PHYSICAL EQUILIBRIA

 (20.
Phase Changes

A phase change occurs when converting one phase into another.
phase changes, at constant temperature, are an equilibrium process, $\Delta \mathrm{G}=0$.

Vapor Pressure

Vapor pressure: the pressure of a gas in equilibrium with its liquid form in a closed container.

Measuring vapor pressure of liquids

Vapor Pressure

A volatile substance has a vapor pressures at ordinary temperatures.

Methanol (vapor pressure 98 Torr at $20^{\circ} \mathrm{C}$) is highly volatile.

Solids also exert a vapor pressure, but their vapor pressures are low because their molecules are gripped more tightly together.

When a solid vaporizes, the process is called "sublimation"

Vapor Pressure

Evaporation takes place at the surface because molecules are bound to fewer neighbors.

A dynamic equilibrium is when the rate of escaping matches the rate of returning. For liquid water and its vapor this is denoted:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

rate of evaporation = rate of condensation

Volatility \& Intermolecular Forces

The strength of the intermolecular forces determines it's vapor pressure.
Liquids with weak intermolecular forces have the highest vapor pressure.

Butane 220 kPa

Liquids with strong intermolecular forces, ones capable of forming hydrogen bonds have the lowest vapor pressure.

Propanol: 2.4 kPa

Volatility \& Intermolecular Forces

London interactions verses Hydrogen bonding

Clausius - Clapeyron Equation

$$
\ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\Delta \mathrm{H}_{\text {vap }}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

Vapor pressure increases with increasing temperature because:

- $T_{2}>T_{1}$ is positive
- In $\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)$ is positive too because enthalpy of vaporization is positive.
$\Delta \mathrm{H}_{\text {vap }}{ }^{\circ}$, is a measure of the intermolecular interaction strength (iondipole, dipole-dipole, hydrogen boding, London forces).

Example 1: Tetrachloromethane, CCI_{4}, which is now known to be carcinogenic, was once used as a dry-cleaning solvent. The enthalpy of vaporization of CCl_{4} is $33.05 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ and its vapor pressure at $57.8^{\circ} \mathrm{C}$ is 405 Torr. What is the vapor pressure of terrachloromethane at $25.0^{\circ} \mathrm{C}$?

$$
\ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\Delta \mathrm{H}^{\circ}{ }_{\mathrm{vap}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ}{ }_{\text {vap }}=33.05 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \text { corresponds to } 3.305 \times 10^{4} \mathrm{~J} \cdot \mathrm{~mol}^{-1} \\
& \mathrm{~T}_{2}=25.0+273.15 \mathrm{~K}=298.2 \mathrm{~K} \\
& \mathrm{~T}_{1}=57.8+273.15 \mathrm{~K}=331.0 \mathrm{~K} \\
& \mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1} \\
& \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{3.305 \times 10^{4} \mathrm{~J} \cdot \mathrm{~mol}^{-1}}{8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}\left(\frac{1}{331.0 \mathrm{~K}}-\frac{1}{298.2 \mathrm{~K}}\right) \\
& \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=-1.33, \quad \mathrm{P}_{1}=405 \text { Torr } \\
& \mathrm{P}_{2}=405 \text { Torr } \times e^{-1.33}=107 \text { Torr }
\end{aligned}
$$

Boiling

Boiling point: the temperature at which the vapor pressure of a liquid is equal to the atmospheric pressure.

The normal boiling point, T_{b}, is the temperature it boils when the atmospheric pressure is 1 atm .

At lower pressures, for instance the summit of Mt. Everest, the pressure is about 240 Torr and water boils at only $70^{\circ} \mathrm{C}$.

Example 2: The vapor pressure of ethanol at $34.9^{\circ} \mathrm{C}$ is 13.3 kPa . Use the data in Table 7.3 to estimate the normal boiling point of ethanol.

$$
\ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\Delta \mathrm{H}_{\mathrm{vap}}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

$\Delta \mathrm{H}^{\circ}{ }_{\text {vap }}=43.5 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ or $4.35 \times 10^{4} \mathrm{~J} \cdot \mathrm{~mol}^{-1}$
$\mathrm{T}_{2}=34.9+273.15 \mathrm{~K}=308.0 \mathrm{~K}$
$\mathrm{P}_{2}=13.3 \mathrm{kPa}$
$\mathrm{P}_{1}=101.325 \mathrm{kPa}$ (this corresponds to 1 atm or T_{b})
$\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
$\ln \frac{13.3 \mathrm{kPa}}{101.325 \mathrm{kPa}}=\frac{4.35 \times 10^{4} \mathrm{~J} \cdot \mathrm{~mol}^{-1}}{8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{308.0 \mathrm{~K}}\right)$
$\frac{1}{\mathrm{~T}_{1}}=\ln \frac{13.3 \mathrm{kPa}}{101.325 \mathrm{kPa}} \times \frac{8.3145 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}}{4.35 \times 10^{4} \mathrm{~J} \cdot \mathrm{~mol}^{-1}}+\frac{1}{308.0 \mathrm{~K}}$
$=350 . \mathrm{K}$ or $77^{\circ} \mathrm{C}$ (Vapor is not a prefect ideal gas.)

Freezing \& Melting

Liquids solidify (freeze) when molecules do not have enough energy to wriggle past their neighbors.

The normal freezing point, T_{f}, is the temperature a liquid freezes at 1 atm .

The melting temperature is the same as the freezing temperature.

Freezing \& Melting

Most substances are more dense in the solid phase than liquid, water being an exception.

Water is highly unusual, at $0.0^{\circ} \mathrm{C}$, density liquid $>$ density $_{\text {solid }}$

Ice floats on water.

Solid water, hydrogen bonds hold the molecules apart at low temperatures.

As ice melts, the hydrogen bonds collapse, allowing water molecules to pack more closely.

Phase Diagrams

A phase diagram is a map showing phases at different pressures and temperatures.

The region marked "solid" is the solid phase of ice. Other regions indicate marked "liquid" and "vapor".

Phase Diagrams

Point " C " is the normal freezing point $\left(0.0^{\circ} \mathrm{C}\right.$, 760 Torr).

A Triple point is the temperature and pressure where water exists as a solid, liquid, vapor.

The slope of the solid-liquid boundary is the density and for liquid water it is more dense than its solid. Therefore, notice that as we increase the pressure of ice, it will eventually be converted to liquid (ice-skating).

Normal boiling point.

Phase Diagrams: water

Phase Diagrams

Phase Diagrams: water

Critical Properties

There is an end in the liquid-vapor phase boundary called the critical point.

The density of the vapor is so great it is equal to the density of the liquid.

Critical point: vapor density = liquid density

The surface boundary disappears into a single, uniform phase.

Here, the critical pressure and critical temperature mark the end of either liquid or vapor, and is now a supercritical fluid, a very dense fluid.

Solutions

Saturated: solvent contains or holds all the solute it can (at a given T). maximum solute that solvent can hold (Equilibrium).

Unsaturated: solvent can hold more solute (at a given T).
Is not the maximum solute that solvent can hold.

Supersaturated: solvent holds more solute that it can normally hold (at a given T).
(more than an equilibrium condition)

Solvent and Solute

Polar dissolves polar
like dissolves like.
Nonpolar dissolves nonpolar

Soaps

〔 Hydrophobic part: nonpolar

Hydrophilic part: polar (remains in contact with environment-water)
(a) A soap

(b) Cross section of a soap micelle in water

Soap micelle with "dissolved" grease

Temperature and Solutions

Solubility: the maximum solute that will dissolve in a given amount of a solvent (at a given T).
$\mathrm{T} \uparrow \quad$ Solubility \uparrow

$\top \downarrow \longmapsto$ Crystal is formed.

Temperature and Solutions

Gas in Liquid: $\mathrm{T} \uparrow \longmapsto$ Solubility \downarrow

Global Warming

Pressure and Solutions

Henry's law $\quad \mathrm{P} \uparrow \quad$ Solubility \uparrow (gas in liquid)

Solubility of a gas vs. Pressure

Pressure and Solutions

The solubility of a gas is directly proportional to its partial pressure, P.

$$
s=k_{H} P
$$

k_{H} is called Henry's constant.
(depends on gas, the solvent, and T)

Example 3: Verify that the concentration of oxygen in lake water is normally adequate to sustain aquatic life, which requires a concentration of at least $0.13 \mathrm{mmol} \cdot \mathrm{L}^{-1}$. The partial pressure of oxygen is 0.21 atm at sea level.

From $s=k_{H} P$
$\mathrm{k}_{\mathrm{H}}=1.3 \times 10^{-3} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~atm}^{-1}$
$\mathrm{s}=\left(1.3 \times 10^{-3} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~atm}^{-1}\right) \times 0.21 \mathrm{~atm}$
$=2.7 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ which is much greater than $0.13 \mathrm{mmol} \cdot \mathrm{L}^{-1}$

Enthalpy of Solution

Measuring heat released or absorbed when a substance dissolves is called molar enthalpy of solution, $\Delta \mathrm{H}_{\text {sol }}$.

Anion

		fluoride	chloride	bromide	iodide	hydroxide	carbonate	sulfate
Cation	nitrate							
lithium	+4.9	-37.0	-48.8	-63.3	-23.6	-18.2	-2.7	-29.8
sodium	+1.9	+3.9	-0.6	-7.5	-44.5	-26.7	+20.4	-2.4
potassium	-17.7	+17.2	+19.9	+20.3	-57.1	-30.9	+34.9	+23.8
ammonium	-1.2	+14.8	+16.0	+13.7	-	-	+25.7	+6.6
silver	-22.5	+65.5	+84.4	+112.2	-	+41.8	+22.6	+17.8
magnesium	-12.6	-160.0	-185.6	-213.2	+2.3	-25.3	-90.9	-91.2
calcium	+11.5	-81.3	-103.1	-119.7	-16.7	-13.1	-19.2	-18.0
aluminum	-27	-329	-368	-385	-	-	-	-350

Lithium chloride, dissolve exothermically, heat releasing. Others, such as ammonium nitrate, dissolve endothermically, heat absorbing.

Enthalpy of Solution

The first step sublimes solids ions to gas ions. Highly endothermic, this is the lattice enthalpy, $\Delta \mathrm{H}_{\mathrm{L}}$, for NaCl ;

$$
\mathrm{NaCl}(\mathrm{~s})+787 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})
$$

The second step, gaseous ions plunge into water forming the final solution. This is the enthalpy of hydration, $\Delta \mathrm{H}_{\text {hyd }}$, and for NaCl ;

$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+784 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
Combing these steps : $\Delta \mathrm{H}_{\text {sol }}=\Delta H_{L}+\Delta H_{\text {hyd }}$
$\Delta \boldsymbol{H}_{\text {sol }}=\{787+(-784)\} \mathrm{kJ} \cdot \mathrm{mol}^{-1}=+3 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ (endothermic)

$$
\Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{\mathrm{L}}+\Delta \mathrm{H}_{\mathrm{hyd}}
$$

Enthalpy of Solution

$$
\Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{\mathrm{L}}+\Delta \mathrm{H}_{\mathrm{hyd}}
$$

High charge and small ionic radius contribute to high lattice enthalpy $\left(\Delta H_{L}\right)$.

However, often these can be the same properties that related to low enthalpy of hydration ($\left.\Delta \mathrm{H}_{\text {hyd }}\right)$.

Therefore it is very difficult to make reliable predictions and instead rationalize what is observed.

Nitrates, $\mathrm{NO}_{3}{ }^{-}$, have a big, single charged anions, so have a small $\Delta \mathrm{H}_{L}$. But these same features mean that the $\Delta \mathrm{H}_{\text {hyd }}$ is very large resulting in a $\Delta \mathrm{H}_{\text {sol }}(\uparrow)$. This is why nitrates are rarely found in mineral deposits because they are soluble.

Carbonate ions, $\mathrm{CO}_{3}{ }^{2-}$, are about the same size as nitrate ions, but they are doubly charged. They have a low $\Delta \mathrm{H}_{\text {sol }}(\downarrow)$ because they have very high $\Delta \mathrm{H}_{\mathrm{L}}$ (2charge and size) and low $\Delta \mathrm{H}_{\text {hyd }}$; so found in limestone.

The Gibbs Free Energy of Solution

$$
\Delta H_{\text {sol }}=\Delta H_{L}+\Delta H_{\text {hyd }}
$$

A negative enthalpy, $-\Delta \mathrm{H}_{\text {sol }}$, is an energy releasing process.

The Gibbs Free Energy of Solution

If $\Delta \mathrm{H}$ is negative, dissolving would be a spontaneous change (at constant temperature and pressure). Compound is soluble.

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} .
$$

In dissolving: $\quad \Delta \mathrm{S}_{\text {tot }}=$ Positive

If $\Delta \mathrm{H}$ is positive, dissolving would be a spontaneous change if $T \Delta S$ is positive and larger than $\Delta \mathrm{H}$. Higher temperature makes a compound more soluble.

At equilibrium: $\quad \Delta S=0$, so $\Delta G=0$

Colligative Properties

Properties that depend on the numbers of solute and solvent molecules and not on chemical identity are called colligative properties.

Four colligative properties of major importance are the:

1. lowering of the vapor pressure,
2. raising boiling points,
3. lowering of freezing points, and
4. osmosis.

Extensive properties depend on the quantity of matter (n atoms), Volume \& Mass whereas intensive properties are independent of the quantity of matter, Density \& Temperature. Colligative is a new third category.

Molality

The molality of a solute is the amount of solute species (in moles) divided by the mass of the solvent (in kilograms):

$$
\text { molality }=\frac{\text { amount of solute }(\mathrm{mol})}{\text { mass of solvent }(\mathrm{kg})}
$$

Molality is independent of temperature (not true for molarity).

Units of molality mol $\cdot \mathrm{kg}^{-1}$ and denoted as " m " for example, a 1.0 m $\mathrm{NiSO}_{4}(\mathrm{aq})$ and read as "molal" is exactly $1 \mathrm{~mol} \mathrm{NiSO}_{4}$ dissolved in 1 kg of water.

Molality

Example 4: What is the molality of NaCl in a solution prepared by dissolving 10.5 g of sodium chloride in 250 g of water?

Molality $=\frac{\text { moles solute }}{\mathrm{Kg} \text { solvent }}$

$$
10.5 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.5 \mathrm{~g} \mathrm{NaCl}}=0.179 \mathrm{~mol} \mathrm{NaCl}
$$

$$
250 . \mathrm{g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}{1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.250 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{m}=\frac{0.179 \mathrm{~mol} \mathrm{NaCl}}{0.250 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=0.716 \mathrm{~m}
$$

Useful Equations

Mole fraction: $\chi_{\text {solute }}=\frac{n_{\text {solute }}}{n_{\text {solute }}+\mathrm{n}_{\text {solvent }}}$ or $\chi_{\text {solvent }}=\frac{n_{\text {solvent }}}{n_{\text {solute }}+\mathrm{n}_{\text {solvent }}}$
$1=\chi_{\text {solute }}+\chi_{\text {solvent }}$

Calculating the mass of solvent from mole fraction:
$m_{\text {solvent }}(\mathrm{g})=\mathrm{n}_{\text {solvent }}(\mathrm{mol}) \mathrm{M}_{\text {solvent }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)=\left\{\left(1-\chi_{\text {solute }}\right)(\mathrm{mol})\right\} \mathrm{M}_{\text {solvent }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$

Calculating the molality, given the molarity:

$$
\begin{aligned}
& m_{\text {solute }}(\mathrm{g})=\mathrm{n}_{\text {solute }}(\mathrm{mol}) M_{\text {solute }}\left(\mathrm{g} \cdot \mathrm{~mol}^{-1}\right)=\text { molarity }\left(\mathrm{mol} \cdot \mathrm{~L}^{-1}\right) \times 1 L \times \mathrm{M}_{\text {solute }}\left(\mathrm{g} \cdot \mathrm{~mol}^{-1}\right) \\
& m_{\text {solvent }}(\mathrm{g})=m_{\text {solution }}(\mathrm{g})-\mathrm{m}_{\text {solute }}(\mathrm{g})
\end{aligned}
$$

Example 5: What is the molality of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, dissolved in toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, in a solution for which the mole fraction of benzene is 0.150 ?
molality $=\frac{\mathrm{n}_{\text {solute }}(\mathrm{mol})}{\mathrm{m}_{\text {solvent }}(\mathrm{kg})}$
First we find the mass, kg , of toluene
benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ is the solute, and toluene is the solvent.
$78.11 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \mathrm{C}_{6} \mathrm{H}_{6}$
$92.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
Calculating the mass of solvent from mole fraction:
$\mathrm{m}_{\text {solvent }}(\mathrm{g})=\mathrm{n}_{\text {solvent }}(\mathrm{mol}) \mathrm{M}_{\text {solvent }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)=\left\{\left(1-\chi_{\text {solute }}\right)(\mathrm{mol})\right\} \mathrm{M}_{\text {solvent }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$
$\{(1-0.150) \mathrm{mol}\} \times 92.13 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=78.3 \mathrm{~g}$ toluene $=0.0783 \mathrm{~kg}$ toluene
$\mathrm{m}=\frac{\mathrm{n}_{\text {solute }}}{\mathrm{kg}_{\text {solvent }}}=\frac{0.150 \mathrm{~mol} \text { benzene }}{0.0783 \mathrm{~kg} \text { toluene }}=1.92 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$

Example 6: Find the molality of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in 1.06 M $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$, which is known to have density $1.14 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$.
molality $=\frac{\mathrm{n}_{\text {solute }}(\mathrm{mol})}{\mathrm{m}_{\text {solvent }}(\mathrm{kg})}$
$342.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
Calculating the molality, given the molarity:
$\mathrm{m}_{\text {solute }}(\mathrm{g})=\mathrm{n}_{\text {solute }}(\mathrm{mol}) \mathrm{M}_{\text {solute }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)=$ molarity $\left(\mathrm{mol} \cdot \mathrm{L}^{-1}\right) \times 1 \mathrm{~L} \times \mathrm{M}_{\text {solute }}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{m}_{\text {solvent }}(\mathrm{g})=\mathrm{m}_{\text {solution }}(\mathrm{g})-\mathrm{m}_{\text {solute }}(\mathrm{g})$

Example 6: Find the molality of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in 1.06 M $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$, which is known to have density $1.14 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$.

Mass of solvent must be calculated per liter since we're working with molarity: $1.14 \mathrm{~g} \cdot \mathrm{~mL}^{-1} \times 1000 \mathrm{~mL}=1140 \mathrm{~g}$ of solution (we use this in the $2^{\text {nd }}$ equation to find the mass of solvent).

Next, mass of solute $=$ molarity $\times(1 \mathrm{~L}) \times \mathrm{M}_{\text {solute }}$,
$\left(1.06 \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right) \times 1 \mathrm{~L} \times 342.3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}=363 \mathrm{~g}$ solute (sucrose)
$\mathrm{m}_{\text {solvent }}(\mathrm{g})=\mathrm{m}_{\text {solution }}(\mathrm{g})-\mathrm{m}_{\text {solute }}(\mathrm{g})$,
1140 g solution -363 g solute $=780 \mathrm{~g}$ or 0.78 kg
$\mathrm{n}_{\text {sucrose }}=363 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \times \frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{342.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}=1.06 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\mathrm{m}=\frac{1.06 \mathrm{~mol}}{0.78 \mathrm{~kg}}=1.4 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}$

Vapor-Pressure Lowering

The French scientist Francois-Marie Raoult, discovered that, at any temperature, the vapor pressure of a solvent is proportional to its mole fraction in a solution. Now known as Raoult's law,
 $$
\mathrm{P}=\chi_{\text {solvent }} \mathrm{P}_{\text {pure }}
$$
 P is the vapor pressure of the solvent, $X_{\text {solvent }}$ is the mole fraction of the solvent, and $P_{\text {pure }}$ is the vapor pressure of the pure solvent.

Example 7: Calculate the vapor pressure of water at $20 .{ }^{\circ} \mathrm{C}$ in a solution prepared by dissolving 10.00 g of the nonelectrolyte sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in 100.0 g of water.

Using $P=\chi_{\text {solvent }} P_{\text {pure }}$ to find P we need to find $\chi_{\text {solvent }}$

$$
\chi_{\text {solvent }}=\frac{\mathrm{n}_{\text {solvent }}}{\mathrm{n}_{\text {solute }}+\mathrm{n}_{\text {solvent }}}
$$

$$
\begin{aligned}
& n_{\text {surose }}=10.00 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \times \frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{342.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}=0.02921 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
& n_{\text {water }}=100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=5.551 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Example 7: Calculate the vapor pressure of water at $20 .{ }^{\circ} \mathrm{C}$ in a solution prepared by dissolving 10.00 g of the nonelectrolyte sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, in 100.0 g of water.
$\chi_{\text {solvent }}=\frac{5.551 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.02921 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+5.551 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.995$
$P=\chi_{\text {solvent }} P_{\text {pure }},(0.995) \times$ 17.54 Torr $=17.45$ Torr (not much of a change)

Raoult's Law

A hypothetical solution that obeys Raoult's law exactly at all concentrations is called an ideal solution, and if not then it is a nonideal solution (a limiting law, PV=nRT does not work outside of STP or during phase changes).

Real solutions are approximately ideal at concentrations below about 0.1 M for nonelectrolyte (sugar) solutions and 0.01 M for electrolyte solutions (ionic).

Raoult's law is another example of a limiting law.

Boiling-Point Elevation and Freezing-Point Depression

A nonvolatile solute lowers the vapor pressure of the solvent, therefore increasing the boiling point and so is called boiling-point elevation.

The effect of the solute on the entropy of the solvent increases more than in the pure solvent, and so the boiling point is higher in the presence of the solute.

The increased boiling temperature is usually quite small and is of little practical importance in science. A 0.1 m aqueous sucrose solution, for instance, boils at $100.05^{\circ} \mathrm{C}$.

Boiling-Point Elevation and Freezing-Point Depression

Freezing-point depression is more significance. An added solute lowers of the freezing point of a solvent.

Seawater freezes about $1^{\circ} \mathrm{C}$ lower than fresh water.

Salting walkways and roads lowers the waters freezing point melting it.

Melting point are also a method for determining the purity of a solid.

Boiling-Point Elevation and Freezing-Point Depression

Freezing-point depression $=\mathrm{k}_{\mathrm{f}} \times$ molality, temp. decreases.

Boiling-point elevation $=k_{b} \times$ molality, temp. increases.

Solvent	Freezing point $\left({ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{k}_{\mathrm{f}}$ $\left(\mathbf{K} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-\mathbf{1}}\right)$	Boiling point $\left({ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{k}_{\mathrm{b}}$ $\left(\mathrm{K} \cdot \mathrm{kg} \cdot \mathrm{mol}^{-1}\right)$
acetone	-95.35	2.40	56.2	1.71
benzene	5.5	5.12	80.1	2.53
camphor	179.8	39.7	204	5.61
carbon tetrachloride	-23	29.8	76.5	4.95
cyclohexane	6.5	20.1	80.7	2.79
naphthalene	80.5	6.94	217.7	5.80
phenol	43	7.27	182	3.04
water	0	1.86	100.0	0.51

The effect is small: for a $0.1 \mathrm{~m} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$ (sucrose) solution:
Freezing-point depression $=\left(1.86 \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right) \times\left(0.1 \mathrm{~mol} \cdot \mathrm{~kg}^{-1}\right)=0.2 \mathrm{~K}$, so water would freeze at $-0.2^{\circ} \mathrm{C}$.

Boiling-Point Elevation and Freezing-Point Depression

In an electrolyte solution, each formula unit contributes two or more ions. Sodium chloride, gives Na^{+}and Cl^{-}ions, and both ions contribute to the depression of the freezing point.

Solve for freezing point $=\mathrm{ik}_{\mathrm{f}} \times$ molality

The van't Hoff i factor, is determined experimentally.

In very dilute solution, less than 0.001 M , where all ions are independent, $\mathrm{i}=2$ for MX salts such as NaCl , and for MX_{2} salts such as $\mathrm{CaCl}_{2}, \mathrm{i}=3$.

Example 8: The addition of 0.24 g of sulfur to 100 g of the solvent carbon tetrachloride lowers the solvent's freezing point by $0.28^{\circ} \mathrm{C}$. What is the molar mass and molecular formula of sulfur.

- First, we recognize to find molar mass of the solute, $\mathrm{M}_{\text {solute }}$, that $\mathrm{M}_{\text {solute }}$ $=\mathrm{g} \cdot \mathrm{mol}^{-1}$
- Second, we can use that information to find the formula $\mathrm{M}_{\text {solute }} /$ atomic mass
- In the first step, using freezing point $=\mathrm{ik}_{\mathrm{f}} \times$ molality, we solve for molality. Since $\mathrm{m}=\mathrm{mol} \cdot \mathrm{kg}^{-1}$ we can find mol , which is part of the first step.
$\mathrm{k}_{\mathrm{f}}\left(\mathrm{CCl}_{4}\right)=29.8 \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}$
$\mathrm{i}=1$ for a nonelectrolyte
The change in temperature $0.28^{\circ} \mathrm{C}=0.28 \mathrm{~K}$
$100 . \mathrm{g}=0.100 \mathrm{~kg}$

Example 8: The addition of 0.24 g of sulfur to 100 g of the solvent carbon

 tetrachloride lowers the solvent's freezing point by $0.28^{\circ} \mathrm{C}$. What is the molar mass and molecular formula of sulfur.Solve for freezing point $=\mathrm{ik}_{\mathrm{f}} \times$ molality
Molality $=\frac{\text { freezing point }}{\mathrm{ik}_{\mathrm{f}}}=\frac{0.28 \mathrm{~K}}{(1) \times\left(29.8 \mathrm{~K} \cdot \mathrm{~kg} \cdot \mathrm{~mol}^{-1}\right)}=0.0094 \mathrm{~m}$
Molality $=\frac{\text { moles solute }}{\mathrm{Kg} \text { solvent }}$
$0.0094 \mathrm{~m}=\frac{\text { mole solute }}{0.100 \mathrm{~kg} \text { solvent }}=>$ mole solute $=0.00094$ mole sulfur
First part, $\mathrm{g} \cdot \mathrm{mol}^{-1}=\frac{0.24 \mathrm{~g}}{0.00094 \mathrm{~mol}}=2.6 \times 10^{2} \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Second part, $\mathrm{M}_{\text {solute }} /$ atomic mass $=\frac{2.6 \times 10^{2} \mathrm{~g} \cdot \mathrm{~mol}^{-1}}{32.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}=8.1$, so S_{8}

Osmosis

Higher concentration \rightarrow Higher osmotic presşure

Osmosis

Water flows from low concentration to high concentration.

Solvent flows until the molar Gibbs free energy of the solvent is the same on each side of the membrane.

Isotonic solution Hypotonic solution Hypertonic solution

Hemolysis

Crenation

Osmosis

The same van 't Hoff i factor appears in osmotic pressure:

$$
\Pi=i R T c \quad \text { (also } \Pi=i R T M \text { where } M \text { is molarity) }
$$

c is molarity,
R is the gas constant,
T is temperature.
Osmometry is the technique to determine the molar mass of a solute from osmotic pressure measurements.

Example 9: What is the osmotic pressure of a 0.120 M NaCl solution at 298 K ?

The van't Hoff i factor is 2 for a electrolyte substance like NaCl .
$\Pi=i R T c$,
$(2) \times\left(0.08206 \mathrm{~atm} \cdot \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right) \times(298 \mathrm{~K}) \times\left(0.120 \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)=5.86 \mathrm{~atm}$

Practice 1: The normal boiling point of iodomethane, CH 3 I , is $42.43^{\circ} \mathrm{C}$, and its vapor pressure at $0.00^{\circ} \mathrm{C}$ is 140 . torr. Calculate (a) the standard enthalpy of vaporization of iodomethane; (b) the standard entropy of vaporization of iodomethane; © the vapor pressure of iodomethane at $25.0^{\circ} \mathrm{C}$?

Practice 2: Which would be the better solvent, water or benzene, for each of the following substances: (a) KCl ; (b) CCl_{4}; (c) $\mathrm{CH}_{3} \mathrm{COOH}$?

Practice 3: Calculate the molality of KOH in a solution prepared from 3.12 g of KOH and 67.0 g of water.

Practice 4: The density of $14.8 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$ is $0.901 \mathrm{~g}_{\mathrm{g}} \mathrm{cm}^{-3}$. What is the molality of NH_{3} in the solution?

Practice 5: A 1.14-g sample of a molecular substance dissolved in $100 . \mathrm{g}$ of camphor freezes at $176.9^{\circ} \mathrm{C}$. What is the molar mass of the substance?

Practice 6: What is the osmotic pressure at $20^{\circ} \mathrm{C}$ of (a) 0.010 M $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq}) ;$ (b) $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$; (c) $0.010 \mathrm{M} \mathrm{CaCl}(\mathrm{aq})$? Assume complete dissociation of the CaCl_{2}.

