Introduction to the Finite Element Method

Chapter 5: 2-D Elements: Frame

Mohammad Javad Ashrafi, PhD

Mechanical Engineering Department

 Many structures, such as buildings and bridges, are composed of frames

• beam element with axial stiffness

$$\begin{cases} \hat{f}_{1x} \\ \hat{f}_{2x} \end{cases} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} \hat{d}_{1x} \\ \hat{d}_{2x} \end{cases}$$

$$\begin{cases} \hat{f}_{1y} \\ \hat{m}_{1} \\ \hat{f}_{2y} \\ \hat{m}_{2} \end{cases} = \frac{EI}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} \begin{cases} \hat{d}_{1y} \\ \hat{\phi}_{1} \\ \hat{d}_{2y} \\ \hat{\phi}_{2} \end{cases}$$

Combining axial and bending effects

$$\begin{cases} \hat{f}_{1x} \\ \hat{f}_{1y} \\ \hat{m}_{1} \\ \hat{f}_{2x} \\ \hat{f}_{2y} \\ \hat{m}_{2} \end{cases} = \begin{bmatrix} C_{1} & 0 & 0 & -C_{1} & 0 & 0 \\ 0 & 12C_{2} & 6C_{2}L & 0 & -12C_{2} & 6C_{2}L \\ 0 & 6C_{2}L & 4C_{2}L^{2} & 0 & -6C_{2}L & 2C_{2}L^{2} \\ -C_{1} & 0 & 0 & C_{1} & 0 & 0 \\ 0 & -12C_{2} & -6C_{2}L & 0 & 12C_{2} & -6C_{2}L \\ 0 & 6C_{2}L & 2C_{2}L^{2} & 0 & -6C_{2}L & 4C_{2}L^{2} \end{bmatrix} \begin{cases} \hat{d}_{1x} \\ \hat{d}_{1y} \\ \hat{\phi}_{1} \\ \hat{d}_{2x} \\ \hat{d}_{2y} \\ \hat{\phi}_{2} \end{cases}$$

where

$$C_1 = \frac{AE}{L}$$
 and $C_2 = \frac{EI}{L^3}$

2D Arbitrarily Oriented Beam Element

$$\underline{T} = \begin{bmatrix} C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & C & S & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad \underbrace{\underline{k} = \underline{T}^T \underline{\hat{k}} \underline{T}}_{C}$$

$$\begin{bmatrix} C_1 & 0 & 0 & -C_1 & 0 & 0 \\ 0 & 12C_2 & 6C_2L & 0 & -12C_2 & 6C_2L \\ 0 & 6C_2L & 4C_2L^2 & 0 & -6C_2L & 2C_2L^2 \\ 0 & 6C_2L & 4C_2L^2 & 0 & -6C_2L & 2C_2L^2 \\ 0 & 6C_2L & 2C_2L^2 & 0 & -6C_2L & 4C_2L^2 \end{bmatrix} \qquad C_1 = \frac{AE}{L}$$

$$C_2 = \frac{EI}{L^3}$$

2015-Applied FEM

 $\underline{\hat{k}} =$

$$\underline{k} = \frac{E}{L} \times \begin{bmatrix} AC^2 + \frac{12I}{L^2}S^2 & \left(A - \frac{12I}{L^2}\right)CS & -\frac{6I}{L}S & -\left(AC^2 + \frac{12I}{L^2}S^2\right) & -\left(A - \frac{12I}{L^2}\right)CS & -\frac{6I}{L}S \\ & AS^2 + \frac{12I}{L^2}C^2 & \frac{6I}{L}C & -\left(A - \frac{12I}{L^2}\right)CS & -\left(AS^2 + \frac{12I}{L^2}C^2\right) & \frac{6I}{L}C \\ & 4I & \frac{6I}{L}S & -\frac{6I}{L}C & 2I \\ & AC^2 + \frac{12I}{L^2}S^2 & \left(A - \frac{12I}{L^2}\right)CS & \frac{6I}{L}S \\ & & AS^2 + \frac{12I}{L^2}C^2 & -\frac{6I}{L}C \\ & & & & & & \\ \end{bmatrix}$$
Symmetry & & & & & & & \\ \end{bmatrix}

• Rigid plane frame

- a series of beam elements rigidly connected to each other
- the original angles made between elements at their joints remain unchanged after the deformation due to applied loads or applied displacements.
- moment continuity exists at the rigid joints
- the element centroids, as well as the applied loads, lie in a common plane (x-y plane).

The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force of 10,000 lb applied at node 2 and to a positive moment of 5000 lb-in. applied at node 3.

Let $E = 30 \times 10^6$ psi and A = 10 in² for all elements, and let I = 200 in⁴ for elements 1 and 3, and I = 100 in⁴ for element 2.

Also,

Element 1

$$C = \cos 90^{\circ} = \frac{x_2 - x_1}{L^{(1)}} = \frac{-60 - (-60)}{120} = 0$$

$$S = \sin 90^{\circ} = \frac{y_2 - y_1}{L^{(1)}} = \frac{120 - 0}{120} = 1$$

$$\frac{12I}{L^2} = \frac{12(200)}{(10 \times 12)^2} = 0.167 \text{ in}^2$$

$$\frac{6I}{L} = \frac{6(200)}{10 \times 12} = 10.0 \text{ in}^3$$

$$\frac{E}{L} = \frac{30 \times 10^6}{10 \times 12} = 250,000 \text{ lb/in}^3$$

(5.2.1)

Then, using Eqs. (5.2.1) to help in evaluating Eq. (5.1.11) for element 1, we obtain the element global stiffness matrix as

$$\underline{k}^{(1)} = 250,000 \begin{bmatrix} d_{1x} & d_{1y} & \phi_1 & d_{2x} & d_{2y} & \phi_2 \\ 0.167 & 0 & -10 & -0.167 & 0 & -10 \\ 0 & 10 & 0 & 0 & -10 & 0 \\ -10 & 0 & 800 & 10 & 0 & 400 \\ -0.167 & 0 & 10 & 0.167 & 0 & 10 \\ 0 & -10 & 0 & 0 & 10 & 0 \\ -10 & 0 & 400 & 10 & 0 & 800 \end{bmatrix} \frac{1b}{\text{in.}}$$
(5.2.2)

Element 2

For element 2, the angle between x and \hat{x} is zero because \hat{x} is directed from node 2 to node 3. Therefore,

$$C = 1$$
 $S = 0$

Also,

$$\frac{12I}{L^2} = \frac{12(100)}{120^2} = 0.0835 \text{ in}^2$$
$$\frac{6I}{L} = \frac{6(100)}{120} = 5.0 \text{ in}^3$$
$$\frac{E}{L} = 250,000 \text{ lb/in}^3$$
(5.2.3)

Using the quantities obtained in Eqs. (5.2.3) in evaluating Eq. (5.1.11) for element 2, we obtain

$$\underline{k}^{(2)} = 250,000 \begin{bmatrix} d_{2x} & d_{2y} & \phi_2 & d_{3x} & d_{3y} & \phi_3 \\ 10 & 0 & 0 & -10 & 0 & 0 \\ 0 & 0.0835 & 5 & 0 & -0.0835 & 5 \\ 0 & 5 & 400 & 0 & -5 & 200 \\ -10 & 0 & 0 & 10 & 0 & 0 \\ 0 & -0.0835 & -5 & 0 & 0.0835 & -5 \\ 0 & 5 & 200 & 0 & -5 & 400 \end{bmatrix} \frac{1b}{\text{in.}}$$
(5.2.4)

Element 3

For element 3, the angle between x and \hat{x} is 270° (or -90°) because \hat{x} is directed from node 3 to node 4. Therefore,

$$C = 0 \qquad S = -1$$

Therefore, evaluating Eq. (5.1.11) for element 3, we obtain

$$\underline{k}^{(3)} = 250,000 \begin{bmatrix} d_{3x} & d_{3y} & \phi_3 & d_{4x} & d_{4y} & \phi_4 \\ 0.167 & 0 & 10 & -0.167 & 0 & 10 \\ 0 & 10 & 0 & 0 & -10 & 0 \\ 10 & 0 & 800 & -10 & 0 & 400 \\ -0.167 & 0 & -10 & 0.167 & 0 & -10 \\ 0 & -10 & 0 & 0 & 10 & 0 \\ 10 & 0 & 400 & -10 & 0 & 800 \end{bmatrix} \frac{1b}{\text{in.}}$$
(5.2.5)

Superposition of Eqs. (5.2.2), (5.2.4), and (5.2.5) and application of the boundary conditions $d_{1x} = d_{1y} = \phi_1 = 0$ and $d_{4x} = d_{4y} = \phi_4 = 0$ at nodes 1 and 4 yield the reduced

set of equations for a longhand solution as

Solving Eq. (5.2.6) for the displacements and rotations, we have

$$\begin{cases} d_{2x} \\ d_{2y} \\ \phi_2 \\ d_{3x} \\ d_{3y} \\ \phi_3 \end{cases} = \begin{cases} 0.211 \text{ in.} \\ 0.00148 \text{ in.} \\ -0.00153 \text{ rad} \\ 0.209 \text{ in.} \\ -0.00148 \text{ in.} \\ -0.00149 \text{ rad} \end{cases}$$
(5.2.7)

The element forces can now be obtained using $\underline{f} = \underline{k}\underline{T}\underline{d}$ for each element, as was previously done in solving truss and beam problems. We will illustrate this procedure only for element 1. For element 1, on using Eq. (5.1.10) for \underline{T} and Eq. (5.2.7) for the displacements at node 2, we have

$$\underline{T}\underline{d} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{cases} d_{1x} = 0 \\ d_{1y} = 0 \\ \phi_1 = 0 \\ d_{2x} = 0.211 \\ d_{2y} = 0.00148 \\ \phi_2 = -0.00153 \end{cases}$$
(5.2.8)

On multiplying the matrices in Eq. (5.2.8), we obtain

$$\underline{T}\underline{d} = \begin{cases} 0 \\ 0 \\ 0 \\ 0.00148 \\ -0.211 \\ -0.00153 \end{cases}$$

(5.2.9)

Then using $\underline{\hat{k}}$ from Eq. (5.1.8), we obtain element 1 local forces as

$$\underline{\hat{f}} = \underline{\hat{k}}\underline{T}\underline{d} = 250,000 \begin{bmatrix} 10 & 0 & 0 & -10 & 0 & 0 \\ 0 & 0.167 & 10 & 0 & -0.167 & 10 \\ 0 & 10 & 800 & 0 & -10 & 400 \\ -10 & 0 & 0 & 10 & 0 & 0 \\ 0 & -0.167 & -10 & 0 & 0.167 & -10 \\ 0 & 10 & 400 & 0 & -10 & 800 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.00148 \\ -0.211 \\ -0.00153 \end{bmatrix}$$
(5.2.10)

Simplifying Eq. (5.2.10), we obtain the local forces acting on element 1 as

$$\begin{cases} \hat{f}_{1x} \\ \hat{f}_{1y} \\ \hat{m}_{1} \\ \hat{f}_{2x} \\ \hat{f}_{2y} \\ \hat{m}_{2} \end{cases} = \begin{cases} -3700 \text{ lb} \\ 4990 \text{ lb} \\ 376,000 \text{ lb-in.} \\ 3700 \text{ lb} \\ -4990 \text{ lb} \\ 223,000 \text{ lb-in.} \end{cases}$$
(5.2.11)

Inclined or Skewed supports: Frame Element

Inclined or Skewed supports: Frame Element

The same steps as given in Section 3.9 then follow for the plane frame. The resulting equations for the plane are:

or

where

and

 $[T_i]{f} = [T_i][K][T_i]^T{d}$

$$\begin{cases} F_{1x} \\ F_{1y} \\ M_1 \\ F_{2x} \\ F_{2y} \\ M_2 \\ F'_{3x} \\ F'_{3y} \\ M_3 \end{cases} = [T_i][K][T_i]^T \begin{cases} d_{1x} = 0 \\ d_{1y} = 0 \\ \phi_1 = 0 \\ d_{2x} \\ d_{2y} \\ \phi_2 \\ d'_{3x} \\ d'_{3y} = 0 \\ \phi'_3 = \phi_3 \end{cases}$$

$$[T_i] = \begin{bmatrix} I & [0] & [0] \\ [0] & [I] & [0] \\ [0] & [0] & [t_3] \end{bmatrix}$$
$$t_3] = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$