CHEMICAL BONDS

Bonds between Atoms

Each atoms is unique due to their differing;

- Sizes;
- Electron Affinities;
- Ionization Energies.

As the gravitational force varies with size and distance, atoms, like planets, have similar unique and variable inherent strengths and forces that influence other atoms.

Atoms minimize these **imbalances** by forming bonds.

Bonds between Atoms

Atoms strive to fill their outer shells with electrons just like a noble gas does.

In a generalized-way atoms can achieve satisfaction by forming two types of bonds: ionic and covalent

Ionic is gaining & losing electrons Covalent is sharing electrons

The resulting bond is **lower** in energy than the separate atoms.

If electrons transfer from one or more atoms, the entire compound is held together by **electrostatic attractions** between all the ions.

This attraction is called an ionic bon '

Note: the energy is lower when Na⁺ and Cl⁻ ions bind than separated sodium and chlorine atoms.

The new partnership is lower in energy than the separate Atoms.

Binary ionic compound form between s-block **metal**, and a **nonmetallic** element.

Cation and anions stack themselves into alternating sodium ions with chloride ions, <u>oppositely charged ions</u> are lined up in all three dimensions.

An example of an ionic crystalline solid.

S-block metals form cations, by <u>losing</u> <u>electrons</u> to their **noble-gas core** or octet of electrons.

Al forms the Al³⁺ ending with [Ne] electron configuration by the loss of it's *s* and *p* electrons

noble-gas core

Ion	Configuration
Li ⁺	$[He] (1s^2)$
Be ²⁺	[He]
Na ⁺	$[Ne] ([He] 2s^2 2p^6)$
Mg^{2+} Al ³⁺	[Ne]
Al^{3+}	[Ne]

Ga³⁺ 4p block d electrons remain

Metallic elements, in Period 4 and later, lose their s- and pelectrons.

The **d electrons** of the p-block atoms **are gripped tightly** by the nucleus and **cannot be lost**. Write the electron configurations of In^+ and In^{3+} Remove electrons from the valence-shell *p*-orbitals first, then from the *s*-orbitals

Determine the configuration of the neutral atom.

 $[Kr]4d^{10}5s^25p^1$

Remove the outermost electron. In⁺ [Kr]4*d*¹⁰5*s*²

Remove the next two outermost electron. In³⁺ [Kr]4*d*¹⁰

Nonmetals rarely lose electrons because their ionization and electron affinity energies are too high.

Instead, nonmetal atom acquire electrons to fill their outer shell

N [He] $2s^22p^3$ plus $3e^-$ to N³⁻[Ne]

F

S²⁻

[Ne] ([He]2s²2p⁶) [Ne] [Ne] [Ar] ([Ne]3s²3p⁶) [Ar]

9

G. N. Lewis

A single dot represents a valence electron (*outer most* electrons in the last shell) in the atom.

H• He: $\dot{N} \cdot \dot{O} \cdot \dot{C} \cdot \dot{C} \cdot K \cdot Mg$: A **pair of dots** represents two paired electrons sharing an orbital.

Each symbol is thought of as having four sides, a north, south, east, and west position, where valance electrons are shown as dots An ionic formula starts by **removing** valance electrons from the metal and **transferring** them to the **nonmetal atom** to complete its valence shell.

The **calcium** atom loses its two valence electrons.

Each **chlorine** atom has one vacancy electron so it forms one bond.

$$: \dot{C}l:^{-} Ca^{2+} : \dot{C}l:^{-}$$

Two chloride ions (Cl⁻) *balances the charge* for each calcium ion (Ca²⁺) resulting in the formula CaCl₂; the overall charges is zero.

There are **no** CaCl₂ molecules, only **crystals** of threedimensional arrays of CaCl₂ ions held by the vast array of opposite charges spread throughout the crystal-hence CaCl₂ is called a formal unit.

A crystal of sodium chloride has lower energy than separated sodium and chlorine atoms.
Formation of the solid takes place in three steps:

1. Sodium atoms <u>release</u> <u>electrons</u>;

2. These <u>electrons attach to</u> <u>chlorine</u> atoms;

3. Newly formed <u>cations and</u> <u>anions clump together</u> as a crystal.

Crystal Lattice is stability gained when ions form ionic solid

Lattice energy is a "global" characteristic of the entire crystal, a <u>net lowering</u> of energy in the entire crystal (once the cations and anions clump together as a crystal).

Alkali metal iodide	Lattice energy $(kJ \cdot mol^{-1})$	A high lattice energy
LiI	759	value indicates a
NaI	700	stronger ion pair
KI	645	which produces a
RbI	632	more tightly bonded
CsI	601	solid.

Coulomb's Potential Energy measure the strength between individual ion pairs

- The strong attraction (Coulomb's Potential Energy) between oppositely charged ions accounts for the typical properties of ionic solids:
- high melting points and
- brittleness.

Covalent Bonds form between two nonmetals that do not form into ions.

The nature of nonmetal bonds *puzzled* scientists until 1916, when **G.N. Lewis** published his explanation.

A brilliant insight, before anyone knew anything about quantum mechanics.

No Columbic interactions

Shared electron pair

Covalent bonds form by atoms **sharing** electrons until they reach a *noble-gas configuration*.

Lewis called this principle the **octet rule**, reaching a **noble**gas configuration

lonic bonds form when one element **loses** electrons and the other atom **gains** electrons, until both atoms reach a *noble-gas configuration*.

Lewis: Share to an Octet

H• He: \dot{N} • \dot{O} • \dot{H} • Mg:

A fluorine atom can achieve an octet by accepting a share in an electron from another fluorine atom.

The **octet** (or duplet) shows **lines** (bonding pairs) and **dots** (lone pairs).

 $:\mathbf{F}(:)\mathbf{F}:$

or

Rules to Write Dot Structures

1. Write a skeleton molecule with the lone atom in the middle (Hydrogen can never be in the middle).

- 2. Find the number of electrons needed (N)(8 x number of atoms, 2 x number of H atoms)
- 1. Find the number of electrons you have (valence e⁻'s) (H)
- 2. Subtract to find the number of bonding electrons (N-H=B)
- 3. Subtract again to find the number of non-bonding electrons (H-B=NB)

4. Insert minimum number of bonding electrons in the skeleton between atoms only. Add more bonding if needed until you have B bonding electrons.

5. Insert needed non-bonding electrons around (not between) atoms so that all atoms have 8 electrons around them. The total should be the same as NB in 5 above.

Water H_2O

H - O - H

1. S H O H

2. N $2 \times 2 = 4$ for Hydrogen $1 \times 8 = 8$ for Oxygen 4+8 = 12 needed electrons

12 N

- 8 H

3. H $2 \times 1 = 2$ for Hydrogen $1 \times 6 = 6$ for Oxygen You have 8 available electrons

H:O:H

4. B
$$12 - 8 = 4$$
 bonding electrons $- 4$ B
5. NB $8 - 4 = 4$ non-bonding electrons $- 4$ NB

6.

H:O:H

Carbon dioxide CO_2

- 1. S O C O
- $1 \ge 8 = 8$ for Carbon 2. N $2 \ge 8 = 16$ for Oxygen 8+16=24 needed electrons

24 N

- 16 H

8 NB

- 3. H $1 \ge 4 = 4$ for Carbon $2 \ge 6 = 12$ for Oxygen You have 16 available electrons
- 24 16 = 8 bonding electrons 4. B - 8B 16 - 8 = 8 non-bonding electrons 5. NB
- 6.

O::C::O O::C::O O = C = ODouble bond

Acetylene

1. S H C C H

2. N	$2 \times 8 = 16$ for Carbon
	$2 \times 2 = 4$ for Hydrogen
	16+4 = 20 needed electrons

20 N

- 10 H

10 B

0 NB

Triple bond

H···C C···H

- 3. H $2 \times 4 = 8$ for Carbon $2 \times 1 = 2$ for Hydrogen You have 10 available electrons
- 4. B20 10 = 10 bonding electrons5. NB10 10 = 0 non-bonding electrons
- 6.

 $H \cdot \cdot C \coloneqq C \cdot \cdot H$ $H - C \equiv C - H$

Practice

Write the Lewis structure for the:

 NH_4^+

CN⁻

Helpful reminders (3)

Remember simple Lewis Dot diagrams ·H ·Ċ··Ö·

1 bond, 4 bonds, 2 bonds to complete their octet

Read the formula for order of atom attachment

Carbons makes 4 bonds and oxygen makes 2 bonds to complete the octet.

Resonance Structures

Delocalized electrons hop from one atom to another; no discretion as long as it's the same atom pair.

Kekulé aromatic structures

Kekulé structure, stick form

Kekulé structure

Final, **"blended"** structure for Benzene

Benzene resonance structure

Formal Charge

Formal Charge =
$$V - \left(L + \frac{1}{2}B\right)$$

0 6 - $(4 + \frac{1}{2}4) = 0$
:0:0
0:Cl 7 - $(6 + \frac{1}{2}2) = 0$
0:Cl - C - Cl:0
C 4 - $(0 + \frac{1}{2}8) = 0$

The sum of formal charges is equal to the overall charge of the molecule or ion; electrically neutral molecule, have a formal charge of zero.

Formal Charge =
$$V - \left(L + \frac{1}{2}B\right)$$

Formal charges can predict the most *favorable* Lewis structure:

The structure with the lowest formal charges on each atom is the most plausible (lowest energy) structure. Radicals are something you cannot isolate, are very unstable and are highly reactive.

A biradical

Gingko biloba like other green leafy eatable plants.

Vitamins A, C and E are antioxidant enzymes, a group of compounds called coenzyme Q. Antioxidants are **free-radical traps**.

Exceptions to the Octet Rule

Carbon, nitrogen, oxygen, and fluorine obey the octet rule rigorously. <u>Period 3</u> and subsequent periods can accommodate <u>more than eight electrons</u> in its valence shell, up to **12 electrons**.

Exceptions to the Octet Rule

Determine the most stable resonance structure

Exceptions to the Octet Rule

Self Test Which is the more stable?

Boron trifluoride, BF3

F 7-(6+
$$\frac{1}{2}2$$
) = 0

B $3-(0+\frac{1}{2}6)=0$

:F:
:
$$\ddot{F} - \overset{||}{B} - \ddot{F}$$
:
Boron trifluoride, BF₃

+1

$$= 7 - (4 + \frac{1}{2} 4) = +1$$

B
$$3-(0+\frac{1}{2}8) = -1$$

Electronegativity values by Linus Pauling.

If an atom gives up an electron reluctantly it has **high** <u>ionization energy</u> and if the electrons attaches favorable it has **high** <u>electron affinity</u>.

Covalent bonds

Polar covalent bond: electrons are shared unequally.

Electronegativity & bonds

Electronegativity Difference Between Bonded Atoms	Type of Bond
Less than 0.5	Nonpolar Covalent
0.5 to 1.9	Polar Covalent
Greater than 1.9	Ionic

Н-Н	2.1 - 2.1 = 0	Nonpolar covalent
N — H	3.0 - 2.1 = 0.9	polar covalent
Na-F	4.0 - 0.9 = 3.1	Ionic

Electronegativity difference

Li-F |1.0 - 4.0|= 3.0

Polarization by small, highly charged cations of larger, nearby anions.

Notice that a single bond is **weaker** than a triple bond.

Electrons in **double** and **triple bonds** are **not as concentrated** between two atoms as they are in a single bonds.

> С-С 348

C = C

612

Bond Strength kJ

Atomic Radii

Strength \checkmark as Size \uparrow

Atomic Radii

Bond Lengths \uparrow as size \uparrow

Atomic Radii

Strong bonds
typically are stiffer
than weak bonds.

Bond	Average bond dissociation energy
С—Н	412
С—С	348
C = C	612
C ····C*	518
C≡C	837

Triple bonds shorter and stronger

Molecules absorb infrared radiation (1000 nm or about 3×10^{14} Hz) and become vibrationally excited. We treat the bonds like springs.

Bond strength determines the amount of IR needed to move the bonds.

