in the z direction.

2-D Elements

- General 3-D stress-strain relations

$$
\begin{gathered}
\varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
\varepsilon_{y}=-v \frac{\sigma_{x}}{E}+\frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
\varepsilon_{z}=-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}+\frac{\sigma_{z}}{E} \\
\gamma_{x y}=\frac{\tau_{x y}}{G} \quad \gamma_{y z}=\frac{\tau_{y z}}{G} \quad \gamma_{z x}=\frac{\tau_{z x}}{G}
\end{gathered}
$$

Strain vs. Stress

- For 2-D problems:

$$
\{\sigma\}=\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} \quad\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\} \quad\{\sigma\}=[D]\{\varepsilon\}
$$

Plane Stress

$$
\varepsilon=[C] \sigma
$$

$$
\begin{array}{ll}
\sigma_{z}=0 & \left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\tau_{x z}=\tau_{y z}=0
\end{array}\right\}=\frac{1}{E}\left[\begin{array}{ccc}
1 & -v & 0 \\
-v & 1 & 0 \\
0 & 0 & 2(1+v)
\end{array}\right]\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} \\
\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v \sigma_{y}\right] & \sigma=[D] \varepsilon \\
\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v \sigma_{x}\right] & \\
\gamma_{x y}=\frac{1}{G} \tau_{x y} & {[D]=[C]^{-1}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]}
\end{array}
$$

Plane Stress

Plane Strain

$$
\begin{array}{ll}
\varepsilon_{z}=0 & \left\{\begin{array}{l}
\varepsilon_{x} \\
\gamma_{x z}=\gamma_{y z}=0
\end{array}\right. \\
\varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]=\frac{1+v}{E}\left[\begin{array}{ccc}
1-v & -v & 0 \\
-v & 1-v & 0 \\
\gamma_{x y}
\end{array}\right\}\left[\begin{array}{l}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\} \\
\varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] & \sigma=[D] \varepsilon \\
\gamma_{x y}=\frac{1}{G} \tau_{x y} & {[D]=[C]^{-1}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
\sigma_{z}=v\left(\sigma_{x}+\sigma_{y}\right) & 0 & 0
\end{array}\right]} \\
&
\end{array}
$$

2-D Elements

- For plane stress:

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

- For plane strain:

$$
[D]=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1-2 v}{2}
\end{array}\right]
$$

CST Element Stiffness

- Counterclockwise node labeling (i, j, m)
- Linear displacement functions:

$$
\begin{aligned}
& \{d\}=\left\{\begin{array}{l}
\underline{d}_{i} \\
\underline{d}_{j} \\
\underline{d}_{m}
\end{array}\right\}=\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\} \\
& \left.\begin{array}{l}
u(x, y)=a_{1}+a_{2} x+a_{3} y \\
v(x, y)=a_{4}+a_{5} x+a_{6} y \\
\{\psi\}=\left\{\begin{array}{l}
a_{1}+a_{2} x+a_{3} y \\
a_{4}+a_{5} x+a_{6} y
\end{array}\right\}=\left[\begin{array}{llllll}
1 & x & y & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x & y
\end{array}\right]\left\{\begin{array}{l}
i\left(x_{i}, y_{i}\right)
\end{array}\right\} \\
v_{i} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
\end{aligned}
$$

CST: displacement

$$
\begin{aligned}
u_{i} & =u\left(x_{i}, y_{i}\right)=a_{1}+a_{2} x_{i}+a_{3} y_{i} \\
u_{j} & =u\left(x_{j}, y_{j}\right)=a_{1}+a_{2} x_{j}+a_{3} y_{j} \\
u_{m} & =u\left(x_{m}, y_{m}\right)=a_{1}+a_{2} x_{m}+a_{3} y_{m} \\
v_{i} & =v\left(x_{i}, y_{i}\right)=a_{4}+a_{5} x_{i}+a_{6} y_{i} \\
v_{j} & =v\left(x_{j}, y_{j}\right)=a_{4}+a_{5} x_{j}+a_{6} y_{j} \\
v_{m} & =v\left(x_{m}, y_{m}\right)=a_{4}+a_{5} x_{m}+a_{6} y_{m}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
v_{i} \\
v_{j} \\
v_{m}
\end{array}\right\}=\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right]\left\{\begin{array}{l}
a_{4} \\
a_{5} \\
a_{6}
\end{array}\right\}
$$

$$
\{u\}=[x]\{a\} \Rightarrow\{a\}=[x]^{-1}\{u\}
$$

$$
[x]^{-1}=\frac{1}{2 A}\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]
$$

$$
\begin{aligned}
& 2 A=\left|\begin{array}{ccc}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{m} & y_{m}
\end{array}\right| \\
& =x_{i}\left(y_{j}-y_{m}\right)+x_{j}\left(y_{m}-y_{i}\right)+x_{m}\left(y_{i}-y_{j}\right)
\end{aligned}
$$

CST: displacement

$$
\left.\begin{array}{c}
\left.\begin{array}{ll}
\alpha_{j}=y_{i} x_{m}-x_{i} y_{m} & \alpha_{m}=x_{i} y_{j}-y_{i} x_{j} \\
\beta_{j}=y_{m}-y_{i} & \beta_{m}=y_{i}-y_{j} \\
\gamma_{j}=x_{i}-x_{m} & \gamma_{m}=x_{j}-x_{i}
\end{array}\right] \\
\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\}
\end{array}\right\},\left[\begin{array}{lll}
1 & x & y]\left\{\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right\}=\frac{1}{2 A}\left[\begin{array}{lll}
1 & x & y]\left[\begin{array}{ccc}
\alpha_{i} & \alpha_{j} & \alpha_{m} \\
\beta_{i} & \beta_{j} & \beta_{m} \\
\gamma_{i} & \gamma_{j} & \gamma_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
u_{j} \\
u_{m}
\end{array}\right\} \\
\{u\}=\left[\begin{array}{ll}
\end{array}\right\} \\
u(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) u_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) u_{j}+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) u_{m}\right\}
\end{array}\right.
\end{array}\right.
$$

CST: displacement

Similarly,

$$
v(x, y)=\frac{1}{2 A}\left\{\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) v_{i}+\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) v_{j}+\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right) v_{m}\right\}
$$

To express u and v in simpler form, we define

$$
\begin{gathered}
\begin{array}{c}
N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \\
N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right) \\
N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
\end{array} \\
\{\psi\}=\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\}=\left\{\begin{array}{l}
N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m} \\
N_{i} v_{i}+N_{j} v_{j}+N_{m} v_{m}
\end{array}\right\}
\end{gathered}
$$

CST: displacement

$$
\left\{\begin{array}{c}
\{\psi\}=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\} \\
\{\psi\}=[N]\{d\}
\end{array}\right.
$$

where [N] is given by

$$
[N]=\left[\begin{array}{cccccc}
N_{i} & 0 & N_{j} & 0 & N_{m} & 0 \\
0 & N_{i} & 0 & N_{j} & 0 & N_{m}
\end{array}\right]
$$

CST: Shape Functions

Figure 6-8 Variation of N_{i} over the $x-y$ surface of a typical element

Finally, $N_{i}, N_{j}, N_{m}=1$ for all x and y locations on the surface of the element so that u and v will yield a constant value when rigid-body displacement occurs.

(a) Rigid-body modes of a plane stress element (from left to right, pure translation in x and y directions and pure rotation)

CST: Shape Functions

the beam elements beyond the loading are stress-free. Hence these elements must be free to translate and rotate without stretching or changing shape.

Rigid-body translation and rotation occurs for elements to right of load

Cantilever beam modeled using constant-strain triangle elements

CST: Shape Functions

The strains associated with the 2D element are given by

$$
\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

For the displacements, we have

$$
\begin{gathered}
\frac{\partial u}{\partial x}=u_{, x}=\frac{\partial}{\partial x}\left(N_{i} u_{i}+N_{j} u_{j}+N_{m} u_{m}\right) \\
u_{, x}=N_{i, x} u_{i}+N_{j, x} u_{j}+N_{m, x} u_{m}
\end{gathered}
$$

The derivatives of the shape functions are

$$
N_{i, x}=\frac{1}{2 A} \frac{\partial}{\partial x}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right)=\frac{\beta_{i}}{2 A}
$$

Similarly,

$$
N_{j, x}=\frac{\beta_{j}}{2 A} \quad \text { and } \quad N_{m, x}=\frac{\beta_{m}}{2 A}
$$

CST: Element Strain

Therefore, we have

$$
\frac{\partial u}{\partial x}=\frac{1}{2 A}\left(\beta_{i} u_{i}+\beta_{j} u_{j}+\beta_{m} u_{m}\right)
$$

Similarly, we can obtain

$$
\begin{aligned}
\frac{\partial v}{\partial y} & =\frac{1}{2 A}\left(\gamma_{i} v_{i}+\gamma_{j} v_{j}+\gamma_{m} v_{m}\right) \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} & =\frac{1}{2 A}\left(\gamma_{i} u_{i}+\beta_{i} v_{i}+\gamma_{j} u_{j}+\beta_{j} v_{j}+\gamma_{m} u_{m}+\beta_{m} v_{m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Finally, we have } \\
& \{\varepsilon\}=\frac{1}{2 A}\left[\begin{array}{cccccc}
\beta_{i} & 0 & \beta_{j} & 0 & \beta_{m} & 0 \\
0 & \gamma_{i} & 0 & \gamma_{j} & 0 & \gamma_{m} \\
\gamma_{i} & \beta_{i} & \gamma_{j} & \beta_{j} & \gamma_{m} & \beta_{m}
\end{array}\right]\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
u_{j} \\
v_{j} \\
u_{m} \\
v_{m}
\end{array}\right\}=\left[\begin{array}{lll}
\underline{B}_{i} & \underline{B}_{j} & \underline{B}_{m}
\end{array}\right]\left\{\begin{array}{c}
\underline{d}_{i} \\
\underline{d}_{j} \\
\underline{d}_{m}
\end{array}\right\}
\end{aligned}
$$

CST: Element Strain

where $\quad\left[B_{i}\right]=\frac{1}{2 A}\left[\begin{array}{cc}\beta_{i} & 0 \\ 0 & \gamma_{i} \\ \gamma_{i} & \beta_{i}\end{array}\right] \quad\left[B_{j}\right]=\frac{1}{2 A}\left[\begin{array}{cc}\beta_{j} & 0 \\ 0 & \gamma_{j} \\ \gamma_{j} & \beta_{j}\end{array}\right] \quad\left[B_{m}\right]=\frac{1}{2 A}\left[\begin{array}{cc}\beta_{m} & 0 \\ 0 & \gamma_{m} \\ \gamma_{m} & \beta_{m}\end{array}\right]$
Finally, in simplified matrix form, we have

$$
\begin{aligned}
& \{\varepsilon\}=[B]\{d\} \\
& {[B]=\left[\begin{array}{lll}
\underline{B}_{i} & \underline{B}_{j} & \underline{B}_{m}
\end{array}\right]}
\end{aligned}
$$

The B matrix is independent of the x and y coordinates. It depends solely on the element nodal coordinates. The strains are constant; hence, the element is called a Constant-Strain Triangle (CST).

CST: Stiffness

- Total Potential Energy

$$
\pi_{p}=U+\Omega_{b}+\Omega_{p}+\Omega_{s}
$$

- Strain energy

$$
U=\frac{1}{2} \iiint_{V}\{\varepsilon\}^{T}\{\sigma\} d V \quad \stackrel{\{\sigma\}=[D]\{\varepsilon\}}{ } \quad U=\frac{1}{2} \iiint_{V}\{\varepsilon\}^{T}[D]\{\varepsilon\} d V
$$

- Potential energy of the body forces: $\quad \Omega_{b}=-\iiint_{V}\{\psi\}^{T}\{X\} d V$
- Potential energy of concentrated loads: $\Omega_{p}=-\{d\}^{T}\{P\}$
- Potential energy of surface tractions:

$$
\Omega_{s}=-\iint_{S}\left\{\psi_{S}\right\}^{T}\left\{T_{S}\right\} d S
$$

CST: Stiffness

\[

\]

CST: Stiffness

- Derivation with respect to displacement

$$
\begin{gathered}
\frac{\partial \pi_{p}}{\partial\{d\}}=\left[\iiint_{V}[B]^{T}[D][B] d V\right]\{d\}-\{f\}=0 \\
\iiint_{V}[B]^{T}[D][B] d V\{d\}=\{f\}
\end{gathered}
$$

- Stiffness Matrix

$$
[k]=\iiint_{V}[B]^{T}[D][B] d V
$$

- Constant thickness

$$
[k]=t A[B]^{T}[D][B]
$$

- Integrand is not a function of x or y

Example 1

Evaluate the stiffness matrix for the plane stress element. Let thickness $t=1 \mathrm{in}$. Assume the element nodal displacements have been determined to be $u_{1}=0.0, \mathrm{v}_{1}=$ 0.0025 in., $\mathrm{u}_{2}=0.0012$ in., $\mathrm{v}_{2}=0.0, \mathrm{u}_{3}=0.0$, and $\mathrm{v}_{3}=0.0025 \mathrm{in}$. Determine the element stresses. $\left(\mathrm{E}=30 \times 10^{6} \mathrm{psi}, v=0.25\right)$

We first obtain the β 's and γ 's as follows:

$$
\begin{array}{ll}
\beta_{i}=y_{j}-y_{m}=0-1=-1 & \gamma_{i}=x_{m}-x_{j}=0-2=-2 \\
\beta_{j}=y_{m}-y_{i}=1-(-1)=2 & \gamma_{j}=x_{i}-x_{m}=0-0=0 \\
\beta_{m}=y_{i}-y_{j}=-1-0=-1 & \gamma_{m}=x_{j}-x_{i}=2-0=2
\end{array}
$$

Example 1

We obtain matrix \underline{B} as

$$
\underline{B}=\frac{1}{2(2)}\left[\begin{array}{rrrrrr}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{array}\right]
$$

For plane stress conditions

$$
\begin{aligned}
& \underline{D}=\frac{30 \times 10^{6}}{1-(0.25)^{2}}\left[\begin{array}{lll}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & \frac{1-0.25}{2}
\end{array}\right] \mathrm{psi} \\
& \underline{k}=\frac{(2) 30 \times 10^{6}}{4(0.9375)}\left[\begin{array}{rrr}
-1 & 0 & -2 \\
0 & -2 & -1 \\
2 & 0 & 0 \\
0 & 0 & 2 \\
-1 & 0 & 2 \\
0 & 2 & -1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right] \frac{1}{2(2)}\left[\begin{array}{rrrrrr}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{array}\right]
\end{aligned}
$$

Example 1

$$
\begin{gathered}
\underline{k}=4.0 \times 10^{6}\left[\begin{array}{llllll}
2.5 & 1.25 & -2 & -1.5 & -0.5 & 0.25 \\
1.25 & 4.375 & -1 & -0.75 & -0.25 & -3.625 \\
-2 & -1 & 4 & 0 & -2 & 1 \\
-1.5 & -0.75 & 0 & 1.5 & 1.5 & -0.75 \\
-0.5 & -0.25 & -2 & 1.5 & 2.5 & -1.25 \\
0.25 & -3.625 & 1 & -0.75 & -1.25 & 4.375
\end{array}\right] \frac{\mathrm{lb}}{\mathrm{in} .} \\
\left\{\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right\}=\frac{30 \times 10^{6}}{1-(0.25)^{2}}\left[\begin{array}{lll}
1 & 0.25 & 0 \\
0.25 & 1 & 0 \\
0 & 0 & 0.375
\end{array}\right] \times \frac{1}{2(2)}\left[\begin{array}{rrrrrr}
-1 & 0 & 2 & 0 & -1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 \\
-2 & -1 & 0 & 2 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
0.0 \\
0.0025 \\
0.0012 \\
0.0 \\
0.0 \\
0.0025
\end{array}\right\} \\
\sigma_{x}=19,200 \mathrm{psi} \quad \sigma_{y}=4800 \mathrm{psi} \quad \tau_{x y}=-15,000 \mathrm{psi}
\end{gathered}
$$

CST: Body force

- Constant body force:

$$
\begin{aligned}
& N_{i}=\frac{1}{2 A}\left(\alpha_{i}+\beta_{i} x+\gamma_{i} y\right) \\
& N_{j}=\frac{1}{2 A}\left(\alpha_{j}+\beta_{j} x+\gamma_{j} y\right)
\end{aligned}
$$

$$
N_{m}=\frac{1}{2 A}\left(\alpha_{m}+\beta_{m} x+\gamma_{m} y\right)
$$

Element with centroidal coordinate axes

$$
\left\{f_{b}\right\}=\iiint_{V}[N]^{T}\{X\} d V
$$

$$
\iint \beta_{i} x d A=\iint \gamma_{i} y d A=0
$$

$$
\alpha_{i}=\alpha_{j}=\alpha_{m}=\frac{2 A}{3}
$$

$$
\left\{f_{b}\right\}=\left\{\begin{array}{c}
f_{b i x} \\
f_{b i y} \\
f_{b j x} \\
f_{b j y} \\
f_{b m x} \\
f_{b m y}
\end{array}\right\}=\left\{\begin{array}{c}
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b} \\
X_{b} \\
Y_{b}
\end{array}\right\} \frac{A t}{3}
$$

CST: Traction force

$$
\left\{f_{s}\right\}=\int_{0}^{t} \int_{0}^{L}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left\{\begin{array}{l}
p \\
0
\end{array}\right\} d z d y
$$

CST: Body \& traction force

$$
\left\{f_{s}\right\}=t \int_{0}^{L}\left[\begin{array}{c}
N_{1} p \\
0 \\
N_{2} p \\
0 \\
N_{3} p \\
0
\end{array}\right] \text { evaluated at } x=a, y=y \quad x
$$

$$
\text { with } i=1, j=2, \text { and } m=3, \quad \alpha_{1}=x_{2} y_{3}-y_{2} x_{3}=0
$$

Similarly $\quad \beta_{1}=0 \gamma_{1}=\mathrm{a}$
Therefore, we obtain

$$
N_{1}=\frac{a y}{2 A} \quad N_{2}=\frac{L(a-x)}{2 A} \quad \text { and } \quad N_{3}=\frac{L x-a y}{2 A}
$$

CST: Body \& traction force

- Substituting $x=a$ and integrating

Example 2

For a thin plate subjected to the surface traction, determine the nodal displacements and the element stresses. The plate thickness $\mathrm{t}=1 \mathrm{in}$., $\mathrm{E}=30 \times 10^{6} \mathrm{psi}$, and $v=0.30$.

CST Element Defects

\square In bending problems, the mesh of CST elements will produce a model that is stiffer than the actual problem.
\square As we will observe from the results shown for a beam-bending problem modeled by CST and LST elements, the CST model converges very slowly to the exact solution. This is partly due to the element predicting only constant stress within each element, when for a bending problem, the stress actually varies linearly through the depth of the beam.

CST Element Defects

- For a beam subjected to pure bending, the CST has a spurious or false shear stress and hence a spurious shear strain in parts of the model that should not have any shear stress or shear strain. This spurious shear strain absorbs energy; therefore, some of the energy that should go into bending is lost. The CST is then too stiff in bending, and the deformation is smaller than actually should be. This phenomenon developing in one or more modes of deformation is sometimes described as shear locking or parasitic shear.
\square In problems where plane strain conditions exist and the Poisson's ratio approaches 0.5 , a mesh can actually lock, which means the mesh then cannot deform at all.

Constant Strain Triangle

- Stiffness matrix for element $\mathrm{k}=\mathrm{B}^{\top} \mathrm{E} B t A$
- The CST gives good results in regions of the FE model where there is little strain gradient
- Otherwise it does not work well.

Fig. 3.2-2. (a) Stress σ_{x} along the x axis in a beam modeled by CSTs and loaded in pure bending. (b) Deformation of the lower-left CST in the model.

If you use CST to model bending.

See the stress along the x -axis - it should be zero.

The predictions of deflection and stress are poor

Spurious shear stress when bent Mesh refinement will help.

Linear-Strain Triangular Element

- LST Element

$$
\begin{aligned}
& \text { LST Element } \\
& \text { L } 1, v \\
& u(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2} \\
& v(x, y)=a_{7}+a_{8} x+a_{9} y+a_{10} x^{2}+a_{11} x y+a_{12} y^{2}
\end{aligned}
$$

LST Element

- The number of coefficients equals the total number of degrees of freedom

Polynomial Degree Number of Terms Triangle

| 1 | 0 (constant) | 1 |
| :---: | :---: | :---: | :---: | :---: |
| $x y y$ | 1 (linear) | 3 |

LST Element

$$
\begin{gathered}
\{\psi\}=\left\{\begin{array}{c}
u \\
v
\end{array}\right\}=\left[\begin{array}{cccccccccccc}
1 & x & y & x^{2} & x y & y^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & x & y & x^{2} & x y & y^{2}
\end{array}\right]\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{12}
\end{array}\right\} \\
\{\psi\}=\left[M^{*}\right]\{a\} \\
\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{6} \\
v_{1} \\
\vdots \\
v_{5} \\
v_{6}
\end{array}\right\}=\left[\begin{array}{cccccccccccc}
1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & x_{2} & y_{2} & x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
1 & x_{6} & y_{6} & x_{6}^{2} & x_{6} y_{6} & y_{6}^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & x_{1} & y_{1} & x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & x_{5} & y_{5} & x_{5}^{2} & x_{5} y_{5} & y_{5}^{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & x_{6} & y_{6} & x_{6}^{2} & x_{6} y_{6} & y_{6}^{2}
\end{array}\right]\left\{\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{6} \\
a_{7} \\
\vdots \\
a_{11} \\
a_{12}
\end{array}\right\} \\
\{a\}=[X]^{-1}\{d\}
\end{gathered}
$$

LST Element

$$
\begin{aligned}
& \begin{array}{|c}
\{\psi\}=\left[M^{*}\right]\{a\} \\
\{a\}=[X]^{-1}\{d\}
\end{array} \Rightarrow \begin{array}{c}
\{\psi\}=[N]\{d\} \\
{[N]=\left[M^{*}\right][X]^{-1}}
\end{array} \quad\{\varepsilon\}=\left\{\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}
\end{array}\right\} \\
& \{\varepsilon\}=\left[\begin{array}{cccccccccccc}
0 & 1 & 0 & 2 x & y & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & x & 2 y \\
0 & 0 & 1 & 0 & x & 2 y & 0 & 1 & 0 & 2 x & y & 0
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{12}
\end{array}\right\} \quad\{\varepsilon\}=\left[M^{\prime}\right]\{a\} \\
& \{\varepsilon\}=[B]\{d\} \\
& {[B]=\left[M^{\prime}\right][X]^{-1}}
\end{aligned}
$$

LST Element

$$
\begin{gathered}
{[k]=\iiint_{V}[B]^{T}[D][B] d V} \\
{[B]=\frac{1}{2 A}\left[\begin{array}{cccccccccccc}
\beta_{1} & 0 & \beta_{2} & 0 & \beta_{3} & 0 & \beta_{4} & 0 & \beta_{5} & 0 & \beta_{6} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{2} & 0 & \gamma_{3} & 0 & \gamma_{4} & 0 & \gamma_{5} & 0 & \gamma_{6} \\
\gamma_{1} & \beta_{1} & \gamma_{2} & \beta_{2} & \gamma_{3} & \beta_{3} & \gamma_{4} & \beta_{4} & \gamma_{5} & \beta_{5} & \gamma_{6} & \beta_{6}
\end{array}\right]}
\end{gathered}
$$

where the β 's and γ 's are now functions of x and y as well as of the nodal coordinates.

$$
\begin{gathered}
\underset{(12 \times 1)}{\left\{\begin{array}{c}
f_{1 x} \\
f_{1 y} \\
\vdots \\
f_{6 y}
\end{array}\right\}}=\underset{(12 \times 12)}{\left[\begin{array}{ccc}
k_{11} & \ldots & k_{1,12} \\
k_{21} & & k_{2,12} \\
\vdots & & \vdots \\
k_{12,1} & \ldots & k_{12,12}
\end{array}\right]} \underset{(12 \times 1)}{\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
\vdots \\
v_{6}
\end{array}\right\}}
\end{gathered}
$$

Example LST Stiffness Determination

To illustrate some of the procedures outlined in previous Section for deriving an LST stiffness matrix, consider the following example. Figure shows a specific LST and its coordinates. The triangle is of base dimension b and height h , with midside nodes.

Example LST Stiffness Determination

We calculate the coefficients a_{1} through a_{6} by evaluating the displacement u at each of the six known coordinates of each node as follows:

$$
\begin{aligned}
& \begin{array}{l}
u_{1}=u(0,0)=a_{1} \\
u_{2}=u(b, 0)=a_{1}+a_{2} b+a_{4} b^{2} \\
u_{3}=u(0, h)=a_{1}+a_{3} h+a_{6} h^{2} \\
u_{4}=u\left(\frac{b}{2}, \frac{h}{2}\right)=a_{1}+a_{2} \frac{b}{2}+a_{3} \frac{h}{2}+a_{4}\left(\frac{b}{2}\right)^{2}+a_{5} \frac{b h}{4}+a_{6}\left(\frac{h}{2}\right)^{2} \\
u_{5}=u\left(0, \frac{h}{2}\right)=a_{1}+a_{3} \frac{h}{2}+a_{6}\left(\frac{h}{2}\right)^{2} \\
u_{6}=u\left(\frac{b}{2}, 0\right)=a_{1}+a_{2} \frac{b}{2}+a_{4}\left(\frac{b}{2}\right)^{2} \\
a_{1}=u_{1} a_{2}=\frac{4 u_{6}-3 u_{1}-u_{2}}{b} \\
a_{4}=\frac{2\left(u_{2}-2 u_{6}+u_{1}\right)}{b^{2}} \\
a_{6}=\frac{2\left(u_{3}-2 u_{5}+u_{1}\right)}{h^{2}} \\
a_{5}=\frac{4\left(u_{1}+u_{4}-u_{5}-u_{6}\right)}{b h} \\
\text { pplied FEM }
\end{array} \\
&
\end{aligned}
$$

Example LST Stiffness Determination

$$
\begin{aligned}
u= & u_{1}+\left[\frac{4 u_{6}-3 u_{1}-u_{2}}{b}\right] x+\left[\frac{4 u_{5}-3 u_{1}-u_{3}}{h}\right] y+\left[\frac{2\left(u_{2}-2 u_{6}+u_{1}\right)}{b^{2}}\right] x^{2} \\
& +\left[\frac{4\left(u_{1}+u_{4}-u_{5}-u_{6}\right)}{b h}\right] x y+\left[\frac{2\left(u_{3}-2 u_{5}+u_{1}\right)}{h^{2}}\right] y^{2}
\end{aligned}
$$

Similarly, for v we obtain

$$
\begin{aligned}
v= & v_{1}+\left[\frac{4 v_{6}-3 v_{1}-v_{2}}{b}\right] x+\left[\frac{4 v_{5}-3 v_{1}-v_{3}}{h}\right] y+\left[\frac{2\left(v_{2}-2 v_{6}+v_{1}\right)}{b^{2}}\right] x^{2} \\
& +\left[\frac{4\left(v_{1}+v_{4}-v_{5}-v_{6}\right)}{b h}\right] x y+\left[\frac{2\left(v_{3}-2 v_{5}+v_{1}\right)}{h^{2}}\right] y^{2}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
u \\
v
\end{array}\right\}=\left[\begin{array}{cccccccccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0 & N_{5} & 0 & N_{6} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3} & 0 & N_{4} & 0 & N_{5} & 0 & N_{6}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
\vdots \\
v_{6}
\end{array}\right\}
$$

Example LST Stiffness Determination

These shape functions are then given by

$$
\begin{aligned}
& N_{1}=1-\frac{3 x}{b}-\frac{3 y}{h}+\frac{2 x^{2}}{b^{2}}+\frac{4 x y}{b h}+\frac{2 y^{2}}{h^{2}} \quad N_{2}=\frac{-x}{b}+\frac{2 x^{2}}{b^{2}} \\
& N_{3}=\frac{-y}{h}+\frac{2 y^{2}}{h^{2}} \quad N_{4}=\frac{4 x y}{b h} \quad N_{5}=\frac{4 y}{h}-\frac{4 x y}{b h}-\frac{4 y^{2}}{h^{2}} \\
& N_{6}=\frac{4 x}{b}-\frac{4 x^{2}}{b^{2}}-\frac{4 x y}{b h} \\
& {[B]=\frac{1}{2 A}\left[\begin{array}{cccccccccccc}
\beta_{1} & 0 & \beta_{2} & 0 & \beta_{3} & 0 & \beta_{4} & 0 & \beta_{5} & 0 & \beta_{6} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{2} & 0 & \gamma_{3} & 0 & \gamma_{4} & 0 & \gamma_{5} & 0 & \gamma_{6} \\
\gamma_{1} & \beta_{1} & \gamma_{2} & \beta_{2} & \gamma_{3} & \beta_{3} & \gamma_{4} & \beta_{4} & \gamma_{5} & \beta_{5} & \gamma_{6} & \beta_{6}
\end{array}\right]} \\
& \underline{\varepsilon}=\underline{B} \underline{d}
\end{aligned}
$$

Example LST Stiffness Determination

$$
\begin{aligned}
& \beta_{1}=-3 h+\frac{4 h x}{b}+4 y \quad \beta_{2}=-h+\frac{4 h x}{b} \quad \beta_{3}=0 \\
& \beta_{4}=4 y \quad \beta_{5}=-4 y \quad \beta_{6}=4 h-\frac{8 h x}{b}-4 y \\
& \gamma_{1}=-3 b+4 x+\frac{4 b y}{h} \quad \gamma_{2}=0 \quad \gamma_{3}=-b+\frac{4 b y}{h} \\
& \gamma_{4}=4 x \quad \gamma_{5}=4 b-4 x-\frac{8 b y}{h} \quad \gamma_{6}=-4 x \\
& \varepsilon_{x}=\frac{1}{2 A}\left[\beta_{1} u_{1}+\beta_{2} u_{2}+\beta_{3} u_{3}+\beta_{4} u_{4}+\beta_{5} u_{5}+\beta_{6} u_{6}\right] \\
& \varepsilon_{y}=\frac{1}{2 A}\left[\gamma_{1} v_{1}+\gamma_{2} v_{2}+\gamma_{3} v_{3}+\gamma_{4} v_{4}+\gamma_{5} v_{5}+\gamma_{6} v_{6}\right] \\
& \gamma_{x y}=\frac{1}{2 A}\left[\gamma_{1} u_{1}+\beta_{1} v_{1}+\cdots+\beta_{6} v_{6}\right]
\end{aligned}
$$

The stiffness matrix for a constant-thickness element can now be obtained

$$
[k]=\iiint_{V}[B]^{T}[D][B] d V
$$

Comparison: LST \& CST

(a)

(b)

Figure 8-4 Basic triangular element: (a) four-CST and (b) one-LST

Figure 8-5 Cantilever beam used to compare the CST and LST elements with a 4×16 mesh

Comparison: LST \& CST

Table 8-1 Models used to compare CST and LST results for the cantilever beam of Figure 8-5

Series of Tests Run	Number of Nodes	Number of Degrees of Freedom, n_{d}	Number of Triangular Elements
A-1 4×16 mesh	85	160	128 CST
A- 2×32	297	576	512 CST
B-1 2×8	85	160	32 LST
B-2 4×16	297	576	128 LST

Table 8-2 Comparison of CST and LST results for the cantilever beam of Figure 8-5

Run	n_{d}	Bandwidth 1 n_{b}	Tip Deflection (in.)	$\sigma_{x}(\mathrm{ksi})$	Location (in.), x, y
A-1	160	14	-0.29555	67.236	$2.250,11.250$
A-2	576	22	-0.33850	81.302	$1.125,11.630$
B-1	160	18	-0.33470	58.885	$4.500,10.500$
B-2	576	22	-0.35159	69.956	$2.250,11.250$
Exact solution		-0.36133	80.000	0,12	

[^0]
Comparison: LST \& CST

Exercise

- 6.10 a,c
- 6.11
- 6.13
- 8.3
- 8.5

[^0]: ${ }^{1}$ Bandwidth is described in Appendix B.4.

