POLYMERS AND BIOLOGICAL GROUPS

Functional groups

Family	Functional group	Example	Name
Alcohol	- OH	CH ₃ CH ₂ OH	Ethanol
Amine	- NH ₂	$CH_3CH_2NH_2$	Ethanamine
Aldehyde	О - С- Н О	О Н ₃ СН О	Ethanal
Ketone	0 " - C-	CH ₃ CCH ₃	Acetone
Carboxylic acid	О - С- ОН	О СН₃СОН	Acetic acid
Carboxylic ester	- C- OR	$CH_3COCH_2CH_3$	Ethyl acetate

Alkanes, Alkenes, and Alkynes

• Alkanes: contain single bonds between carbon atoms.

• Alkenes: contain one or more double bonds.

 Alkynes: contain one or more triple bonds.

Alcohols

Alcohols Contain a hydroxyl group (-OH).

Phenols Contain a benzene ring with a hydroxyl group (-OH).

Naming Alcohols

- **IUPAC** name: We replace the -e in alkane name with -ol.
- Common name: As simple alcohols using the name of the alkyl group followed by "alcohol".

CH₄ Methane CH₃-OH Methanol (Methyl alcohol) CH₃-CH₃ Ethane CH₃-CH₂-OH Ethanol (Ethyl alcohol)

Naming Alcohols

Step 1 Select the longest carbon chain that contains the -OH group.

Step 2 Number from the end nearest -OH group.

Step 3

Change the ending of parent alkane from -e to -ol. Use the number to show the location of -OH.

Step 4

Give the location and name of each substituent (alphabetical order) as a prefix to the name of the main chain.

Naming Alcohols

4-Nitro-2-pentanol

2,2-dimethyl-1-propanol

Physical Properties of Alcohols

1. Alcohols are polar molecules (because of O-H and C-O).

C-O: (3.5 – 2.5 = 1.0) O-H : (3.5 – 2.1 = 1.4)

- 2. Hydrogen bonding between alcohols molecules.
- 3. Have higher boiling points than Alkanes, Alkenes, and Alkynes.
- 4. Molecular weight \uparrow : London dispersion forces \uparrow : bp \uparrow
- 5. More soluble in water (Molecular weight \uparrow : solubility \downarrow).
 - nonpolar OH
- 6. They are weak acids (weaker than Phenol).

Formation of Alcohols

Hydration (addition of water):

- Water adds to C=C to give an alcohol.
- Acid catalyst (concentrated sulfuric acid).
- Markovnikov's rule: H adds to double bonded carbon that has the greater number of H and halogen adds to the other carbon.

The rich get richer!

Ethers

An ether:

- Contains an -O- between two carbon atoms.
- Is named from *alkyl* names of the attached groups (in alphabetical order) followed by *ether*.

Physical Properties of Ethers

- 1. They are polar compounds (because of C-O).
 - C-O (3.5 2.5 = 1)
- 2. Weak dipole-dipole interactions.

- 3. Low boiling points: hydrocarbons < ethers < alcohols.
- 4. More soluble in water than other hydrocarbons of similar molecular weight (H-bond with water).

Chemical Properties of Ethers

Ethers are resistant to chemical reactions (inert).

Good solvent for organic reactions.

Aldehydes and Ketones

 In an aldehyde, at least one H atom is attached to a carbonyl group.

 In a ketone, two carbon groups are attached to a carbonyl group.

Naming Aldehydes

Step 1 Select the longest carbon chain that contains the carbonyl group (C=O).

Step 3

Change the ending of parent alkane from -e to -al. No number for carbonyl group C=O (it always comes first).

Step 4

Give the location and name of each substituent (alphabetical order) as a prefix to the name of the main chain.

3-Methylbutanal

3-chloropropanal

Naming Ketones

Step 1 Select the longest carbon chain that contains the carbonyl group (C=O).

Step 3

Change the ending of parent alkane from -e to -one. Use the number to show the location of C=O.

Step 4

Give the location and name of each substituent (alphabetical order) as a prefix to the name of the main chain.

3-ChloroBenzaldehyde

5-Methyl-3-hexanone

Physical properties of Aldehydes and Ketones

- 1. They have strong odors (ketones have pleasant odors).
- 2. They are polar compounds. C-O 3.5-2.5 = 1
- 3. Only dipole-dipole interactions (no hydrogen bonding).

- 4. Low boiling points compare to amines and alcohols. Higher than hydrocarbons.

Amines:

- Are derivatives of ammonia NH₃.
- Contain N attached to one or more alkyl (Aliphatic amine) or aromatic groups (Aromatic amine).

CH₃-NH-CH₃

 NH_2

-NH₂ amino group

Naming Amines

IUPAC name – 1° amines

The same method as we did for alcohols.

- Drop the final "-e" of the parent alkane and replace it by "-amine".
- Use a number to locate the amino group (-NH₂) on the parent chain.

Physical properties of Amines

- 1. They have unpleasant odors (rotting fish like ammonia).
- 2. They are polar compounds.

Difference in electronegativity between N - H (3.0 - 2.1 = 0.9)

3. 1° and 2° amines have hydrogen bonds (N-H).

3° amines do not form hydrogen bonds (no H atom).

- 4. Boiling points: Hydrocarbons< Amines < Alcohols
- 5. Almost soluble in water (hydrogen bonding).

Carboxylic Acids

A carboxylic acid contains a *carboxyl group*, which is a carbonyl group attach to a hydroxyl group.

Naming Carboxylic Acids

- In the IUPAC name of carboxylic acids, the "-e" in the name of the longest chain is replaced by "-oic acid".
- The common names use prefixes "form-" and "acet-" for the first two carboxylic acids.

H-COOHmethanoic acidformic acid CH_3 -COOHethanoic acidacetic acid CH_3 -CH_2-COOHpropanoic acid CH_3 -CH_2-CH_2-COOHbutanoic acid

Naming Carboxylic Acids

- Number the chain beginning with the carbon of the carboxyl group.
- Because the carboxyl carbon is understood to be carbon 1, there is no need to give it a number.

3-Methylbutanoic acid

$$CH_2 - CH_3$$
$$\begin{vmatrix} 2 & 1 \\ CH_3 - CH_2 - CH - COOH \end{vmatrix}$$

2-Ethylbutanoic acid

5-Hydroxylhexanoic acid

4-Aminobenzoic acid

Physical properties of Carboxylic Acids

- 1- The carboxyl group contains three polar covalent bonds; C=O, C-O, and O-H. So they are so polar.
- 2- Carboxylic acids have higher boiling points than other types of organic compounds (with the same molecular weight) because of hydrogen bonding.

- 3- They are more soluble in water than alcohols, ethers, aldehydes, and ketones because of stronger hydrogen bonding.
- 4- Liquid carboxylic acids have sharp and disagreeable odors.
- 5- They taste sour (exist in pickle, lime, and lemon).

Esters

In an ester, the H in the carboxyl group of a carboxylic acid is replaced with and alkyl group.

Formation of Esters

Fischer Esterification

Amides

In an amide, the -OH group in the carboxyl group of a carboxylic acid is replaced by an Amino group $(-NH_2)$.

Formation of Amides

Amino acids

- Are the building blocks of proteins.
- Contain carboxylic acid and amino groups.
- Are ionized in solution (soluble in water).
- They are ionic compounds (solids-high melting points).
- Contain a different side group (R) for each.

This form never exist in nature.

Proteins

- Peptide bond: When an amide links two amino acids.
- Between the COO⁻ of one amino acid and the NH₃ + of the next amino acid.

Protein: A biological macromolecule containing at least 30 to 50 amino acids joined by peptide bonds.

Polymerization

Polymer: a long-chain molecule produced by bonding together many single parts called monomers.

The most important reactions of alkenes in industry.

Polymerization

Polypropene (Polypropylene)

Polymers in our life

Addition Polymerization

Alkenes can react with themselves to form long chains in a process called addition polymerization.

Addition Polymerization

Many plastic materials made of addition polymers can be recycled by melting and reprocessing.

Recycling code	Polymer	Recycling code	Polymer
$1 \sum_{\text{Pete}}$	polyethylene terephthalate	5 5 PP	polypropylene
² <u>2</u> 130°C	high-density polyethylene	6 6 PS	polystyrene
³ $\overbrace{3}_{PVC}$	polyvinyl chloride		other
⁴ 4 110°C	low-density polyethylene		

Monomer Styrene

Repeating Unit Poly(styrene)

H₂ , H, C, n

Polymer Poly(styrene)

Addition Polymerization

Karl Ziegler and Giulio Natta (1950's) discovered TiCl₄ and Al(CH₂CH₃)₃ (**Ziegler-Natta Catalysts**) could polymerize stereoregular polypropylene.

isotactic

Methyl groups are all on the same side, producing densely, highly crystalline material. These are durable, with high melting points.

Example 1: write the formula of the polymer when three monomer units of $CH_3CH_2CH=CH_2$ is added at a high temperature and pressure (peroxide is in this reaction as an initiator).

The monomer is an alkene; so it forms an addition polymer. Replace each π -bond by an additional σ -bond to an adjacent monomer.

Condensation Polymerization

Condensation polymerization produces a polymer and often water.

Commonly used to polymerize esters and amides.

Carboxylic acid and an alcohol make polyesters.

Condensation Polymerization

Polyamides, are commonly known as **nylons**. The most common is nylon-66, made with 1,6-diaminohexane, $H_2N(CH_2)_6NH_2$, and adipic acid, HOOC(CH₂)₄COOH. The 66 in the name indicates the numbers of carbon atoms in the two monomers.

Condensation Polymerization

The long polyamide (nylon) chains can be spun into fibers (like polyesters) or molded.

Hydrogen bonding between neighboring chains accounts for much of the strength of nylon fibers.

Example 2: Write the formulas of (a) the monomers of Kevlar, a strong fiber used to make bulletproof vests:

We break the C-N bonds and group accordingly:

Simple & Copolymers

Nylon is a **copolymer** with with 1,6-diaminohexane, $H_2N(CH_2)_6NH_2$, and adipic acid, $HOOC(CH_2)_4COOH$.

Simple & Copolymers

Block polymers are long segments of polymer of different polymers joined together.

Pure polystyrene is a transparent, brittle material that is easily broken; polybutadiene is a synthetic rubber that is very resilient, but soft and opaque.

One formulation of these two produces styrene-butadiene rubber (SBR), which is used mainly for <u>automobile tires</u> and running shoes, but also in <u>chewing gum</u>.

Simple & Copolymers

Graft copolymers consist of long chains with shorter chains attached as side groups.

For example hard contact lenses use a nonpolar hydrocarbon that repels water. The side chains can absorb 50% of the volume is water, making it pliable, soft, and more comfortable to wear.

Physical Properties of Polymers

Mechanical strength is the length of the polymer. Hydrogen bonding also helps to hold strands together.

Chain packing is the density. The fewer branches in a polymer the better the polymer strands can pack.

Bullet-proof vests of high density polyethylene; 15 time stronger than steel, flexible, and floats in water.

(a)

Physical Properties of Polymers

Elasticity is the ability to return to its original shape.

Natural rubber has low elasticity. **Vulcanization** increases its elasticity.

Vulcanization is heating rubber with sulfur. The sulfur forms cross-links.

To much sulfur causes extensive cross-linking, producing a hard material called ebonite.

Biological Polymers - Carbohydrates

There are many organic polymers including the **cellulose of wood**, natural fibers such as **cotton**.

Biological Polymers - Carbohydrates

Polysaccharides are polymers of glucose, including starch.

Starch is made up of two components: amylose and amylopectin.

Cellulose has the same glucose molecules, linked differently, forming flat, ribbon like strands.

Biological Polymers - Proteins

- The order of amino acids held together by peptide bonds.
- Each protein in our body has a unique sequence of amino acids.
- The backbone of a protein.
- All bond angles are 120°, giving the protein a zigzag arrangement.

Biological Polymers - Proteins

- 1. Primary structure
- 2. Secondary structure
- 3. Tertiary structure
- 4. Quaternary structure

Biological Polymers – Nucleic Acids

DNA and RNA are polynucleotides, polymeric species built from nucleotide units, wrapped into a double helix.

Polymerization takes place when the phosphate group of one nucleotide reacts with OH group of another nucleotide.

A polymer nucleotides is called a nucleic acid.

Biological Polymers – Nucleic Acids

The base pairs line up on opposite sides of the nucleic acids strands, forming the double helix.

During DNA replication, the hydrogen bonds are broken with an enzyme.

