Accelerating the Development of Polymer Composites: Modeling & Scalable Manufacturing

Amir Asadi

Postdoctoral Fellow Woodruff School of Mechanical Engineering Georgia Institute of Technology

March 20, 2017

- Future Research Lab
- Teaching Philosophy

Research Background

Challenges/Opportunities in Development of Polymer Composites

World's largest autoclave by ASC

How to achieve the desired properties with a reduced process cycle?

Accelerated development of PMC

1. Modeling:

Understanding/prediction the mechanical behavior

2. Manufacturing

Research Outline

Application Concern of PMC

Damage in Multidirectional Laminates

Georgia Tech

Evolution of Damage in Multidirectional Laminates

Damage evolution with stress and time

0 MPa

70 MPa

90 MPa

100 MPa

State of the Art

Model	How it works		Pros & Cons	Prominent studies		
Ply discounting	Reduces the modulus of the cracked ply to near a zero value		 Simplicity Artificial changest 	Hinton (2002), Anand (2006)		
Continuum dan mechanics Cl Elastic analysis-	acking nalysis	Simulating crack evolution	Effect damag on cree	of ge ep 54), Talreja arna (1999) 54), McCartney , Barbero (2010)		
	and mild the new stress and strain	G	function)	Hashin (1985, 2010)		
My approach: Variational analysis-based model in a lamination theory model framework to predict the cracking evolution and its effect on creep						
			- Complexity			

Creep Model

A successful creep-damage model should consider the history of loading

Variational Analysis (VA): Finds an admissible stress state in each ply by determining the perturbation in stresses due to cracking in plies of a laminate

Variational Analysis for Multiple Cracking

Single-Ply Cracking: Perturbations

Multiple-Ply Cracking: Perturbation

Lower mold

Tech

Predictions: Effect of Cracking on **Properties and Behavior**

16

Research Outline

Why Lightweight?

17% of total CO₂ emission

28.5 mi/gal in 2012 → 54.5 mi/gal by 2025

U.S. Department of Energy, Annual Energy Review, 2012.

M. Van der Hoeven, CO2 Emissions From Fuel Combustion-Highlights, International Energy Agency: Paris, France, 2011. U.S. Department of Energy, Quadrennial Technology Review, 2011.

Ways to Lightweight

Surface

Change the part design, so less material is used.

Thickness

Use a stronger material so a thinner part can support the required loads.

Density

Replace the material with a lighter one of at least equal performance.

Challenge: Scalable techniques to introduce nanocellulose (CN) into SMC lines

What is Cellulose?

Georgia Tech

Cellulose Nanoparticles

Mechanical Properties:

- Tensile Strength: 2-7.5 GPa
- Elastic Modulus: 120-220 GPa

Material	Density	Tensile Strength	Elastic Modulus
	(g/cm ³)	(GPa)	(GPa)
CNs	1.6	2 - 7.5	120-220
Dulp Fibor	0812	0314	5 15
Fulp Fibel	0.0-1.2	0.3-1.4	5-45
Kevlar-49 fiber	1.4	3.5	124-130
Glass fiber	1.5	4.8	86
Carbon fiber	1.8	1.5 - 5.5	150-500
Steel Wire	7.8	4.1	210
Carbon Nanotubes		11-63	270-950

Thermal:

- Expansion: 4-6 x 10⁻⁶/K
- Degradation: 200-300 C

Sheet Molding Compound (SMC) Manufacturing: Thermoset Polymers

SMC Processing

Georgia Tech

GATECH SMC & Materials

A unique SMC at Georgia Tech:

- 1) Similar to industrial SMC machine but in a smaller scale (12" wide products)
- 2) Capable of manufacturing of
 - a) short glass fiber composites
 - b) continuous carbon fiber composites
 - c) fiber mat composites

Glass fibers roving rack

Materials

- 1. Owens Corning ME 1510 glass fibers: suitable for SMC and epoxy
- 2. US Composites epoxy 150+polyamide
- 3. Cellulose Nanocrystals (CNC):Freezedried & aqueous suspension: US Forest Service

Scalable Techniques to Introduce CNC in SMC

I. Coating Glass Fibers with CNC

I. CNC Effect on Interfacial Shear Strength

Load transfer efficiency from matrix to GF

I. CNC Effect on Interfacial Shear Strength

70% increase

I. CNC Content on GF and Composite

Thermogravimetry (TGA) results

CNC wt% in aqueous suspension	CNC wt% in a 30GF/epoxy composite			
0.5	0.13			
1	0.17			
1.5	0.2			
2	0.32			
3	0.59			
5	1.07			
Highest IFSS to make composites				
	Georgia Tech			

I. Tensile and Flexural Properties of **CNC-30GF/Epoxy Composites**

Tech

31

II. Reinforcing Polymer Matrix with CNC prior to Use in SMC

II. Tensile and Flexural Properties of CNCepoxy Composites

ANOVA Verified

Asadi et al., Composites Part A 2016,88:206 Georgia

Tech

II. Tensile Fracture Surface Morphology of SMC 35GF/CNC-epoxy Composites

0 CNC wt%

0.3 CNC wt%

0 CNC wt%

0.15 CNC wt%

0 CNC wt%

0.9 CNC wt%

Georgia

Tech

II. Impact Properties of SMC 35GF/CNCepoxy Composites

Goal: Determine the CNC and GF content of a GF/CNC-epoxy composite so that is has the same specific modulus with 35 wt% GF/epoxy composites

Discontinuous randomly distributed fiber/composite

$$E_{Composite} = \frac{3}{8}E_{11} + \frac{5}{8}E_{22}$$

$$E_{11} = E_m \left(1 + 2\frac{l_f}{d_f} \eta_L v_f \right) / \left(1 - \eta_L v_f \right)$$
$$E_{22} = E_m \left(1 + 2\eta_L v_f \right) / \left(1 - \eta_L v_f \right)$$
$$\eta_L = \left(\frac{E_f}{E_m} - 1 \right) / \left(\frac{E_f}{E_m} + 2\frac{l_f}{d_f} \right)$$
$$\eta_T = \left(\frac{E_f}{E_m} - 1 \right) / \left(\frac{E_f}{E_m} + 2 \right)$$

Geora

Density: $\rho_c = \frac{1}{(w_f / \rho_f) + (w_m / \rho_m)}$

Sample	E _c (GPa)	ρ_{c} (g/cm ³)	E _{c, specific}
25GF/epoxy	6.3	1.37	4.6
25GF/1CNC-epoxy	7.4	1.37	5.4
25GF/1.5CNC-epoxy	7.8	1.37	5.7
35GF/epoxy	8.0	1.46	5.5

II. Light Weighting Achieved

38

Summary

Nano-

technology

facturing to

Georgia

Tech

ppment of

- Combined predictive modelin minimize the cos multifunctional Sacalable
- Developed a m Manufacturing el to predict the damage evolution in multiple effect on mechanical behavior in multidirector Predictive r composite laminates.
 - Introduced nanotechnold Model strial manufacturing for high volume production of ght GF/epoxy SMC composites by i) coating the glass fibers and ii) reinforcing the resin with cellulose nancerystals.

Accelerate the development of multifunctional (hybrid and nano) composites with engineered performance

Research Lab in 2032

Manufacturing and Mechanics of

Applications

- Automotive
- Aerospace
- Marine
- Wind Energy
- Biomedical and tissue engineering
- Electronics and heat transfer

Collaborations

- National labs
- Government agencies
- Industries
- Public-Private Partnership
- Universities

Teaching Philosophy

Courses

Taught Courses

Interested to teach at ASU

- ✓ Composite Materials (GA Tech)
- Engineering Materials (UofM)
- Introduction to Thermal Sciences (UofM)

MET 418: Composites Materials Manufacturing MFG 482: Materials Science in Manufacturing MFG 385: Design for Manufacturing MET 300: Applied Material Science MET 345: Advanced Manufacturing Processes EGR 343: Mechanics of Solid Materials EGR 218: Materials and Manufacturing Processes MET 230: Introduction to Engineering Materials MET 213: Applied Mechanics of Materials

New Graduate-Level Courses

Process-structure-property in nanocomposites¹ Providing a roadmap to design the compounding and shaping to achieve the desired properties

A. Asadi, K. Kalaitzidou. A book chapter on "Process-Structure-Property Relationship in Polymer
43 Nanocomposites", Elsevier, 2017

Acknowledgement

Prof. Kyriaki Kalaitzidou

Dr. Robert J. Moon

Volkswagen

Georgia Tech

Thank You!

Effect of Damage on Composite Behavior

Tech

Cellulose Nanoparticles

15

II. Tensile Fracture Surface Morphology of SMC 35GF/CNC-epoxy Composites

0 CNC wt%

0.3 CNC wt%

0 CNC wt%

0.15 CNC wt%

0 CNC wt%

0.9 CNC wt%

Georgia

Tech