Chemical Reactions

Chemical Reactions

Chemical change $=$ Chemical reaction

Substance(s) is used up (disappear)

New substance(s) is formed.

Different physical and chemical properties.

Chemical Reactions

Evidence for chemical reactions

1. Color changes

2. A solid is formed (precipitation)
3. Bubbles form (gas)

4. Heat (and/or flame) is produced, or heat is absorbed

Chemical Reactions

$$
\begin{aligned}
& \qquad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \text { Reactants } \quad \text { Products }
\end{aligned}
$$

Chemical Equation

Chemical Reactions

Products contain the same atoms as reactants.

Rearrangement of atoms

Chemical Equation

Physical States (forms)

Solid (s)
Liquid (I)
Gas (g)
Aqueous (aq)

$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Chemical Equation

Chemical equation gives us some information:

1. Identities of the reactants and products.
2. Relative amounts of the reactants and products.
3. Physical states of the reactants and products.
4. Stoichiometry

Type of chemical reactions

1. $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$

Synthesis reaction (combination)
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Decomposition (analysis)
2. $A B \rightarrow A+B$
$2 \mathrm{NaCl} \rightarrow 2 \mathrm{Na}+\mathrm{Cl}_{2}$
3. $A+B C \rightarrow A C+B$

Single replacement reaction
$\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
4. $A B+C D \rightarrow A D+C B \quad$ Double replacement reaction
$\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{AgCl}$

Type of chemical reactions

5. $\mathrm{AB}+\mathrm{xO}_{2} \rightarrow \mathrm{yCO}_{2}+\mathrm{zH}_{2} \mathrm{O}+$ Heat (Energy) Combustion

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\text { Heat }
$$

Balance a chemical equation

All chemical equations should be balanced.

Why balancing?

Balance a chemical equation

Law of conservation of mass

Atoms are neither destroyed nor created.
They shift from one substance to another.

Balance a chemical equation

1. Begin with atoms that appear in only one compound on the left and right.
2. If an atom occurs as a free element, balance it last.
3. Change only coefficients (not formulas).

$$
\underset{\substack{\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \\ \text { last }}}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Always double check!

Balance a chemical equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\times 2$
$\times 3$
$2 \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$3 \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 9 \mathrm{CO}_{2}(\mathrm{~g})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Lowest set of numbers

Examples for Balancing

$$
\underline{1} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\underline{\mathbf{3}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{2} \mathrm{CO}_{2}(\mathrm{~g})+\underline{3} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\underline{1} \mathrm{PbCl}_{2}(\mathrm{aq})+\underline{1} \mathrm{~K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \underline{1} \mathrm{PbSO}_{4}(\mathrm{~s})+\underline{\mathbf{2}} \mathrm{KCl}(\mathrm{aq})$
$\underline{\underline{1}} \mathrm{CaC}_{2}(s)+\underline{\underline{\mathbf{2}}} \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \underline{\underline{1}} \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\underline{1} \mathrm{C}_{2} \mathrm{H}_{2}(g)$

Examples for Balancing

$\underline{\mathbf{2}} \mathrm{Fe}(\mathrm{s})+\underline{\mathbf{3} / \mathbf{2}} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underline{\underline{\mathbf{1}}} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\stackrel{\mathbf{4}}{\boldsymbol{\boldsymbol { Z }}}_{\underline{\mathrm{Fe}}(\mathrm{s})}+{\stackrel{\mathbf{3}}{\mathbf{3} / 2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \stackrel{\mathbf{2}}{\boldsymbol{X}}_{\underline{\boldsymbol{X}}}^{\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})}}$

Notes: Always use the lowest possible integer numbers.
If you get a fraction, multiply it out.

Examples for Balancing

Examples for Balancing

- "Solid potassium reacts with water to form hydrogen gas and potassium hydroxide dissolved in solution."
- Write and balance the chemical equation for this reaction.

$$
\underset{2}{\lambda \mathrm{~K}(\mathrm{~s})}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \underset{2}{\lambda \mathrm{KOH}(\mathrm{aq})+1 \mathrm{H}_{2}(\mathrm{~g})}
$$

Why does a chemical reaction occur?

Several driving forces:

1. Formation of a solid
2. Formation of water
3. Transfer of electrons
4. Formation of a gas

Why does a chemical reaction occur?

Several driving forces:

1. Formation of a solid
2. Formation of water
3. Transfer of electrons
4. Formation of a gas

Reactions in Aqueous Solutions

Ionic compounds (Salt)

Aqueous solution: solvent is water

Reactions in Aqueous Solutions

Chemical reactions that occur in water.

60% of our body is water.

In our body reactions occur in the aqueous solution.

Formation of a solid

Precipitation reactions

$\mathrm{KI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow ?$

Ionic Compounds

When an ionic compound dissolves in water, ions are produced.

Each ion is surrounded by water molecules.
Ions Hydrated by $\mathrm{H}_{2} \mathrm{O}$
Hydration

Ionic Compounds

1. Soluble ionic compound: it completely dissociates in water. (ions are formed)
2. Slightly soluble ionic compound: it partially dissociates in water.
3. Insoluble ionic compound: it does not dissociate in water (almost).

- Note: the terms insoluble and slightly soluble mean such a miniscule amount dissolves that you can't see any decrease in the amount of solid present.

Solubility Rules

Table 7.1 General Rules for Solubility of Ionic Compounds (Salts) in Water at $25{ }^{\circ} \mathrm{C}$

1. Most nitrate $\left(\mathrm{NO}_{3}^{-}\right)$salts are soluble.
2. Most salts of $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and NH_{4}^{+}are soluble.
3. Most chloride salts are soluble. Notable exceptions are $\mathrm{AgCl}, \mathrm{PbCl}_{2}$, and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$.

Soluble

4. Most sulfate salts are soluble. Notable exceptions are $\mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}$, and CaSO_{4}.
5. Most hydroxide compounds are only slightly soluble.* The important exceptions are NaOH and KOH . $\mathrm{Ba}(\mathrm{OH})_{2}$ and $\mathrm{Ca}(\mathrm{OH})_{2}$ are only moderately soluble.
6. Most sulfide $\left(\mathrm{S}^{2-}\right)$, carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, and

Insoluble

 phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are only slightly soluble.*Preceding rules trump following rules.

Solubility Rules

- Another way of showing the same rules.

Formation of a solid

Precipitation reactions

Aqueous Solution (ionic compounds)

aqueous solution: solvent is water

$$
\mathrm{KI}_{(\mathrm{s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

Dissociation (Ionization)
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \quad \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}-(\mathrm{aq})$

Aqueous Solution (ionic compounds)

Sometimes the ions react with each other.
Positive ions will interact with negative ions.

Sometimes ions stick together to form a solid (precipitate).

$$
2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Molecular equation: $2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
Complete
Ionic equation: $\quad \mathbf{2 K}{ }^{+}(\mathrm{aq})+\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+\mathbf{2 K}{ }^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{-(\mathrm{aq})}$

- The ions that do not react are called spectator ions.

Net ionic equation:

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})
$$

Ionic Equations

Net ionic equation:

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})
$$

Total charge on left side $=$ Total charge on right side balanced equation

$$
2 \mathrm{As}^{3+}(\mathrm{aq})+3 \mathrm{~s}^{2-}(\mathrm{aq}) \rightarrow \mathrm{As}_{2} \mathrm{~S}_{3}(\mathrm{~s})
$$

Example

$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$?
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})$

Balance it:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(s)+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

$$
\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+2 \mathrm{Na}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \rightarrow \mathrm{PbSO}_{4}(s)+2 \mathrm{Na}^{+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)
$$

Complete ionic equation

Example

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Ara}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{~N} \mathrm{\sigma}_{3}^{-}(\mathrm{aq})
$$

Net ionic equation:

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})
$$

Practice

1. Molecular equation
$\mathrm{KOH}(\mathrm{aq})+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \rightarrow$?
2. Balancing
3. Complete ionic equation
4. Net ionic equation

Why does a chemical reaction occur?

Several driving forces:

1. Formation of a solid
2. Formation of water
3. Transfer of electrons
4. Formation of a gas

Acids and Bases

Acids: sour

Bases: bitter or salty

Acid-Base Reactions

Neutralization

Strong acid + Strong base \rightarrow Salt $+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

$$
\begin{gathered}
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{(}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{gathered} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The only chemical change is the formation of water.

Why does a chemical reaction occur?

Several driving forces:

1. Formation of a solid
2. Formation of water
3. Transfer of electrons
4. Formation of a gas

Oxidation and Reduction reactions (redox)

 $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{s})$

$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$

$$
\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}
$$

Oxidation and Reduction reactions (redox)

oxidation: it is the loss of electrons.

$$
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}
$$

reduction: it is the gain of electrons.

$$
\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}
$$

Remember - LEO says GER. Loss of Electrons is Oxidation Gain of Electrons is Reduction.

Oxidation and Reduction reactions (redox)

Metal + Nonmetal : Transfer of electrons

Oxidation and Reduction reactions (redox)

Oxidation and reduction always occur together.
(The lost e- must go somewhere!)

Oxidation and Reduction reactions (redox)

oxidation: it is the loss of electrons. reduction: it is the gain of electrons.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \quad \text { redox reaction }
$$

$$
\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \mathrm{Zn} \text { is oxidized (reducing agent) }
$$

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{Cu}^{2+} \text { is reduced (oxidizing agent) }
$$

Oxidation and Reduction reactions (redox)

oxidation: is the gain of oxygen / loss of hydrogen.
reduction: is the loss of oxygen / gain of hydrogen.

single replacement reaction and combustion reactions \rightarrow redox reactions double replacement reactions \rightarrow non redox

Oxidation and Reduction reactions (redox)

Example 2:

- $2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is oxidized is reduced

Oxidation and Reduction reactions (redox)

Example 3:

$$
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(\mathrm{aq})
$$

is oxidized is reduced

Oxidation and Reduction reactions (redox)

Example 4:

$$
\begin{aligned}
& \mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{ZnCl}_{2}(a q) \\
& \mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(g)+\mathrm{Zn}^{2+}(a q)+2 \mathrm{Cl}(a q) \\
& \mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{Zn}^{2+}(a q) \\
& \text { is oxidized } \text { is reduced }
\end{aligned}
$$

Note: this reaction also shows the fourth driving force of a reaction, namely, the formation of a gas.

Oxidation and Reduction reactions (redox)

Example 5:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

is oxidized is reduced

Classification of chemical reactions

