CHEMICAL BONDS

Bonds between Atoms

Each atoms is unique due to their differing;

- Sizes;
- Electron Affinities;
- Ionization Energies.

As the gravitational force varies with size and distance, atoms, like planets, have similar unique and variable inherent strengths and forces that influence other atoms.

Atoms minimize these imbalances by forming bonds.

Bonds between Atoms

Atoms strive to fill their outer shells with electrons just like a noble gas does.

In a generalized-way atoms can achieve satisfaction by forming two types of bonds: ionic and covalent

Ionic is gaining \& losing electrons
Covalent is sharing electrons

The resulting bond is lower in energy than the separate atoms.

If electrons transfer from one or more atoms, the entire compound is held together by electrostatic attractions between all the ions.

This attraction is called an ionic bon '

Note: the energy is lower when Na^{+}and Cl^{-}ions bind than separated sodium and chlorine atoms.

The new partnership is lower in energy than the separate Atoms.

Binary ionic compound form between s-block metal, and a nonmetallic element.

Cation and anions stack themselves into alternating sodium ions with chloride ions, oppositely charged ions are lined up in all three dimensions.

An example of an ionic crystalline solid.

Metals

S-block metals form cations, by losing electrons to their noble-gas core or octet of electrons.

Al forms the Al^{13+} ending with [Ne] electron configuration by the loss of it's
s and p electrons

Ion \quadnoble-gas core Configuration	
Li^{+}	$[\mathrm{He}]\left(1 \mathrm{~s}^{2}\right)$
Be^{2+}	$[\mathrm{He}]$
Na^{+}	$[\mathrm{Ne}]\left([\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}\right)$
Mg^{2+}	$[\mathrm{Ne}]$
Al^{3+}	$[\mathrm{Ne}]$

$\mathrm{Ga}^{3+} 4 \mathrm{p}$ block d electrons remain

Metallic elements, in Period 4 and later, lose their s - and p electrons.

$$
\mathrm{Ga}^{3+,}[\mathrm{Ar}] 3 \mathrm{~d}^{10}
$$

The d electrons of the p-block atoms are gripped tightly by the nucleus and cannot be lost.

Write the electron configurations of In^{+}and $\ln ^{3+}$
Remove electrons from the valence-shell p-orbitals first, then from the s-orbitals

Determine the configuration of the neutral atom.

$[\mathrm{Kr}] 4 d^{10} 5 s^{2} 5 p^{1}$

Remove the outermost electron. In^{+} $[\mathrm{Kr}] 4 d^{10} 5 s^{2}$

Remove the next two outermost electron. $\ln ^{3+}$ $[K r] 4 d^{10}$

Nonmetals rarely lose electrons

 because their ionization and electron affinity energies are too high.Instead, nonmetal atom acquire electrons to fill their outer shell
$\mathrm{N}[\mathrm{He}] 2 s^{2} 2 p^{3}$ plus $3 \mathrm{e}^{-}$to $\mathrm{N}^{3-}[\mathrm{Ne}]$

N^{3-}	$[\mathrm{Ne}]\left([\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}\right)$
O^{2-}	$[\mathrm{Ne}]$
F^{-}	$[\mathrm{Ne}]$
S^{2-}	$[\mathrm{Ar}]\left([\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}\right)$
Cl^{-}	$[\mathrm{Ar}]$

G. N. Lewis

A single dot represents a valence electron (outer most electrons in the last shell) in the atom.

$$
\mathrm{H} \cdot \quad \mathrm{He}: \quad: \dot{\mathrm{N}} \cdot \quad \cdot \ddot{\mathrm{O}} \cdot \quad: \ddot{\mathrm{C}} \cdot \quad \mathrm{~K} \cdot \quad \mathrm{Mg}:
$$

A pair of dots represents two paired electrons sharing an orbital.

N

Each symbol is thought of as having four sides, a north, south, east, and west position, where valance electrons are shown as dots

An ionic formula starts by removing valance electrons from the metal and transferring them to the nonmetal atom to complete its valence shell.

The calcium atom loses its two valence electrons.

Each chlorine atom has one vacancy electron so it forms one bond.

Two chloride ions $\left(\mathrm{Cl}^{-}\right)$balances the charge for each calcium ion $\left(\mathrm{Ca}^{2+}\right)$ resulting in the formula CaCl_{2}; the overall charges is zero.

There are no CaCl_{2} molecules, only crystals of threedimensional arrays of CaCl_{2} ions held by the vast array of opposite charges spread throughout the crystal-hence CaCl_{2} is called a formal unit.

Crystal formation starts when large numbers

 of oppositely charged ions, mad-rush together, releasing large amounts of energy.

A crystal of sodium chloride has lower energy than separated sodium and chlorine atoms.

Formation of the solid takes place in three steps:

1. Sodium atoms release electrons;
2. These electrons attach to chlorine atoms;
3. Newly formed cations and anions clump together as a crystal.

Crystal Lattice is stability gained when ions form ionic solid

Lattice energy is a "global" characteristic of the entire crystal, a net lowering of energy in the entire crystal (once the cations and anions clump together as a crystal).

Alkali metal iodide	Lattice energy ($\mathrm{kJ} \cdot \mathrm{mol}^{-1}$)	A high lattice energy
LiI	759	value indicates a
NaI	700	stronger ion pair
KI	645	which produces a
RbI	632	more tightly bonded
CsI	601	solid.

Coulomb's Potential Energy measure the strength between individual ion pairs

The strong attraction (Coulomb's Potential Energy) between oppositely charged ions accounts for the typical properties of ionic solids:

- high melting points and
- brittleness.

Covalent Bonds form between two nonmetals that do not form into ions.

The nature of nonmetal bonds puzzled scientists until 1916, when G.N. Lewis published his explanation.

A brilliant insight, before anyone knew anything about quantum mechanics.

Shared electron pair

Covalent bonds form by atoms
$: \ddot{\mathrm{F}} \cdot+\stackrel{\ddot{\mathrm{F}}}{\cdot}-: \ddot{\mathrm{F}}-\underset{.}{\mathrm{F}}:$ sharing electrons until they reach a noble-gas configuration.
Lewis called this principle the octet rule, reaching a noblegas configuration

Ionic bonds form when one element loses electrons and the other atom gains electrons, until both atoms reach a noble-gas configuration.

Lewis: Share to an Octet

$$
\mathrm{H} \cdot \mathrm{He}: \quad: \dot{\mathrm{N}} \cdot \quad \ddot{\mathrm{O}} \cdot(\ddot{\mathrm{O}} \cdot \mathrm{O} . \quad \mathrm{K} \cdot \mathrm{Mg}:
$$

A fluorine atom can achieve an octet by accepting a share in an electron from another fluorine atom.

Rules to Write Dot Structures

1. Write a skeleton molecule with the lone atom in the middle (Hydrogen can never be in the middle).
2. Find the number of electrons needed (N) ($8 \times$ number of atoms, $2 \times$ number of H atoms)
3. Find the number of electrons you have (valence $e^{-1 s}$) (H)
4. Subtract to find the number of bonding electrons $(\mathrm{N}-\mathrm{H}=\mathrm{B})$
5. Subtract again to find the number of non-bonding electrons ($\mathrm{H}-\mathrm{B}=\mathrm{NB}$)
6. Insert minimum number of bonding electrons in the skeleton between atoms only. Add more bonding if needed until you have B bonding electrons.
7. Insert needed non-bonding electrons around (not between) atoms so that all atoms have 8 electrons around them. The total should be the same as NB in 5 above.

Water $\mathrm{H}_{2} \mathrm{O}$

1. $\mathrm{S} \quad \mathrm{H} \mathrm{OH}$
2. $N \quad 2 \times 2=4$ for Hydrogen
$1 \times 8=8$ for Oxygen
$4+8=12$ needed electrons
3. H $2 \times 1=2$ for Hydrogen
$1 \times 6=6$ for Oxygen
You have 8 available electrons

- 8 H

4. B $12-8=4$ bonding electrons

- 4 B

5. NB $8-4=4$ non-bonding electrons

4 NB
6.
$\mathrm{H}: \mathrm{O}: \mathrm{H}$
H:O:H

$$
H-\ddot{O}-H
$$

Carbon dioxide CO_{2}

1.S OCO
2. N $1 \times 8=8$ for Carbon
$2 \times 8=16$ for Oxygen
24 N
$8+16=24$ needed electrons
3. H $1 \times 4=4$ for Carbon
$2 \times 6=12$ for Oxygen
You have 16 available electrons
$-16 \mathrm{H}$
4. B $24-16=8$ bonding electrons

- 8 B

5. NB $16-8=8$ non-bonding electrons
6.

$$
\ddot{\mathrm{O}}:: \mathrm{C}: \ddot{\mathrm{O}} \quad \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}
$$

$0:: C:$: 0

Acetylene

$\mathrm{C}_{2} \mathrm{H}_{2}$
1.S H C C H
2. N $2 \times 8=16$ for Carbon
$2 \times 2=4$ for Hydrogen
$16+4=20$ needed electrons
3. H $\quad 2 \times 4=8$ for Carbon
$2 \times 1=2$ for Hydrogen
You have 10 available electrons
$-10 \mathrm{H}$
4. B $\quad 20-10=10$ bonding electrons

- 10 B

10-10=0 non-bonding electrons
0 NB
6.

$$
\mathbf{H} \cdot \mathbf{C} \vdots: \mathrm{C} \cdot \cdot \mathrm{H}
$$

$\mathbf{H}^{\prime} \cdot \mathbf{C}:!\mathbf{C} \cdot \cdot \mathbf{H}$

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \xrightarrow{ } \text { Triple bond }
$$

Practice

Write the Lewis structure for the:
$\mathrm{NH}_{4}{ }^{+}$
$\mathrm{CN}-$

Helpful reminders (3)

Remember

simple Lewis Dot diagrams

1 bond, 4 bonds, 2 bonds to complete their octet

Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$

$\mathrm{C}_{2} \mathrm{H}_{4}$
Molecules
have
symmetry

Helpful reminders

Read the formula for order of atom attachment

$\mathrm{CH}_{3} \mathrm{COOH}$

acetic acid

Carbons makes 4 bonds and oxygen makes 2 bonds to complete the octet.

Resonance Structures

Nitrate ion, $\mathrm{NO}_{3}{ }^{-}$
Delocalized electrons hop from one atom to another; no discretion as long as it's the same
 atom pair.

Resonance Structures

Kekulé aromatic structures

Kekulé structure, stick form
Kekulé structure

Final, "blended" structure for Benzene

Benzene resonance structure

Formal Charge

$$
\begin{aligned}
& \text { Formal Charge }=V-\left(L+\frac{1}{2} B\right) \\
& \text { O } 6-(4+1 / 24)=0 \\
& \begin{array}{c}
: \mathrm{O}: 0 \\
0: \stackrel{\|}{\mathrm{C}}-\stackrel{\mathrm{C}}{\mathrm{C}}-\stackrel{\mathrm{Cl}}{0}: 0
\end{array} \\
& \text { Cl } 7-(6+1 / 22)=0 \\
& \text { C } 4-(0+1 / 28)=0
\end{aligned}
$$

The sum of formal charges is equal to the overall charge of the molecule or ion; electrically neutral molecule, have a formal charge of zero.

Formal Charge $=V-\left(L+\frac{1}{2} B\right)$
Formal charges can predict the most favorable Lewis structure:

NNO

CNS

The structure with the lowest formal charges on each atom is the most plausible (lowest energy) structure.

Exceptions to the Octet Rule

Radicals are something you cannot isolate, are very unstable and are highly reactive.

Hydrogenperoxyl, HO_{2}.

A biradical

Gingko biloba like other green leafy eatable plants.

$n-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-$ units $(n=6,8,10)$

Vitamins A, C and E are antioxidant enzymes, a group of compounds called coenzyme Q. Antioxidants are free-radical traps.

Exceptions to the Octet Rule

Carbon, nitrogen, oxygen, and fluorine obey the octet rule rigorously. Period 3 and subsequent periods can accommodate more than eight electrons in its valence shell, up to 12 electrons.

Phosphorus trichloride, PCl_{3}

(a) PCl_{4}^{+}

Phosphorus pentachloride, $\mathrm{PCl}_{5}(\mathrm{~s})$ Dissociation of PCl_{5}

Exceptions to the Octet Rule

Determine the most stable resonance structure

P $5-(0+1 / 210)=0$
O $6-(4+1 / 24)=0$
O $6-(6+1 / 21)=-1$
P $5-(0+1 / 28)=+1$
$\begin{array}{ll}P & 5-(0+1 / 212)=-1 \\ 0 & 6-(4+1 / 24)=0\end{array}$
O $6-(6+1 / 21)=-1$

Exceptions to the Octet Rule

$\mathrm{ClO}_{4}^{-}(\mathrm{VE} 7+24+1=32)$

CI: 7-4=+3
CI: 7-5=+2
O: $6-7=(-1) 4$
net -1

12 electrons on the central atom, fewest charges

CI: $7-6=+1$	$\mathrm{CI}: 7-7=0$
O: $6-6=0$	O:6-6=0
O: $6-7=(-1) 2$	O: $6-7=-1$
net -1	net -1

All atoms have a charge

High charge for Cl

Central atom has to many electrons ${ }^{36}$

Self Test
 Which is the more stable?

Boron trifluoride, BF_{3}

$$
\begin{array}{llll}
\text { F } & 7-(6+1 / 22)=0 & \text { F } & 7-(4+1 / 24)=+1 \\
\text { B } & 3-(0+1 / 26)=0 & \text { B } & 3-(0+1 / 28)=-1
\end{array}
$$

Boron trifluoride, BF_{3}

Electronegativity values by Linus Pauling.

Increasing EA \& IE

If an atom gives up an electron reluctantly it has high ionization energy and if the electrons attaches favorable it has high electron affinity.

Covalent bonds

Nonpolar covalent bond: electrons are shared equally.

$\mathrm{H} \bullet-\mathrm{H}$

Polar covalent bond: electrons are shared unequally.

Electronegativity \& bonds

Electronegativity Difference Between Bonded Atoms	Type of Bond
Less than 0.5	Nonpolar Covalent
0.5 to 1.9	Polar Covalent
Greater than 1.9	Ionic

$$
\begin{array}{lll}
\mathrm{H}-\mathrm{H} & 2.1-2.1=0 & \text { Nonpolar covalent } \\
\mathrm{N}-\mathrm{H} & 3.0-2.1=0.9 & \text { polar covalent } \\
\mathrm{Na}-\mathrm{F} & 4.0-0.9=3.1 & \text { Ionic }
\end{array}
$$

Electronegativity difference

$$
\begin{gathered}
\text { Li-F } \\
|1.0-4.0|=3.0
\end{gathered}
$$

$$
\mathrm{H}-\mathrm{Cl}
$$

$$
|2.2-3.2|=1.0
$$

Polarization by small, highly charged cations of larger, nearby anions.

Notice that a single bond is weaker than a triple bond.

Electrons in double and triple bonds are not as concentrated between two atoms as they are in a single bonds.

Bond Strength kJ
Atomic Radii

Strength \downarrow as Size \uparrow

Atomic Radii

Bond Lengths \uparrow as size \uparrow

17/VII 18/VIII

Atomic Radii

Strong bonds typically are stiffer than weak bonds.

$\mathrm{C}-\mathrm{H}$	412
$\mathrm{C}-\mathrm{C}$	348
$\mathrm{C}=\mathrm{C}$	612
$\mathrm{C}-\mathrm{C}^{*}$	518
$\mathrm{C} \equiv \mathrm{C}$	837

Triple bonds shorter and stronger

Molecules absorb infrared radiation (1000 nm or about $3 \times$ $10^{14} \mathrm{~Hz}$) and become vibrationally excited. We treat the bonds like springs.

2 basic ways atoms move: stretching and bending

symmetric asymmetric

Bending

scissoring

rocking

wagging

twisting

Bond strength determines the amount of IR needed to move the bonds.

Infrared spectroscopy of an amino acid

