Gases

Gases

move faster Kinetic energy \uparrow

High concentration = More collisions

Gases

Physical sate of matter depends on:

Attractive forces \longleftrightarrow Kinetic energy

Brings molecules together
Keeps molecules apart

Gases

Gas \longrightarrow High kinetic energy \longrightarrow Low attractive forces (move fast)

Liquid \longrightarrow Medium kinetic energy \longrightarrow medium attractive forces (move slow)

Solid \longrightarrow Low kinetic energy
$\longrightarrow \quad$ High attractive forces (move slower)

Physical Changes

Change of states

Ideal Gases

Kinetic molecular theory:

1. Particles move in straight lines, randomly.
2. Average Kinetic energy of particles depends on temperature.
3. Particles collide and change direction (they may exchange kinetic energies). Their collisions with walls cause the pressure.
4. Gas particles have no volume.
5. No attractive forces (or repulsion) between gas particles.
6. More collision $=$ greater pressure.

In reality, no gas is ideal (all gases are real).

At low pressure (around 1 atm or lower) and at $0^{\circ} \mathrm{C}$ or higher, we can consider real gases as ideal gases.

Pressure (P)

Pressure $(\mathrm{P})=\frac{\text { Force }(\mathrm{F})}{\text { Area }(\mathrm{A})}$

F: constant

Atmosphere (atm)
Millimeters of mercury (mm Hg)
torr
in. Hg
Pascal

A: constant

$1.000 \mathrm{~atm}=760.0 \mathrm{~mm} \mathrm{Hg}$
$=760.0$ torr
= 101,325 pascals
$=29.92 \mathrm{in} . \mathrm{Hg}$

Pressure (P)

At STP:

Standard Temperature \& Pressure

1 standard atmosphere $=1.000 \mathrm{~atm}=760.0 \mathrm{~mm} \mathrm{Hg}=760.0$ torr $=101,325 \mathrm{pa}$

$$
\mathrm{T}=0.00^{\circ} \mathrm{C}
$$

Pounds per square inch (psi)
$1.000 \mathrm{~atm}=14.69 \mathrm{psi}$

Pressure (P)

barometer
atmospheric pressure
manometer
pressure of gas in a container

Boyle's Law

Boyle's law:

$$
\begin{aligned}
& \text { P } 1 / \alpha \vee \quad P V=k \text { (a constant) } \\
& P_{1} V_{1}=k(a \text { constant) } \\
& P_{2} \mathrm{~V}_{2}=\mathrm{k} \text { (a constant) } \\
& P_{2}=\frac{P_{1} V_{1}}{V_{2}} \\
& \text { PV = k (a constant) } \\
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}
\end{aligned}
$$

meT: constant
Robert Boyle

Boyle's Law

decreasing the volume of a gas sample means increasing the pressure.

High pressure Low volume

Charles's Law

$$
\begin{array}{cc}
\mathrm{T} \alpha \mathrm{~V} & \frac{\mathrm{~V}}{\mathrm{~T}}=\mathrm{k} \text { (a constant) } \\
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\mathrm{k} \text { (a constant) } \\
\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}=\mathrm{k} \text { (a constant) } & \mathrm{V}_{1}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\mathrm{~V}_{2}=\frac{\mathrm{V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}}
\end{array}
$$

Charles's law:

Jacques Charles

gas-properties_en.jar

Charles's Law

Temperature T (K)

an increase in temperature at constant
 pressure results in an increase in volume.

Gay-Lussac's Law

Gay-Lussac's law:

$$
\left.\mathrm{P} \alpha \mathrm{~T} \quad \Longleftrightarrow \frac{\mathrm{P}}{\mathrm{~T}}=\mathrm{k} \text { (a constant }\right)
$$

$$
\begin{aligned}
& \frac{P_{1}}{T_{1}}=k \text { (a constant) } \\
& \frac{P_{2}}{T_{2}}=k(a \text { constant })
\end{aligned}
$$

$$
P_{2}=\frac{P_{1} T_{2}}{T_{1}}
$$

$$
T_{2}=\frac{T_{1} P_{2}}{P_{1}}
$$

Gay-Lussac's Law

Combined Gas Law

Combined gas law:

m (or n): constant

$\frac{\mathrm{PV}}{\mathrm{T}}=\mathrm{k}$ (a constant)

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Practice:

- A sample of gas occupies 249 L at 12.1 mm Hg pressure. The pressure is changed to 654 mm Hg ; calculate the new volume of the gas. (Assume temperature and moles of gas remain the same).

$$
\begin{gathered}
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{J_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{T_{2}} \quad \mathrm{~T} \text { constant } \rightarrow \mathrm{T}_{1}=\mathrm{T}_{2} \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{V}_{2} \mathrm{P}_{2}
\end{gathered}
$$

$(12.1 \mathrm{~mm} \mathrm{Hg})(249 \mathrm{~L})=\mathrm{V}_{2}(654 \mathrm{~mm} \mathrm{Hg})$

$$
\mathrm{V}_{2}=4.61 \mathrm{~L}
$$

Practice:

- A 25.2 mL sample of helium gas at $29^{\circ} \mathrm{C}$ is heated to $151^{\circ} \mathrm{C}$. What will be the new volume of the helium sample? (Assume pressure remains the same).

$$
\begin{gathered}
\frac{P_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{P_{2}^{\prime} \mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad P \text { constant } \rightarrow \mathrm{P}_{1}=\mathrm{P}_{2} \\
\frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \\
\frac{25.2 \mathrm{~mL}}{(273+29 \mathrm{~K})}= \\
=\frac{\mathrm{V}_{2}}{(273+151 \mathrm{~K})} \\
\mathbf{V}_{\mathbf{2}}= \\
\mathbf{3 5} \mathbf{~ m L}
\end{gathered}
$$

Practice:

- A nitrogen gas sample at 1.2 atm occupies 14.2 L at $25^{\circ} \mathrm{C}$. The sample is heated to $34^{\circ} \mathrm{C}$ as the volume is decreased to 8.4 L . What is the new pressure?

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Avogadro's Law

Avogadro's law:

P,T: constant

$$
\mathrm{V} \alpha \mathrm{n} \quad \longleftrightarrow \frac{\mathrm{~V}}{\mathrm{n}}=\mathrm{k} \text { (a constant) }
$$

$$
\begin{aligned}
& \frac{\mathrm{V}_{1}}{\mathrm{n}_{1}}=\mathrm{k}(\mathrm{a} \text { constant }) \\
& \frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}=k(a \text { constant })
\end{aligned}
$$

Avogadro's Law

increasing the moles of gas at constant pressure means more volume is needed to hold the gas.

Avogadro's Law

Practice:

- If 0.105 mol of helium gas occupies a volume 2.35 L at a certain temperature and pressure, what volume would 0.337 mol of helium occupy under the same conditions?

$$
\begin{aligned}
\frac{\mathrm{V}_{1}}{\mathrm{n}_{1}} & =\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}} \\
\frac{2.35 \mathrm{~L}}{0.105 \mathrm{~mol}} & =\frac{\mathrm{V}_{2}}{0.337 \mathrm{~mol}} \\
\mathbf{V}_{\mathbf{2}} & =\mathbf{7 . 5 4 \mathrm { L }}
\end{aligned}
$$

Ideal Gas Law

Ideal gas law:

$$
\mathrm{PV}=\mathrm{nRT}
$$

n : number of moles (mol)
R : universal gas constant
V : volume (L)
P: pressure (atm)
T : temperature (K)

Standard Temperature and Pressure (STP)

$$
\begin{aligned}
& \mathrm{T}=0.00^{\circ} \mathrm{C}(273 \mathrm{~K}) \\
& \mathrm{P}=1.000 \mathrm{~atm}
\end{aligned}
$$

1 mole $\rightarrow \mathrm{V}=22.4 \mathrm{~L}$

$$
R=\frac{P V}{n T}=\frac{(1.000 \mathrm{~atm})(22.4 \mathrm{~L})}{(1 \mathrm{~mol})(273 \mathrm{~K})}=0.082106 \frac{\mathrm{~L} . \mathrm{atm}}{\mathrm{~mol} . \mathrm{K}}
$$

Ideal Gas Law

Practice:

- Given three of the variables in the Ideal Gas Law, calculate the fourth, unknown quantity.
- $\mathrm{P}=0.98 \mathrm{~atm}, \mathrm{n}=0.1021 \mathrm{~mol}, \mathrm{~T}=302 \mathrm{~K} . \mathrm{V}=$? ??

$$
\mathrm{PV}=\mathrm{nRT}
$$

$(0.98 \mathrm{~atm}) \mathrm{V}=(0.1021 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(302 \mathrm{~K})$

$$
V=2.6 \mathrm{~L}
$$

Ideal Gas Law

Practice:

- At what temperature will a 1.00 g sample of neon gas exert a pressure of 500 . torr in a 5.00 L container?

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\begin{gathered}
1.00 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{20.18 \mathrm{~g}}=0.0496 \mathrm{~mol} \\
500 . \mathrm{torr} \times \frac{1 \mathrm{~atm}}{760 \mathrm{torr}}=0.658 \mathrm{~atm}
\end{gathered}
$$

$$
(0.658 \mathrm{~atm})(5.00 \mathrm{~L})=(0.0496 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \mathrm{~K}}\right) \times \mathrm{T}
$$

$$
\mathrm{T}=809 \mathrm{~K}
$$

At-Home Practice

1a. A 5.00 g sample of neon gas at $25.0^{\circ} \mathrm{C}$ is injected into a rigid container. The measured pressure is 1.204 atm. What is the volume of the container?

1b. The neon sample is then heated to $200.0^{\circ} \mathrm{C}$. What is the new pressure?
2. An initial gas sample of 1 mole has a volume of 22 L . The same type of gas is added until the volume increases to 44 L . How many moles of gas were added?

Dalton's Law

Dalton's law of partial pressure:
$P_{T}=P_{1}+P_{2}+P_{3}+\ldots$

Dalton's Law

$$
\begin{aligned}
& P_{T}=P_{1}+P_{2}+P_{3} \\
& P_{T}=n_{1}(R T / V)+n_{2}(R T / V)+n_{3}(R T / V) \\
& P_{T}=\left(n_{1}+n_{2}+n_{3}\right)(R T / V)
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{n}_{\text {total }}\left(\frac{\mathrm{RT}}{\mathrm{~V}}\right)
$$

Dalton's Law

For a mixture of ideal gases, the total number of moles is important. (not the identity of the individual gas particles)

$0.75 \mathrm{~mol} \mathrm{H}_{2}$ 0.75 mol He 0.25 mol Ne 1.75 mol
$\mathrm{V}=5 \mathrm{~L}$ $\mathrm{~T}=20^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{T}}=8.4 \mathrm{~atm}$

$1.00 \mathrm{~mol} \mathrm{~N}_{2}$ $0.50 \mathrm{~mol} \mathrm{O}_{2}$ 0.25 mol Ar
1.75 mol
:---
$\mathrm{~T}=20^{\circ} \mathrm{C}$

$\mathrm{P}_{\mathrm{T}}=8.4 \mathrm{~atm}$

1. Volume of the individual gas particles must not be very important.
2. Forces among the particles must not be very important.
