Chemical change = Chemical reaction

Substance(s) is used up (disappear)

New substance(s) is formed.

Different physical and chemical properties.

Evidence for chemical reactions

1. Color changes

2. A solid is formed (precipitation)

3. Bubbles form (gas)

$A + B \rightarrow C + D$ Reactants Products

Chemical Equation

Chemical Equation

Physical States (forms)

Solid (s) Liquid (l) Gas (g) Aqueous (aq)

 $Ca(OH)_2(s) + 2HCI(g) \rightarrow CaCI_2(s) + H_2O(I)$

Chemical Equation

Chemical equation gives us some information:

1. Identities of the reactants and products.

2. Relative amounts of the reactants and products.

3. Physical states of the reactants and products.

4. Stoichiometry

Type of chemical reactions

1. $A + B \rightarrow AB$ Synthesis reaction (combination)

 $2H_2 + O_2 \rightarrow 2H_2O$

2. $AB \rightarrow A + B$ Decomposition (analysis)

 $2NaCI \rightarrow 2Na + Cl_2$

- 3. $A + BC \rightarrow AC + B$ Single replacement reaction Fe + CuSO₄ \rightarrow FeSO₄ + Cu
- 4. $AB + CD \rightarrow AD + CB$ Double replacement reaction NaCl + AgNO₃ \rightarrow NaNO₃ + AgCl

Type of chemical reactions

5. AB + $xO_2 \rightarrow yCO_2 + zH_2O + Heat$ (Energy) Combustion $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O + Heat$

All chemical equations should be balanced.

Why balancing?

Law of conservation of mass

Atoms are neither destroyed nor created.

They shift from one substance to another.

- 1. Begin with atoms that appear in only one compound on the left and right.
- 2. If an atom occurs as a free element, balance it last.
- 3. Change only coefficients (not formulas).

$$C_{3}H_{8}(g) + O_{2}(g) \rightarrow CO_{2}(g) + H_{2}O(g)$$

$$\downarrow$$
last

Always double check!

$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$

×2 $2C_3H_8(g) + 10O_2(g) \rightarrow 6CO_2(g) + 8H_2O(g)$ ×3 $3C_3H_8(g) + 15O_2(g) \rightarrow 9CO_2(g) + 12H_2O(g)$

Lowest set of numbers

$\underline{1} C_2 H_5 OH(l) + \underline{3} O_2(g) \rightarrow \underline{2} CO_2(g) + \underline{3} H_2 O(g)$

<u>**1</u></u> PbCl₂(aq) + <u>1**</u> K₂SO₄(aq) → <u>**1**</u> PbSO₄(s) + <u>**2**</u> KCl(aq)</u>

 $\underline{1} \operatorname{CaC}_2(s) + \underline{2} \operatorname{H}_2 \operatorname{O}(l) \rightarrow \underline{1} \operatorname{Ca}(\operatorname{OH})_2(s) + \underline{1} \operatorname{C}_2 \operatorname{H}_2(g)$

$$\frac{2}{2} \operatorname{Fe}(s) + \frac{3/2}{3/2} \operatorname{O}_2(g) \rightarrow \underline{1} \operatorname{Fe}_2\operatorname{O}_3(s)$$

$$\frac{4}{2} \operatorname{Fe}(s) + \frac{3}{3/2} \operatorname{O}_2(g) \rightarrow \underline{2} \operatorname{Fe}_2\operatorname{O}_3(s)$$

Notes: *Always* use the lowest possible integer numbers.

If you get a fraction, multiply it out.

$\frac{1}{2} B_4 H_{10}(g) + \frac{11/2}{11} O_2(g) \rightarrow \frac{2}{4} B_2 O_3(g) + \frac{5}{4} H_2 O(g)$ $\frac{11}{4} 10$

- "Solid potassium reacts with water to form hydrogen gas and potassium hydroxide dissolved in solution."
- Write and balance the chemical equation for this reaction.

$\begin{array}{ccc} \cancel{1}K(s) & + 2H_2O(I) \rightarrow \cancel{1}KOH(aq) + 1H_2(g) \\ 2 & 2 \end{array}$

Why does a chemical reaction occur?

Several driving forces:

- 1. Formation of a solid
- 2. Formation of water
- 3. Transfer of electrons
- 4. Formation of a gas

Why does a chemical reaction occur?

Several driving forces:

- 1. Formation of a solid
- 2. Formation of water
- 3. Transfer of electrons
- 4. Formation of a gas

Reactions in Aqueous Solutions

Ionic compounds (Salt)

Aqueous solution: solvent is water

Reactions in Aqueous Solutions

Chemical reactions that occur in water.

60% of our body is water.

In our body reactions occur in the aqueous solution.

Formation of a solid

Precipitation reactions

 $KI + Pb(NO_3)_2 \rightarrow ?$

Ionic Compounds

When an ionic compound dissolves in water, ions are produced.

Each ion is surrounded by water molecules.

lons Hydrated by H₂O

Hydration

Ionic Compounds

1. Soluble ionic compound: it completely dissociates in water. (ions are formed)

2. Slightly soluble ionic compound: it partially dissociates in water.

3. Insoluble ionic compound: it does not dissociate in water (almost).

• Note: the terms *insoluble* and *slightly soluble* mean such a miniscule amount dissolves that you can't see any decrease in the amount of solid present.

Solubility Rules

Table 7.1General Rules for Solubility of IonicCompounds (Salts) in Water at 25 °C	
1. Most nitrate (NO_3^-) salts are soluble. 2. Most salts of Na ⁺ , K ⁺ , and NH ₄ ⁺ are soluble.	
3. Most chloride salts are soluble. Notable exceptions are AgCl, PbCl ₂ , and Hg ₂ Cl ₂ .	Soluble
4. Most sulfate salts are soluble. Notable exceptions are BaSO ₄ , PbSO ₄ , and CaSO ₄ .	
 Most hydroxide compounds are only slightly soluble.* The important exceptions are NaOH and KOH. Ba(OH)₂ and Ca(OH)₂ are only moderately soluble. 	Incolubio
6. Most sulfide (S^{2-}) , carbonate (CO_3^{2-}) , and phosphate (PO_4^{3-}) salts are only slightly soluble.*	Insoluble

Preceding rules trump following rules.

Solubility Rules

• Another way of showing the same rules.

Formation of a solid

Precipitation reactions

$KI + Pb(NO_3)_2 \rightarrow ?$

Aqueous Solution (ionic compounds)

aqueous solution: solvent is water

Aqueous Solution (ionic compounds)

Sometimes the ions react with each other.

Positive ions will interact with negative ions.

Sometimes ions stick together to form a solid (precipitate).

 $2\mathsf{KI}(\mathsf{aq}) + \mathsf{Pb}(\mathsf{NO}_3)_2(\mathsf{aq}) \rightarrow \mathsf{PbI}_2(\mathsf{s}) + 2\mathsf{KNO}_3(\mathsf{aq})$

Molecular equation: $2KI(aq) + Pb(NO_3)_2(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$

Complete lonic equation: $2K^{+}(aq) + Pb^{2+}(aq) + 2I^{-}(aq) + 2NO_{3}^{-}(aq) \rightarrow PbI_{2}(s) + 2K^{+}(aq) + 2NO_{3}^{-}(aq)$

$$2K^{+}(aq) + Pb^{2+}(aq) + 2I^{-}(aq) + 2NO_{3}^{-}(aq) \rightarrow PbI_{2}(s) + 2K^{+}(aq) + 2NO_{3}^{-}(aq)$$
Spectator ions

Net ionic equation:

 $Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$

Ionic Equations

Net ionic equation:

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$$

Total charge on left side = Total charge on right side balanced equation

$$2As^{3+}(aq) + 3s^{2-}(aq) \rightarrow As_2S_3(s)$$

Example

 $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow ?$

 $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + NaNO_3(aq)$

Balance it:

 $Pb(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow PbSO_4(s) + 2 NaNO_3(aq)$

 $Pb^{2+}(aq) + 2 NO_3^{-}(aq) + 2 Na^{+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2 Na^{+}(aq) + 2 NO_3^{-}(aq)$

Complete ionic equation

Example

Net ionic equation: $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$

Practice

1. Molecular equation

```
KOH(aq) + Fe(NO_3)_3(aq) \rightarrow ?
```

2. Balancing

- 3. Complete ionic equation
- 4. Net ionic equation

Why does a chemical reaction occur?

Several driving forces:

- 1. Formation of a solid
- 2. Formation of water
- 3. Transfer of electrons
- 4. Formation of a gas

Acids and Bases

Acids: sour

Bases: bitter or salty

Acid-Base Reactions

Neutralization

Strong acid + Strong base \rightarrow Salt + H₂O

$H^+(aq) + OH^-(aq) \longrightarrow H_2O(I)$

The only chemical change is the formation of water.

Why does a chemical reaction occur?

Several driving forces:

- 1. Formation of a solid
- 2. Formation of water
- 3. Transfer of electrons
- 4. Formation of a gas

 $Na \rightarrow Na^+ + e^-$

 $CI + e^{-} \rightarrow CI^{-}$

oxidation: it is the loss of electrons.

 $Na \rightarrow Na^+ + e^-$

reduction: it is the gain of electrons.

 $CI + e^{-} \rightarrow CI^{-}$

Remember – LEO says GER. Loss of Electrons is Oxidation Gain of Electrons is Reduction.

Metal + Nonmetal : Transfer of electrons

Oxidation and Reduction reactions (redox)

Oxidation and reduction <u>always</u> occur together. (The lost e⁻ must go somewhere!)

oxidation: it is the loss of electrons. reduction: it is the gain of electrons.

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$ redox reaction

 $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

Zn is oxidized (reducing agent)

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ Cu^{2+} is reduced (oxidizing agent)

oxidation: is the gain of oxygen / loss of hydrogen. reduction: is the loss of oxygen / gain of hydrogen.

single replacement reaction and combustion reactions \rightarrow redox reactions

double replacement reactions \rightarrow non redox

Example 2:

• $2 \operatorname{AI}(s) + \operatorname{Fe}_2 O_3(s) \rightarrow 2 \operatorname{Fe}(s) + \operatorname{AI}_2 O_3(s)$ is oxidized is reduced

Example 3:

$Cu(s) + 2 Ag^{+}(aq) \rightarrow 2 Ag(s) + Cu^{2+}(aq)$ is oxidized is reduced

Example 4:

 $Zn(s) + 2 HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$ $Zn(s) + 2 H^+(aq) + 2CI^-(aq) \rightarrow H_2(g) + Zn^{2+}(aq) + 2CI^-(aq)$

 $Zn(s) + 2 H^{+}(aq) \rightarrow H_{2}(g) + Zn^{2+}(aq)$

is oxidized is reduced

Note: this reaction also shows the fourth driving force of a reaction, namely, *the formation of a gas*.

Example 5:

$2 Mg(s) + O_2(g) \rightarrow 2 MgO(s)$

is oxidized is reduced

Classification of chemical reactions

