THE HYDROCARBONS

Chemistry of Carbon (H, O, N, S, Halogens, and P).

C one of the 116 elements

Organic compounds: 10 million

Inorganic compound: 1.7 million

Compounds in living systems are organic: Biochemistry

First organic compound that is synthesized in lab.

Friedrich Wöhler (1828)

Typical organic compounds:

- Contain carbon
- Have covalent bonds
- Have low melting points
- Have low boiling points
- Are flammable (all burn)
- Are soluble in nonpolar solvents
- May be gases, liquids or solids

- Carbon: normally forms four covalent bonds and has no unshared pairs of electrons.
 I
 C
- Hydrogen: forms one covalent bond and no unshared pairs of electrons.

Nitrogen: normally forms three covalent bonds and has one unshared pair of electrons.

Н—

 Oxygen: normally forms two covalent bonds and has two unshared pairs of electrons.

<u>/N</u>

 Halogen: normally forms one covalent bond and has three unshared pairs of electrons.

Functional groups

An atom or group of atoms within a molecule that shows a characteristic set of predictable physical and chemical properties.

- A way to classify organic compounds into families.
- They determine the chemical and physical properties of a compound.
- They undergo the same types of chemical reactions.
- A way to name organic compounds.

Hydrocarbons

Large family of organic compounds

Composed of only carbon and hydrogen

Saturated hydrocarbons

Alkanes

C - C

Unsaturated hydrocarbons

Alkenes, Alkynes & Aromatics

Carbon

- Carbon has four valence electrons; hydrogen has one.
 - C H •
- To obtain an octet, carbon forms four bonds.

Alkanes

Methane

Expanded structural formula: showing each bond line.

Molecular formula

 CH_4

 $CH_3 - CH_3$

Condensed structural formula: with each carbon atom and its attached hydrogen atoms.

Alkanes

Table 16.3 Writing Structural Formulas for Some Alkanes

Alkane	Methane	Ethane	Propane
Molecular formula	CH ₄	C ₂ H ₆	C ₃ H ₈
Structural formulas			
Expanded	н—с—н н	$\begin{array}{ccc} \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{C} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \end{array}$	$\begin{array}{cccc} \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{C} - \mathbf{C} - \mathbf{C} - \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \end{array}$
Condensed	CH ₄	CH ₃ —CH ₃	СH ₃ -СH ₂ -СH ₃
			or
			CH ₃ CH ₂ CH ₃

 $C_n H_{2n+2}$

n: number of carbon atoms

Naming of Alkanes

Table 16.2 IUPAC Names for the First Ten Continuous-Chain Alkanes

Number

of Carbon Atoms	Prefix	Name	Molecular Formula	Condensed Structural Formula
1	Meth	Methane	CH ₄	CH ₄
2	Eth	Ethane	C_2H_6	CH ₃ —CH ₃
3	Prop	Propane	C ₃ H ₈	CH ₃ -CH ₂ -CH ₃
4	But	Butane	C_4H_{10}	CH ₃ -CH ₂ -CH ₂ -CH ₃
5	Pent	Pentane	C5H12	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃
6	Hex	Hexane	C_6H_{14}	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃
7	Hept	Heptane	C7H16	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃
8	Oct	Octane	C8H18	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃
9	Non	Nonane	C9H20	CH ₃ -CH ₂ -CH ₃
10	Dec	Decane	$C_{10}H_{22}$	$CH_{3}-CH_{2}-$

 $C_n H_{2n+2}$

Prefix + ane

Line-angle Formula

Naming Substituents

In the IUPAC system:

 Removing a H from an alkane is called **alkyl** group.

-ane → -yl

 Halogen atoms are named as halo.

-ine → -0

Table 16.5Names and Formulasof Some Common Substituents

Substituent	Name
СН3—	methyl
СН ₃ —СН ₂ —	ethyl
CH ₃ -CH ₂ -CH ₂ -	propyl

F—, Cl—, Br—, I— fluoro, chloro, bromo, iodo -OH Hydroxyl -NO₂ Nitro

Guide to Naming Alkanes

STEP 1 Write the alkane name of the longest continuous chain of carbon atoms.

STEP 2

Number the carbon atoms starting from the end nearest a substituent.

STEP 3

Give the location and name of each substituent (alphabetical order) as a prefix to the name of the main chain.

STEP 1 Longest chain is butane.

STEP 2 Number chain. CH_3 | CH_3 —CH— CH_2 — CH_3 **1 2 3 4**

STEP 3 Locate substituents and name. 2-Methylbutane Give the name of: $CH_3 CH_3$ | CH_3 -CH-CH-CH_3

STEP 1 Longest chain is butane.

STEP 2Number chain. $CH_3 CH_3$ |||| CH_3 —CH—CH— CH_3 1234

STEP 3 Locate substituents and name.
2,3-dimethylbutane

$$\begin{array}{ccc} \mathsf{CI} & \mathsf{CH}_3 \\ & | & | \\ \\ \mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{CH} - \mathsf{CH} - \mathsf{CH}_3 \end{array}$$

STEP 1 Longest chain is pentane.

STEP 2 Number chain from end nearest substituent.

CI
$$CH_3$$

| |
 $CH_3-CH_2-CH-CH-CH_3$
5 4 3 2 1

STEP 3 Locate substituents and name alphabetically. 3-Chloro-2-methylpentane

3,5-dichloro-3-methylheptane

$$CH_2 - CH_3$$
$$|$$
$$CH_3 - CH - CH_2 - CH_3$$

- **STEP 1** Longest chain has 5 carbon atoms (Pentane).
- **STEP 2** Number chain from end nearest substituent.

$$\begin{array}{cccc}
2 & 1 \\
CH_2 - CH_3 \\
| \\
CH_3 - CH - CH_2 - CH_3 \\
3 & 4 & 5
\end{array}$$

STEP 3 Locate substituent and name.

3-Methylpentane

Constitutional (Structural) Isomers

- Have the same molecular formula.
- Have different atom arrangements (different structural formula).

Cyclic Hydrocarbon - Cycloalkane

Cyclobutane

Cyclopentane

Cyclohexane

Naming of Cycloalkanes

Prefix "cyclo-" + the name of the open-chain alkane

Substituents:

- One substituent: no location number
- Two or more substituents: number the ring beginning with the substituent of lower alphabetical order.

Physical Properties of Alkanes

- Nonpolar
- Insoluble in water.
- Lower density than water.
- Low boiling and melting points.
- Gases with 1-4 carbon atoms. (methane, propane, butane)
- Liquids with 5-17 carbon atoms.
 (kerosene, diesel, and jet fuels)
- Solids with 18 or more carbon atoms. (wax, paraffin, Vaseline)

Boiling & melting points of Alkanes

Chemical reactions of Alkanes

Low reactivity

1- Combustion:

- Alkanes react with oxygen.
- CO₂, H₂O, and energy are produced.
- Alkane + $O_2 \rightarrow CO_2 + H_2O$ + heat

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + energy$

Chemical reactions of Alkanes

Low reactivity

2- Halogenation:

Sources of Alkanes

Natural gas

- 90 to 95 percent methane.
- 5 to 10 percent ethane, and
- a mixture of other low-boiling alkanes, chiefly propane, butane, and 2methylpropane.
- Petroleum
 - A thick liquid mixture of thousands of compounds, most of them hydrocarbons, formed from the decomposition of marine plants and animals.

Alkenes and Alkyens

Alkenes and Alkynes

Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Unsaturated compounds: Have fewer hydrogen atoms attached to the carbon chain than alkanes.

Containing triple bonds are alkynes.
 C_nH_{2n-2}

Ethene

Ethyne

 $H - C \equiv C - H$

Naming Alkenes & Alkynes

Using the **IUPAC** alkane names:

Alkene names change the end to -ene. Alkyne names change the end to -yne

Comparison of Names for Alkanes, Alkenes, and Alkynes

Alkane	Alkene	Alkyne
H ₃ C—CH ₃ Ethane	H ₂ C=CH ₂ Ethene (ethylene)	HC=CH Ethyne (acetylene)
CH ₃ -CH ₂ -CH ₃	СН ₃ -СН=СН ₂	СН3−С≡СН
Propane	Propene (propylene)	Propyne

Guide to Naming Alkenes and Alkynes

STEP 1 Name of the longest carbon chain with a double or triple bond.

STEP 2

Number the carbon atoms starting from the end nearest a double or triple bond.

Give the location for double and triple bond

STEP 3

Give the location and name of each substituent (alphabetical order) as a prefix to the name of the main chain. Naming Alkenes & Alkynes

2-Methyl-2-butene

 $CH_3 - C \equiv C - CH_3$

2-Butyne

Naming Alkenes & Alkynes

$$CH_3 - CH_2 - C \equiv C - CH_3$$
5 4 3 2 1

$$CH_{3} \\ | \\ CH_{3} - CH_{2} - C = CH - CH_{3} \\ 5 \qquad 4 \qquad 3 \qquad 2 \qquad 1$$

2-Pentyne

3-Methyl-2-pentene

$$CH_{2} - CH_{3}$$

$$|$$

$$CH_{3} - CH_{2} - C = CH - CH_{3}$$

$$5 \quad 4 \quad 3 \quad 2 \quad 1$$

3-Ethyl-2-pentene

Cis & Trans Stereoisomers (Geometrical)

The same molecular formula and the same connectivity of their atoms but a different arrangement of their atoms in space.

mp & bp of cis < mp & bp of trans

Cis & Trans Stereoisomers (Geometrical)

Stereoisomers (Geometrical): Isomers that have the same molecular formulas and the same connectivity of their atoms but a different orientation of their atoms in space.

Chemical properties of Alkenes & Alkynes

More reactive than Alkanes

Addition of Hydrogen (Hydrogenation-Reduction)

Addition of Hydrogen Halides (Hydrohalogenation)

Addition of water (hydration)

Addition of Bromine & Chlorine (Halogenation)

Chemical properties

More reactive than Alkanes

- 1. Hydrogenation (Reduction):
- A hydrogen atom adds to each carbon atom of a double bond.
- A catalyst such as platinum or palladium is used (Transition metals).

Chemical properties

More reactives than Alkanes

4. Halogenation:

- A halogen atom adds to each carbon atom of a double bond.
- Usually by using an inert solvent like CH₂Cl₂.

Aromatic Hydrocarbons

Benzene

Aromatic Compounds

Aromatic compounds contain benzene ring.

Benzene has:

- 6 C atoms and 6 H atoms.
- Two possible ring structures.

Resonance hybrid

Aromatic Compounds

Arene: A compound containing one or more benzene rings.

Naphthalene

Aromatic compounds are named:

- With benzene as the parent chain.
- Name of substituent comes in front of the "benzene".

Naming of Aromatic Compounds

Some substituted benzenes have common names.

Naming of Aromatic Compounds

When two groups are attached to benzene, the ring is numbered to give the lower numbers to the substituents.

- Start numbering from a special name (if we have).
- If we do not have, number them to get the smallest set of numbers.
- List them by alphabetical order.

Naming of Aromatic Compounds

If we have three or more substituents:

- Start numbering from a special name (if we have).
- If we do not have, number them to get the smallest set of numbers.
- List them by alphabetical order.

Chemical properties of benzene

Resonance: stable

No addition reactions (almost unreactive) Substitution Reactions

Halogenation

Nitration

Sulfonation

Chemical properties of benzene

Halogenation

Nitration

