Chemical
 Composition

Atomic Weight

Atoms are so tiny.

We use a new unit of mass:

Atomic mass unit $(\mathrm{amu})=1.6605 \times 10^{-24} \mathrm{~g}$

Atomic Weight (Mass)

Atomic weight (mass): of an element is average of the masses (in amu) of its isotopes found on the Earth.

Cl ${ }_{17}^{35} \mathrm{Cl} \longrightarrow 34.97 \mathrm{amu}$ ${ }_{17}^{37} \mathrm{Cl} \longrightarrow 36.97 \mathrm{amu}$ $(75.77 / 100 \times 34.97 \mathrm{amu})+(24.23 / 100 \times 36.97 \mathrm{amu})=35.45 \mathrm{amu}$

Atomic number
17

Atomic weight

Counting atoms by weighing

Say we need 1000 of each.

Who wants to count?

Counting atoms by weighing

- Often it is useful to count the number of items by weighing them instead.

How many Jelly beans in 60.2 g?
$60.2 \mathrm{~g} \times \frac{1 \mathrm{JB}}{3.01 \mathrm{~g}}=20 \mathrm{JB}$

How many Mint tic tac in 44.1 g ?
$44.1 \mathrm{~g} \times \frac{1 \mathrm{Mt}}{1.26 \mathrm{~g}}=35 \mathrm{Mt}$

Jelly Bean (g) Mint (g)
1.03
1.50
1.30
1.30
1.20
1.10
1.25
1.30
2.99
1.43
$2.91 \quad 1.15$
3.01
1.26

Counting atoms by weighing

$5.03 \times 10^{30} \mathrm{amu} \mathrm{Cl}=?$ Atoms of Cl

1 Chlorine atom $=35.45 \mathrm{amu}$
$5.03 \times 10^{30} \mathrm{amuCl} \times \frac{1 \mathrm{Cl} \text { atom }}{35.45 \mathrm{amuCI}}=1.42 \times 10^{29}$ atoms Cl

Atomic mass (weight) \longleftrightarrow Number of atoms

Formula and Molecule

Ionic \& covalent compounds \rightarrow Formula formula of NaCl

Covalent compounds \rightarrow Molecule molecule of $\mathrm{H}_{2} \mathrm{O}$

Formula Weight of NaCl :
$23 \mathrm{amu} \mathrm{Na}+35.5 \mathrm{amu} \mathrm{Cl}=58.5 \mathrm{amu} \mathrm{NaCl}$

Molecular Weight of $\mathrm{H}_{2} \mathrm{O}$:
$2 \times(1 \mathrm{amu} \mathrm{H})+16 \mathrm{amu} \mathrm{O}=18 \mathrm{amu} \mathrm{H}_{2} \mathrm{O}$

Mole

Mole: formula weight of a substance (in gram).

12 g of $\mathrm{C}=1 \mathrm{molC} \quad 23 \mathrm{~g}$ of $\mathrm{Na}=1 \mathrm{~mol} \mathrm{Na}$
58.5 g of $\mathrm{NaCl}=1 \mathrm{~mol} \mathrm{NaCl}$

18 g of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{gathered}
1 \text { dozen }=12 \text { of something. } \\
1 \text { mole }=6.022 \times 10^{23} \text { of something. }
\end{gathered}
$$

Avogadro's number $\left(6.02 \times 10^{23}\right)$: number of formula units in one mole.
1 mole of apples $=6.02 \times 10^{23}$ apples

1 mole of A atoms $=6.02 \times 10^{23}$ atoms of A
1 mole of A molecules $=6.02 \times 10^{23}$ molecules of A
1 mole of A ions $=6.02 \times 10^{23}$ ions of A

Molar Mass

Molar mass ($\mathrm{g} / \mathrm{mol}$): mass of 1 mole of substance (in gram). (Formula weight)

molar mass of $\mathrm{Na}=23 \mathrm{~g} / \mathrm{mol}$ molar mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol}$

Calculation of moles \& number of molecules

Formula weight $=1 \times(23 \mathrm{amu})$ for $\mathrm{Na}+1 \times(35.5 \mathrm{amu})$ for $\mathrm{Cl}=58.5 \mathrm{amu} \mathrm{NaCl}$

1 mole $\mathrm{NaCl}=58.5 \mathrm{~g} \mathrm{NaCl}$

$$
104 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mole} \mathrm{NaCl}}{58.5 \mathrm{~g} \mathrm{NaCl}}=1.78 \text { moles } \mathrm{NaCl}
$$

1 mole $\mathrm{NaCl}=6.02 \times 10^{23}$ molecules NaCl
1.78 moles $\mathrm{NaCl} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{NaCl}}{1 \text { mole } \mathrm{NaCl}}=1.07 \times 10^{24}$ molecules NaCl

Stoichiometry

Relationships between amounts of substances in a chemical reaction.

Look at the Coefficients!

$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$	$\rightarrow \underset{2}{2 \mathrm{H}_{2}(\mathrm{~g})}+$	$\mathrm{O}_{2}(\mathrm{~g})$
2	2	1
2 moles	2 moles	1 mole
2 liters	2 liters	1 liter
2 particles	2 particles	1 particle
2 grams	2 grams	1 gram

Stoichiometry

1 Step

Mole A \Leftrightarrow Mole B

Volume A \Leftrightarrow Volume B
\# of Particles A \Leftrightarrow \# of Particles B
Use coefficient in the balanced equation

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

23 mole $\stackrel{\mathrm{A}}{\mathrm{CH}_{4}}=$? moles $\stackrel{\mathrm{B}}{\mathrm{H}_{2} \mathrm{O}}$
23 mole $\mathrm{CH}_{4}\left(\frac{2 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1{\text { mole } \mathrm{CH}_{4}}^{2}}\right)=46$ moles $\mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{LA}_{\mathrm{O}}^{\mathrm{A}}=? \stackrel{\mathrm{~B}}{\mathrm{C}} \mathrm{CO}_{2}$

$$
10 \mathrm{LO}_{2}\left(\frac{1 \mathrm{LCO}_{2}}{2 \mathrm{LO}_{2}}\right)=5 \mathrm{LCO}_{2}
$$

2×10^{26} molecules $\mathrm{H}_{2} \mathrm{O}\left(\frac{2 \times\left(6.02 \times 10^{23} \text { molecules } \mathrm{O}_{2}\right)}{2 \times\left(6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}\right)}\right)=2 \times 10^{26}$ molecules O_{2}

2 Steps

Mole A \Leftrightarrow Volume B

Mass A \Leftrightarrow Mole B or Volume A
\# of Particles A \Leftrightarrow Mole B or Volume A

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$32 \mathrm{~g} \mathrm{CH}_{4}=?$ moles $\stackrel{\mathrm{B}}{\mathrm{CO}_{2}} \quad 32 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)=2.0$ mole CO
40. $\mathrm{g}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{4}=$? $\stackrel{\mathrm{A}}{\mathrm{C}} \mathrm{H}_{4}$
40. $\mathrm{g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{CH}_{4}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)=56 \mathrm{LCH}_{4}$

STP: 1 mole of substance (gas) $=22.4 \mathrm{~L}=22400 \mathrm{cc}\left(\mathrm{cm}^{3}\right.$ or mL$)$

5 moles $\mathrm{CO}_{2}=$? molecules O_{2}

5 moles $\mathrm{CO}_{2}\left(\frac{2{\text { mole } \mathrm{O}_{2}}_{1 \mathrm{~mole} \mathrm{CO}_{2}}^{1}}{)}\left(\frac{6.02 \times 10^{23} \text { molecules } \mathrm{O}_{2}}{1 \mathrm{~mole} \mathrm{O}_{2}}\right)=6 \times 10^{24}\right.$ molecules O_{2}

3 Steps

Mass A \Leftrightarrow Mass B

Mass A \Leftrightarrow Volume B or \# of Particles B

$$
\text { \# of Particles } \mathrm{A} \Leftrightarrow \text { Volume } \mathrm{B}
$$

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\stackrel{\mathrm{A}}{46.0} \mathrm{~g} \mathrm{CH}_{4}=? \mathrm{~g} \mathrm{H}_{2}^{\mathrm{B}} \mathrm{O}
$$

$46.0 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{2 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)\left(\frac{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}\right)=104 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Mass Percent

$$
\text { Percent }=\frac{\text { Part }}{\text { Whole }} \times 100
$$

Mass of element in 1 mole compound
 Mass Percent of element $=\square \times 100$
 Mass of 1 mole compound

Mass Percent

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Mass percent of $\mathrm{C}, \mathrm{O}, \mathrm{H}=? \%$

$$
\begin{array}{ll}
\text { Mass of } \mathrm{C}=6 \mathrm{~mol} \times 12.01 \mathrm{~g} / \mathrm{mol} & =72.06 \mathrm{~g} \\
\text { Mass of } \mathrm{O}=6 \mathrm{~mol} \times 16.00 \mathrm{~g} / \mathrm{mol} & =96.00 \mathrm{~g} \\
\text { Mass of } \mathrm{H}=12 \mathrm{~mol} \times 1.008 \mathrm{~g} / \mathrm{mol} & =12.09 \mathrm{~g}
\end{array}
$$

Mass of 1 mole $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.16 \mathrm{~g}$

Mass percent of $\mathrm{C}=\frac{72.06 \mathrm{~g}}{180.16 \mathrm{~g}} \times 100=40.00 \%$
$\left.\begin{array}{l}\text { Mass percent of } \mathrm{O}=\frac{96.00 \mathrm{~g}}{180.16 \mathrm{~g}} \times 100=53.00 \% \\ \text { Mass percent of } \mathrm{H}=\frac{12.09 \mathrm{~g}}{180.16 \mathrm{~g}} \times 100=6.700 \%\end{array}\right\}+=100 \%$

Finding formulas of compounds

$$
\begin{aligned}
& \mathrm{C}=0.0806 \mathrm{~g} \\
& \mathrm{O}=0.1074 \mathrm{~g} \quad \longleftrightarrow \text { Formula of compound? } \\
& \mathrm{H}=0.01353 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& 0.0806 \mathrm{gC} \times \frac{1 \mathrm{~mole} \mathrm{C} \text { atoms }}{12.01 \mathrm{gC}}=0.00671 \mathrm{~mol} \mathrm{C} \text { atoms } \\
& 0.1074 \mathrm{~g} \sigma \times \frac{1 \text { mole O atoms }}{16.00 \mathrm{~g} \sigma}=0.006713 \mathrm{~mol} \mathrm{O} \text { atoms }
\end{aligned}
$$

$$
0.01353 \mathrm{gH} \times \frac{1 \mathrm{~mole} \mathrm{H} \text { atoms }}{1.008 \mathrm{~g} \mathrm{H}}=0.01342 \mathrm{~mol} \mathrm{H} \text { atoms }
$$

Finding formula of compounds

6.02×10^{23} Formula unit in 1 mol

$$
\mathrm{CH}_{2} \mathrm{O} \quad \text { or } \quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \quad \text { or } \quad \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}
$$

1:2:1

Empirical formula

1:2:1

Relative numbers of atoms

Smallest whole-number ratio

$\mathrm{CH}_{2} \mathrm{O}$

Simplest formula (Empirical formula)

Calculation of Empirical formula

Step 1: Find the mass of each element (in grams).
Step 2: Determine the numbers of moles of each type of atom present (using atomic mass).

Step 3: Divide the number of moles of each element by the smallest number of moles to convert the smallest number to 1 .

If all of numbers so obtained are integers (whole numbers), these numbers are the subscripts in the empirical formula. If no, we go to step 4:

Step 4: Multiply the numbers that you obtained in step 3 by the smallest integer that will convert all of them to whole numbers (always between 1 and 6).

Calculation of Empirical formula

98.55\% Ba

1.447% H
Consider 100.00 g of compound:

$$
\begin{aligned}
& 98.55 \mathrm{gBa} \times \frac{1 \mathrm{~mole} \mathrm{Ba} \text { atoms }}{137.3 \mathrm{~g} \mathrm{Ba}}=0.7178 \mathrm{~mol} \mathrm{Ba} \text { atoms } \\
& 1.447 \mathrm{gH}^{\prime} \times \frac{1 \mathrm{~mole} \mathrm{H} \text { atoms }}{1.008 \mathrm{gh}}=1.436 \mathrm{~mol} \mathrm{H} \text { atoms } \\
& \frac{0.7178 \mathrm{~mol} \mathrm{Ba}}{0.7178}=1 \mathrm{~mol} \mathrm{Ba} \\
& \frac{1.436 \mathrm{~mole} \mathrm{H}}{0.7178}=2 \mathrm{~mol} \mathrm{H} \\
& \mathrm{BaH}_{2} \\
& \hline
\end{aligned}
$$

Calculation of Empirical formula

4.151 g Al
$\longrightarrow \quad$ Empirical formula?
3.692 g O

$$
\begin{aligned}
& 4.151 \mathrm{gA} \times \frac{1 \mathrm{~mole} \mathrm{Al} \text { atoms }}{26.98 \mathrm{gA} T}=0.1539 \mathrm{~mol} \mathrm{Al} \text { atoms } \\
& 3.692 \mathrm{~g} \sigma \times \frac{1 \mathrm{~mole} \mathrm{O} \text { atoms }}{16.00 \mathrm{gO}}=0.2308 \mathrm{~mol} \mathrm{O} \text { atoms } \\
& \frac{0.1539 \mathrm{~mol} \mathrm{Al}}{0.1539}=1 \mathrm{~mol} \mathrm{Al} \\
& \frac{0.2308 \mathrm{~mole} \mathrm{O}}{0.1539}=1.5 \mathrm{~mol} \mathrm{O} \quad \text { is not integer }
\end{aligned}
$$

Calculation of Empirical formula

$1.00 \mathrm{Al} \times 2=2 \mathrm{Al}$ atoms

$1.50 \mathrm{O} \times 2=3 \mathrm{O}$ atoms

$$
\mathrm{Al}_{2} \mathrm{O}_{3}
$$

Empirical formula

Empirical formula \& Molecular formula

Molecular formula $=(\text { empirical formula })_{n}$

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=\left(\mathrm{CH}_{2} \mathrm{O}\right)_{6}
$$

Molecular formula $=\mathrm{n} \times$ empirical formula
Molar mass $=\mathrm{n} \times$ empirical formula mass

$$
\mathrm{n}=\frac{\text { Molar mass }}{\text { Empirical formula mass }}
$$

Empirical formula \& Molecular formula

$71.65 \% \mathrm{Cl}$
$24.27 \% \mathrm{C}$
$4.07 \% \mathrm{H}$$\quad$ Molar mass $=98.96 \mathrm{~g} / \mathrm{mol} \longrightarrow \quad \begin{aligned} & \text { Empirical formula ? } \\ & \text { Molecular formula ? }\end{aligned}$

Consider 100.00 g of compound:

$$
\begin{aligned}
& 71.65 \mathrm{gCl} \times \frac{1 \mathrm{~mole} \mathrm{Cl} \text { atoms }}{35.45 \mathrm{gCl}}=2.021 \mathrm{~mol} \mathrm{Cl} \text { atoms } \\
& 24.27 \mathrm{gC} \times \frac{1 \mathrm{~mole} \mathrm{C} \text { atoms }}{12.01 \mathrm{gC}^{\prime}}=2.021 \mathrm{~mol} \mathrm{C} \text { atoms } \\
& 4.07 \mathrm{gHH}^{\prime} \times \frac{1 \text { mole H atoms }}{1.008 \mathrm{gH}^{\prime}}=4.04 \mathrm{~mol} \mathrm{H} \text { atoms }
\end{aligned}
$$

Empirical formula \& Molecular formula

$$
\begin{aligned}
\frac{2.021 \mathrm{~mol} \mathrm{Cl}}{2.021} & =1 \mathrm{~mol} \mathrm{Cl} \\
\frac{2.021 \mathrm{~mole} \mathrm{C}}{2.021} & =1 \mathrm{~mol} \mathrm{C} \\
\frac{4.04 \mathrm{~mol} \mathrm{H}}{2.021} & =2 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

CICH_{2} Empirical formula

$$
\mathrm{n}=\frac{\text { Molar mass }}{\text { Empirical formula mass }}
$$

$$
\begin{equation*}
\mathrm{n}=\frac{98.96 \mathrm{~g}}{48.468 \mathrm{~g}}=2 \tag{2}
\end{equation*}
$$

At-Home Practice

Practice problem:

A compound has a molar mass between $165-170 \mathrm{~g}$. The percentage composition by mass values are carbon, 42.87\%; hydrogen, 3.598%; oxygen, 28.55%; nitrogen, 25.00%. Determine the empirical formula and the molecular formula of the compound.

- What is the empirical formula?
- What is the molecular formula?

