Introduction to the Finite Element Method

Lecture 4: 1-D Elements: Beam

Mohammad Javad Ashrafi, PhD
Mechanical Engineering Department

Outline

Beam Element

- A beam is a long, slender structural member generally subjected to transverse loading
- D.O.F. of each node: a transverse displacement and a rotation

Figure 4-1 Beam element with positive nodal displacements, rotations, forces, and moments

Euler-Bernouli Beam Stiffness

- plane cross sections perpendicular to the neutral axis remaining plane and perpendicular to it after bending.

$$
\begin{gathered}
\kappa=\frac{1}{\rho}=\frac{M}{E I} \\
\kappa=\frac{d^{2} \hat{v}}{d \hat{x}^{2}}
\end{gathered} \Rightarrow \frac{d^{2} \hat{v}}{d \hat{x}^{2}}=\frac{M}{E I}
$$

$$
\begin{aligned}
& w=-\frac{d V}{d \hat{x}} \\
& V=\frac{d M}{d \hat{x}}
\end{aligned} \Rightarrow \frac{d^{2}}{d \hat{x}^{2}}\left(E I \frac{d^{2} \hat{v}}{d \hat{x}^{2}}\right)=-w(\hat{x})
$$

(a) Portion of deflected curve of beam
(b) Radius of deflected curve at $\hat{v}(\hat{x})$

Displacement Function

- For constant EI and only nodal forces and moments:

$$
E I \frac{d^{4} \hat{v}}{d \hat{x}^{4}}=0
$$

- Transverse displacement function (cubic)

$$
\begin{aligned}
& \hat{v}(\hat{x})=a_{1} \hat{x}^{3}+a_{2} \hat{x}^{2}+a_{3} \hat{x}+a_{4} \\
& \hat{v}(0)=\hat{d}_{1 y}=a_{4} \\
& \frac{d \hat{v}(0)}{d \hat{x}}=\hat{\phi}_{1}=a_{3} \\
& \hat{v}(L)=\hat{d}_{2 y}=a_{1} L^{3}+a_{2} L^{2}+a_{3} L+a_{4} \\
& \frac{d \hat{v}(L)}{d \hat{x}}=\hat{\phi}_{2}=3 a_{1} L^{2}+2 a_{2} L+a_{3}
\end{aligned}
$$

$$
\hat{v}=\left[\frac{2}{L^{3}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)+\frac{1}{L^{2}}\left(\hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{x}^{3}+\left[-\frac{3}{L^{2}}\left(\hat{d}_{1 y}-\hat{d}_{2 y}\right)-\frac{1}{L}\left(2 \hat{\phi}_{1}+\hat{\phi}_{2}\right)\right] \hat{x}^{2}+\hat{\phi}_{1} \hat{x}+\hat{d}_{1 y}
$$

Shape Functions

- In matrix form

$$
\begin{gathered}
\hat{v}=[N]\{\hat{d}\} \\
\{\hat{d}\}=\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\} \\
{[N]=\left[\begin{array}{lll}
N_{1} & N_{2} & N_{3} \\
N_{4}
\end{array}\right]} \\
N_{1}=\frac{1}{L^{3}}\left(2 \hat{x}^{3}-3 \hat{x}^{2} L+L^{3}\right) \quad N_{2}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-2 \hat{x}^{2} L^{2}+\hat{x} L^{3}\right) \\
N_{3}=\frac{1}{L^{3}}\left(-2 \hat{x}^{3}+3 \hat{x}^{2} L\right) \quad N_{4}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-\hat{x}^{2} L^{2}\right)
\end{gathered}
$$

Shape Functions

Stiffness Matrix

$$
\hat{m}(\hat{x})=E I \frac{d^{2} \hat{v}}{d \hat{x}^{2}} \quad \hat{V}=E I \frac{d^{3} \hat{v}}{d \hat{x}^{3}}
$$

$$
\begin{aligned}
& \hat{f}_{1 y}=\hat{V}=E I \frac{d^{3} \hat{v}(0)}{d \hat{x}^{3}}=\frac{E I}{L^{3}}\left(12 \hat{d}_{1 y}+6 L \hat{\phi}_{1}-12 \hat{d}_{2 y}+6 L \hat{\phi}_{2}\right) \\
& \hat{m}_{1}=-\hat{m}=-E I \frac{d^{2} \hat{v}(0)}{d \hat{x}^{2}}=\frac{E I}{L^{3}}\left(6 L \hat{d}_{1 y}+4 L^{2} \hat{\phi}_{1}-6 L \hat{d}_{2 y}+2 L^{2} \hat{\phi}_{2}\right) \\
& \hat{f}_{2 y}=-\hat{V}=-E I \frac{d^{3} \hat{v}(L)}{d \hat{x}^{3}}=\frac{E I}{L^{3}}\left(-12 \hat{d}_{1 y}-6 L \hat{\phi}_{1}+12 \hat{d}_{2 y}-6 L \hat{\phi}_{2}\right) \\
& \hat{m}_{2}=\hat{m}=E I \frac{d^{2} \hat{v}(L)}{d \hat{x}^{2}}=\frac{E I}{L^{3}}\left(6 L \hat{d}_{1 y}+2 L^{2} \hat{\phi}_{1}-6 L \hat{d}_{2 y}+4 L^{2} \hat{\phi}_{2}\right)
\end{aligned}
$$

Stiffness Matrix

$$
\left\{\begin{array}{l}
\hat{f}_{1 y} \\
\hat{m}_{1} \\
\hat{f}_{2 y} \\
\hat{m}_{2}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
\hat{d}_{1 y} \\
\hat{\phi}_{1} \\
\hat{d}_{2 y} \\
\hat{\phi}_{2}
\end{array}\right\}
$$

- Stiffness matrix:

$$
\underline{\hat{k}}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

Example 1

- Assemblage of Beam Stiffness Matrices

Example 1

$$
\begin{gathered}
\underline{k}^{(1)}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
d_{1 y} & \phi_{1} & d_{2 y} & \phi_{2} \\
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \quad \underline{k}^{(2)}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
d_{2 y} & \phi_{2} & d_{3 y} & \phi_{3} \\
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right] \\
\left\{\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2} \\
F_{3 y} \\
M_{3}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccccc}
12 & 6 L & -12 & 6 L & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\
-12 & -6 L & 12+12 & -6 L+6 L & -12 & 6 L \\
6 L & 2 L^{2} & -6 L+6 L & 4 L^{2}+4 L^{2} & -6 L & 2 L^{2} \\
0 & 0 & -12 & -6 L & 12 & -6 L \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{1 y} \\
\phi_{1} \\
d_{2 y} \\
\phi_{2} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\}
\end{gathered}
$$

Example 1

- B.C.'s: $\quad \phi_{1}=0 \quad d_{1 y}=0 \quad d_{3 y}=0$

$$
\left\{\begin{array}{c}
-1000 \\
1000 \\
0
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{lll}
24 & 0 & 6 L \\
0 & 8 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{2 y} \\
\phi_{2} \\
\phi_{3}
\end{array}\right\}
$$

Example 2

Using the direct stiffness method, solve the problem of the propped cantilever beam subjected to end load P in Figure 4-8. The beam is assumed to have constant $E I$ and length $2 L$. It is supported by a roller at midlength and is built in at the right end.

Figure 4-8 Propped cantilever beam

The \underline{K} is	$\underline{K}=\frac{E I}{L^{3}}$	$\begin{array}{cc} d_{1 y} & \phi_{1} \\ {\left[\begin{array}{cc} 12 & 6 L \\ & 4 L^{2} \end{array}\right.} \end{array}$	$d_{2 y}$	ϕ_{2}	$d_{3 y}$	ϕ_{3}
			-12	$6 L$	0	0
			$-6 L$	$2 L^{2}$	0	0
			$12+12$	$-6 L+6 L$	-12	$6 L$
				$4 L^{2}+4 L^{2}$	-6L	$2 L^{2}$
					12	$-6 L$
		Symmetry				$4 L^{2}$

Example 2

The governing equations for the beam are then given by

$$
\left\{\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2} \\
F_{3 y} \\
M_{3}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccccc}
12 & 6 L & -12 & 6 L & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\
-12 & -6 L & 24 & 0 & -12 & 6 L \\
6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} \\
0 & 0 & -12 & -6 L & 12 & -6 L \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{1 y} \\
\phi_{1} \\
d_{2 y} \\
\phi_{2} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\}
$$

On applying the boundary conditions

$$
\begin{gathered}
d_{2 y}=0 \quad d_{3 y}=0 \quad \phi_{3}=0 \\
\left\{\begin{array}{c}
-P \\
0 \\
0
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{ccc}
12 & 6 L & 6 L \\
6 L & 4 L^{2} & 2 L^{2} \\
6 L & 2 L^{2} & 8 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{1 y} \\
\phi_{1} \\
\phi_{2}
\end{array}\right\}
\end{gathered}
$$

where $F_{1 y}=P, M_{1}=0$, and $M_{2}=o$ have been used

Example 2

$$
\begin{gathered}
d_{1 y}=-\frac{7 P L^{3}}{12 E I} \quad \phi_{1}=\frac{3 P L^{2}}{4 E I} \quad \phi_{2}=\frac{P L^{2}}{4 E I} \\
\left.\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2} \\
F_{3 y} \\
M_{3}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccccc}
12 & 6 L & -12 & 6 L & 0 & 0 \\
6 L & 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 \\
-12 & -6 L & 24 & 0 & -12 & 6 L \\
6 L & 2 L^{2} & 0 & 8 L^{2} & -6 L & 2 L^{2} \\
0 & 0 & -12 & -6 L & 12 & -6 L \\
0 & 0 & 6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
-\frac{7 P L^{3}}{12 E I} \\
\frac{3 P L^{2}}{4 E I} \\
0 \\
\frac{P L^{2}}{4 E I} \\
0 \\
0
\end{array}\right\} \\
\begin{array}{l}
F_{1 y}=-P \\
M_{2}=0 \\
M_{1}=0 \\
F_{3 y}=-\frac{3}{2} P
\end{array} F_{2 y}=\frac{5}{2} P \\
M_{3}=\frac{1}{2} P L
\end{gathered}
$$

Example 2

For element 1
$\left\{\begin{array}{l}\hat{f}_{1 y} \\ \hat{m}_{1} \\ \hat{f}_{2 y} \\ \hat{m}_{2}\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}12 & 6 L & -12 & 6 L \\ 6 L & 4 L^{2} & -6 L & 2 L^{2} \\ -12 & -6 L & 12 & -6 L \\ 6 L & 2 L^{2} & -6 L & 4 L^{2}\end{array}\right]\left\{\begin{array}{c}-\frac{7 P L^{3}}{12 E I} \\ \frac{3 P L^{2}}{4 E I} \\ 0 \\ \frac{P L^{2}}{4 E I}\end{array}\right\} \quad \begin{array}{r}\text { P } \\ \hline\end{array}$
$\hat{f}_{1 y}=-P \quad \hat{m}_{1}=0 \quad \hat{f}_{2 y}=P \quad \hat{m}_{2}=-P L$

For element 2

Example 3

Determine the nodal displacements and rotations and the global and element forces. Let $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{I}=2 \times 10^{4} \mathrm{~m}^{4}$ throughout the beam, and let $\mathrm{k}=200 \mathrm{kN} / \mathrm{m}$.

We obtain the structure stiffness matrix as

Example 3

where the spring stiffness matrix k_{s} given below

$$
\underline{\boldsymbol{k}}_{s}=\left[\begin{array}{rr}
d_{3 y} & d_{4 y} \\
k & -k \\
-k & k
\end{array}\right]
$$

The governing equations for the beam are then given by

$$
\left\{\begin{array}{l}
F_{1 y} \\
M_{1} \\
F_{2 y} \\
M_{2} \\
F_{3 y} \\
M_{3} \\
F_{4 y}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{ccccccc}
12 & 6 L & -12 & 6 L & 0 & 0 & 0 \\
& 4 L^{2} & -6 L & 2 L^{2} & 0 & 0 & 0 \\
& & 24 & 0 & -12 & 6 L & 0 \\
& & & 8 L^{2} & -6 L & 2 L^{2} & 0 \\
& & & & 12+k^{\prime} & -6 L & -k^{\prime} \\
\text { Symmetry } & & & & 4 L^{2} & 0 \\
{ }^{2} & & & & k^{\prime}
\end{array}\right]\left\{\begin{array}{c}
d_{1 y} \\
\phi_{1} \\
d_{2 y} \\
\phi_{2} \\
d_{3 y} \\
\phi_{3} \\
d_{4 y}
\end{array}\right\}
$$

where $k^{\prime}=k L^{3} /(E I)$

Example 3

We now apply the B.C.s:

$$
\begin{gathered}
d_{1 y}=0 \quad \phi_{1}=0 \quad d_{2 y}=0 \quad d_{4 y}=0 \\
\left\{\begin{array}{c}
0 \\
-P \\
0
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{ccc}
8 L^{2} & -6 L & 2 L^{2} \\
-6 L & 12+k^{\prime} & -6 L \\
2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
\phi_{2} \\
d_{3 y} \\
\phi_{3}
\end{array}\right\} \\
d_{3 y}=-\frac{7 P L^{3}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right)=\frac{-7(50 \mathrm{kN})(3 \mathrm{~m})^{3}}{\left(210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}\right)\left(2 \times 10^{-4} \mathrm{~m}^{4}\right)}\left(\frac{1}{12+7(0.129)}\right)=-0.0174 \mathrm{~m} \\
\phi_{2}=-\frac{3 P L^{2}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right)=-0.00249 \mathrm{rad} \\
\phi_{3}=-\frac{9 P L^{2}}{E I}\left(\frac{1}{12+7 k^{\prime}}\right)=-0.00747 \mathrm{rad} \quad \\
F_{1 y}=-69.9 \mathrm{kN} \quad M_{1}=-69.7 \mathrm{kN} \cdot \mathrm{~m} \\
F_{2 y}=116.4 \mathrm{kN} \quad M_{2}=0.0 \mathrm{kN} \cdot \mathrm{~m} \\
F_{3 y}=-50.0 \mathrm{kN} \\
F_{4 y}=0.0 \mathrm{kN} \cdot \mathrm{~m} \\
F_{4 y}=-d_{3 y} k=(0.0174) 200=3.5 \mathrm{kN}
\end{gathered}
$$

Example 4: Nodal Hinge

Determine the displacement and rotation at node 2 and the element forces for the uniform beam with an internal hinge at node 2 shown in Figure 4-34. Let EI be a constant.

$$
\begin{gathered}
d_{1 y} \\
\phi_{1}
\end{gathered} d_{2 y} \phi_{2}, ~\left[\begin{array}{cccc}
-12 & 6 a & -12 & 6 a \\
k^{(1)}= & E I \\
-6 a & 4 a^{2} & -6 a & 2 a^{2} \\
-12 & -6 a & 12 & -6 a \\
6 a & 2 a^{2} & -6 a & 4 a^{2}
\end{array}\right] .
$$

$$
k=E I\left[\begin{array}{ccc}
d_{2 y} & \phi_{2} & \phi_{2}^{\prime} \\
{\left[\frac{12}{a^{3}}+\frac{12}{b^{3}}\right.} & \frac{-6}{a^{2}} & \frac{6}{b^{2}} \\
\frac{-6}{a^{2}} & \frac{4}{a} & 0 \\
\frac{6}{b^{2}} & 0 & \frac{4}{b}
\end{array}\right], ~ \$
$$

Example 4: Nodal Hinge

$$
E I\left[\begin{array}{ccc}
\frac{12}{a^{3}}+\frac{12}{b^{3}} & \frac{-6}{a^{2}} & \frac{6}{b^{2}} \\
\frac{-6}{a^{2}} & \frac{4}{a} & 0 \\
\frac{6}{b^{2}} & 0 & \frac{4}{b}
\end{array}\right] \times\left\{\begin{array}{c}
d_{2 y} \\
\phi_{2} \\
\phi_{2}^{\prime}
\end{array}\right\}=\left\{\begin{array}{c}
-P \\
0 \\
0
\end{array}\right\} \quad \longrightarrow \begin{aligned}
& d_{2 y}=\frac{-a^{3} b^{3} P}{3\left(b^{3}+a^{3}\right) E I} \\
& \begin{array}{l}
\phi_{2}=\frac{-a^{2} b^{3} P}{2\left(b^{3}+a^{3}\right) E I} \\
\phi_{2}^{\prime}=\frac{a^{3} b^{2} P}{2\left(b^{3}+a^{3}\right) E I}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { For Element 2: } \\
& \left\{\begin{array}{l}
\hat{f}_{2 y} \\
\hat{m}_{2} \\
\hat{f}_{3 y} \\
\hat{m}_{3}
\end{array}\right\}=\frac{E I}{b^{3}}\left[\begin{array}{cccc}
12 & 6 b & -12 & 6 b \\
6 b & 4 b^{2} & -6 b & 2 b^{2} \\
-12 & -6 b & 12 & -6 b \\
6 b & 2 b^{2} & -6 b & 4 b^{2}
\end{array}\right]\left\{\begin{array}{c}
-\frac{a^{3} b^{3} P}{3\left(b^{3}+a^{3}\right) E I} \\
\frac{a^{3} b^{2} P}{2\left(b^{3}+a^{3}\right) E I} \\
0 \\
0
\end{array}\right\} \begin{array}{l}
\hat{f}_{2 y}=-\frac{a^{3} P}{b^{3}+a^{3}} \\
\hat{m}_{2}=0
\end{array} \begin{array}{l}
\hat{f}_{3 y}=\frac{a^{3} P}{b^{3}+a^{3}} \\
\hat{m}_{3}=-\frac{b a^{3} P}{b^{3}+a^{3}}
\end{array}
\end{aligned}
$$

Potential Energy Approach

The total potential energy for a beam is

$$
\pi_{p}=U+\Omega
$$

where the general one-dimensional expression for the strain energy U for a beam is

$$
U=\iiint_{V} \frac{1}{2} \sigma_{x} \varepsilon_{x} d V
$$

and for a single beam element subjected to both distributed and concentrated nodal loads, the potential energy of forces is given by

Potential Energy Approach

$$
\begin{aligned}
& \hat{v}=[N]\{\hat{d}\} \\
& {[N]=\left[\begin{array}{llll}
N_{1} & N_{2} & N_{3} & N_{4}
\end{array}\right]} \\
& N_{1}=\frac{1}{L^{3}}\left(2 \hat{x}^{3}-3 \hat{x}^{2} L+L^{3}\right) \quad N_{2}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-2 \hat{x}^{2} L^{2}+\hat{x} L^{3}\right) \\
& \varepsilon_{x}=-\hat{y} \frac{d^{2} \hat{v}}{d \hat{x}^{2}} \quad N_{3}=\frac{1}{L^{3}}\left(-2 \hat{x}^{3}+3 \hat{x}^{2} L\right) \quad N_{4}=\frac{1}{L^{3}}\left(\hat{x}^{3} L-\hat{x}^{2} L^{2}\right) \\
& \left\{\varepsilon_{x}\right\}=-\hat{y}\left[\frac{12 \hat{x}-6 L}{L^{3}} \frac{6 \hat{x} L-4 L^{2}}{L^{3}} \frac{-12 \hat{x}+6 L}{L^{3}} \frac{6 \hat{x} L-2 L^{2}}{L^{3}}\right]\{\hat{d}\} \\
& \left\{\varepsilon_{x}\right\}=-\hat{y}[B]\{\hat{d}\}
\end{aligned}
$$

where we define

$$
[B]=\left[\frac{12 \hat{x}-6 L}{L^{3}} \frac{6 \hat{x} L-4 L^{2}}{L^{3}} \frac{-12 \hat{x}+6 L}{L^{3}} \frac{6 \hat{x} L-2 L^{2}}{L^{3}}\right]
$$

Potential Energy Approach

$$
\begin{aligned}
& \left\{\sigma_{x}\right\}=[D]\left\{\varepsilon_{x}\right\}=-\hat{y}[D][B]\{\hat{d}\} \\
& \quad[D]=[E]
\end{aligned}
$$

The total potential energy is expressed in matrix notation as

$$
\pi_{p}=\iiint_{\hat{x}} \frac{1}{A}\left\{\sigma_{x}\right\}^{T}\left\{\varepsilon_{x}\right\} d A d \hat{x}-\int_{0}^{L} b \hat{T}_{y}[\hat{v}]^{T} d \hat{x}-\{\hat{d}\}^{T}\{\hat{P}\}
$$

- Load per unit length $w=b \hat{T}_{y}$, and moment of inertia $I=\iint_{A} y^{2} d A$

$$
\pi_{p}=\int_{0}^{L} \frac{E I}{2}\{\hat{d}\}^{T}[B]^{T}[B]\{\hat{d}\} d \hat{x}-\int_{0}^{L} w\{\hat{d}\}^{T}[N]^{T} d \hat{x}-\{\hat{d}\}^{T}\{\hat{P}\}
$$

Potential Energy Approach

Differentiating π_{p} with respect to $\hat{d}_{1 y}, \hat{\phi}_{1}, \hat{d}_{2 y}$ and $\hat{\phi}_{2}$ and equating each term to zero to minimize π_{p}, we obtain four element equations, which are written in matrix form as

$$
\left.\left.\begin{array}{c}
E I \int_{0}^{L}[B]^{T}[B] d \hat{x}\{\hat{d}\}-\int_{0}^{L}[N]^{T} w d \hat{x}-\{\hat{P}\}=0 \\
\{\hat{f}\}=\int_{0}^{L}[N]^{T} w d \hat{x}+\{\hat{P}\} \\
{[\hat{k}]=E I \int_{0}^{L}[B]^{T}[B] d \hat{x}}
\end{array}\right]\{\hat{f}\}=[\hat{k}]\{\hat{d}\}\right\}
$$

Distributed Load

- Equivalent nodal forces:
- If w is constant

$$
f_{0}=\int_{0}^{L} N^{T} w d \hat{x}=\frac{1}{L^{3}} \int_{0}^{L}\left[\begin{array}{c}
2 \hat{x}^{3}-3 \hat{x}^{2} L+L^{3} \\
\hat{x}^{3} L-2 \hat{x}^{2} L^{2}+\hat{x} L^{3} \\
-2 \hat{x}^{3}+3 \hat{x}^{2} L \\
\hat{x}^{3} L-\hat{x}^{2} L^{2}
\end{array}\right] w d \hat{x}
$$

$$
f_{0}=\left\{\begin{array}{c}
\frac{-w L}{2} \\
\frac{-w L^{2}}{12} \\
\frac{-w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}
$$

Distributed Load

In general, we can account for distributed loads or concentrated loads acting on beam elements by starting with the following formulation application for a general structure:

$$
\begin{equation*}
\underline{F}=\underline{K} \underline{d}-\underline{F}_{o} \tag{4.4.8}
\end{equation*}
$$

where \underline{F} are the concentrated nodal forces and \underline{F}_{o} are called the equivalent nodal forces, now expressed in terms of global-coordinate components, which are of such magnitude that they yield the same displacements at the nodes as would the distributed load. Using the table in Appendix D of equivalent nodal forces \underline{f}_{o} expressed in terms of localcoordinate components, we can express \underline{F}_{o} in terms of global-coordinate components.

This concept can be applied on a local basis to obtain the local nodal forces \underline{f} in individual elements of structures by applying Eq. (4.4.8) locally as

$$
\begin{equation*}
\underline{\hat{f}}=\underline{\hat{k}} \underline{\hat{d}}-\underline{f}_{o} \tag{4.4.11}
\end{equation*}
$$

where \underline{f}_{o} are the equivalent local nodal forces.

Distributed Load

Table D-1 Single element equivalent joint forces f_{0} for different types of loads

$f_{2 y} \quad m_{2}$

$\frac{-P}{2}$
$\frac{P L}{8}$

$\frac{-P a^{2}(L+2 b)}{L^{3}} \quad \frac{P a^{2} b}{L^{2}}$

$-P$
$\alpha(1-\alpha) P L$
$\frac{-w L}{2}$

$$
\frac{w L^{2}}{12}
$$

$$
\frac{-3 w L}{20}
$$

$$
\frac{w L^{2}}{30}
$$

6.

$$
\frac{-w L}{4}
$$

$$
\frac{-5 w L^{2}}{96}
$$

$\frac{-w L}{4}$
$\frac{5 w L^{2}}{96}$

Example 1

For the cantilever beam subjected to the concentrated free-end load P and the uniformly distributed load w acting over the whole beam as shown in Figure 4-28, determine the free-end displacements and the nodal forces.

Figure 4-28 (a) Cantilever beam subjected to a concentrated load and a distributed load and (b) the equivalent nodal force replacement system

Example 1

Once again, the beam is modeled using one element with nodes 1 and 2 , and the distributed load is replaced as shown in Figure 4-28(b) using appropriate loading case 4 in Appendix D. Using the beam element stiffness Eq. (4.1.14), we obtain

$$
\frac{E I}{L^{3}}\left[\begin{array}{cc}
12 & -6 L \tag{4.4.24}\\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
d_{2 y} \\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{-w L}{2}-P \\
\frac{w L^{2}}{12}
\end{array}\right\}
$$

where we have applied the nodal forces from Figure $4-28(\mathrm{~b})$ and the boundary conditions $d_{1 y}=0$ and $\phi_{1}=0$ to reduce the number of matrix equations for the usual longhand solution. Solving Eq. (4.4.24) for the displacements, we obtain

$$
\left\{\begin{array}{c}
d_{2 y} \tag{4.4.25}\\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{-w L^{4}}{8 E I}-\frac{P L^{3}}{3 E I} \\
\frac{-w L^{3}}{6 E I}-\frac{P L^{2}}{2 E I}
\end{array}\right\} \downarrow
$$

Example 1

Next, we obtain the effective nodal forces using $\underline{F}^{(e)}=\underline{K} \underline{d}$ as

$$
\left\{\begin{array}{l}
F_{1 y}^{(e)} \tag{4.4.26}\\
M_{1}^{(e)} \\
F_{2 y}^{(e)} \\
M_{2}^{(e)}
\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{c}
0 \\
0 \\
\frac{-w L^{4}}{8 E I}-\frac{P L^{3}}{3 E I} \\
\frac{-w L^{3}}{6 E I}-\frac{P L^{2}}{2 E I}
\end{array}\right\}
$$

Simplifying Eq. (4.4.26), we obtain

$$
\left\{\begin{array}{l}
F_{1 y}^{(e)} \tag{4.4.27}\\
M_{1}^{(e)} \\
F_{2 y}^{(e)} \\
M_{2}^{(e)}
\end{array}\right\}=\left\{\begin{array}{c}
P+\frac{w L}{2} \\
P L+\frac{5 w L^{2}}{12} \\
-P-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}
$$

Example 1

Finally, subtracting the equivalent nodal force matrix [see Figure 4-27(b)] from the effective force matrix of Eq. (4.4.27), we obtain the correct nodal forces as

$$
\left\{\begin{array}{l}
F_{1 y} \tag{4.4.28}\\
M_{1} \\
F_{2 y} \\
M_{2}
\end{array}\right\}=\left\{\begin{array}{c}
P+\frac{w L}{2} \\
P L+\frac{5 w L^{2}}{12} \\
-P-\frac{w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}-\left\{\begin{array}{c}
\frac{-w L}{2} \\
\frac{-w L^{2}}{12} \\
\frac{-w L}{2} \\
\frac{w L^{2}}{12}
\end{array}\right\}=\left\{\begin{array}{c}
P+w L \\
P L+\frac{w L^{2}}{2} \\
-P \\
0
\end{array}\right\}
$$

From Eq. (4.4.28), we see that $F_{1 y}$ is equivalent to the vertical reaction force, M_{1} is the reaction moment at node 1 , and $F_{2 y}$ is equal to the applied downward force P at node 2. [Remember that only the equivalent nodal force matrix is subtracted, not the original concentrated load matrix. This is based on the general formulation, Eq. (4.4.8).]

Example 2: Exact Solution

We will now compare the finite element solution to the exact classical beam theory solution for the cantilever beam shown in Figure 4-30 subjected to a uniformly distributed load. Both one- and two-element finite element solutions will be presented and compared to the exact solution obtained by the direct double-integration method. Let $E=30 \times 10^{6} \mathrm{psi}, I=100 \mathrm{in}^{4}, L=100 \mathrm{in}$., and uniform load $w=20 \mathrm{lb} / \mathrm{in}$.

Figure 4-30 Cantilever beam subjected to uniformly distributed load
To obtain the solution from classical beam theory, we use the double-integration method [1]. Therefore, we begin with the moment-curvature equation

$$
\begin{equation*}
y^{\prime \prime}=\frac{M(x)}{E I} \tag{4.5.1}
\end{equation*}
$$

Example 2: Exact Solution

$$
\begin{gathered}
M(x)=\frac{-w L^{2}}{2}+w L x-(w x)\left(\frac{x}{2}\right) \\
y^{\prime \prime}=\frac{1}{E I}\left(\frac{-w L^{2}}{2}+w L x-\frac{w x^{2}}{2}\right)
\end{gathered}
$$

- Integrating and applying B.C.'s:

$$
y=\frac{1}{E I}\left(\frac{-w x^{4}}{24}+\frac{w L x^{3}}{6}-\frac{w L^{2} x^{2}}{4}\right)
$$

Example 2: FE Solution

- $\mathrm{P}=\mathrm{o}$ in the previous example

$$
\begin{gathered}
\hat{\phi}_{2}=\frac{-w L^{3}}{6 E I}=\frac{-(20 \mathrm{lb} / \mathrm{in} .)(100 \mathrm{in} .)^{3}}{6\left(30 \times 10^{6} \mathrm{psi}\right)\left(100 \mathrm{in} .^{4}\right)}=-0.00111 \mathrm{rad} \\
\hat{d}_{2 y}=\frac{-w L^{4}}{8 E I}=\frac{-(20 \mathrm{lb} / \mathrm{in} .)(100 \mathrm{in} .)^{4}}{8\left(30 \times 10^{6} \mathrm{psi}\right)\left(100 \mathrm{in} .^{4}\right)}=-0.0833 \mathrm{in} . \\
\hat{v}(x)=\frac{1}{L^{3}}\left(-2 x^{3}+3 x^{2} L\right) \hat{d}_{2 y}+\frac{1}{L^{3}}\left(x^{3} L-x^{2} L^{2}\right) \hat{\phi}_{2}
\end{gathered}
$$

$$
\hat{v}(x=50 \text { in. })=\frac{1}{(100 \mathrm{in} .)^{3}}\left[-2(50 \mathrm{in} .)^{3}+3(50 \mathrm{in} .)^{2}(100 \mathrm{in} .)\right](-0.0833 \mathrm{in} .)
$$

$$
+\frac{1}{(100 \mathrm{in} .)^{3}}\left[(50 \mathrm{in} .)^{3}(100 \mathrm{in} .)-(50 \mathrm{in} .)^{2}(100 \mathrm{in} .)^{2}\right] \times(-0.00111 \mathrm{rad})=-0.0278 \mathrm{in} .
$$

$$
y(x=50 \mathrm{in} .)=\frac{20 \mathrm{lb} / \mathrm{in} .}{30 \times 10^{6} \mathrm{psi}\left(100 \mathrm{in.}^{4}\right)}
$$

$$
\times\left[\frac{-(50 \mathrm{in} .)^{4}}{24}+\frac{(100 \mathrm{in} .)(50 \mathrm{in} .)^{3}}{6}-\frac{(100 \mathrm{in} .)^{2}(50 \mathrm{in.})^{2}}{4}\right]=-0.0295 \mathrm{in} .
$$

Example 2: FE Solution

- Bending moment is derived by taking two derivatives on the displacement function.
- The shear force is derived by taking three derivatives on the displacement function.
- For uniform distributed load:
- Bending moment: linear
- Shear force: constant
- It then takes more elements to model Bending moment and shear force than displacement.

Example 2: Comparison

Example 2: Comparison

