

Gases

Low concentration = Few collisions

High concentration = More collisions

Physical sate of matter depends on:

Brings molecules together

Keeps molecules apart

Gases

$Gas \longrightarrow High kinetic energy \longrightarrow Low attractive forces$ (move fast)

Liquid \rightarrow Medium kinetic energy \rightarrow medium attractive forces (move slow)

Solid \longrightarrow Low kinetic energy \longrightarrow High attractive forces (move slower)

Physical Changes

Change of states

Ideal Gases

Kinetic molecular theory:

- 1. Particles move in straight lines, randomly.
- 2. Average Kinetic energy of particles depends on temperature.
- 3. Particles collide and change direction (they may exchange kinetic energies). Their collisions with walls cause the pressure.
- 4. Gas particles have no volume.
- 5. No attractive forces (or repulsion) between gas particles.
- 6. More collision = greater pressure.

In reality, no gas is ideal (all gases are real).

At low pressure (around 1 atm or lower) and at 0°C or higher, we can consider real gases as ideal gases.

Pressure (P)

Pressure (P) =
$$\frac{\text{Force (F)}}{\text{Area (A)}}$$

F: constant

 $A \downarrow \implies P \uparrow$

Atmosphere (atm) Millimeters of mercury (mm Hg) torr in. Hg Pascal A: constant

 $F \uparrow \implies P \uparrow$

```
1.000 atm = 760.0 mm Hg
= 760.0 torr
= 101,325 pascals
= 29.92 in. Hg
```


At STP: Standard Temperature & Pressure

1 standard atmosphere = 1.000 atm = 760.0 mm Hg = 760.0 torr = 101,325 pa

 $T = 0.00^{\circ}C$

Pounds per square inch (psi)

1.000 atm = 14.69 psi

Pressure (P)

barometer atmospheric pressure

manometer

pressure of gas in a container

Boyle's Law

Boyle's law: m,T: constant

Robert Boyle

P $1/\alpha$ V \longrightarrow PV = k (a constant)

 $P_1V_1 = k \text{ (a constant)}$ $P_2V_2 = k \text{ (a constant)}$ $P_1V_1 = P_2V_2$

$$\mathsf{P}_2 = \frac{\mathsf{P}_1 \mathsf{V}_1}{\mathsf{V}_2}$$

 $V_2 = \frac{P_1 V_1}{P_2}$

Boyle's Law

Charles's Law

Charles's law:

m,P: constant

Jacques Charles

$$T \alpha V \longrightarrow \frac{V}{T} = k (a constant)$$

$$V_2 = \frac{V_1 T_2}{T_1}$$

an increase in temperature at constant pressure results in an increase in volume.

Gay-Lussac's Law

Gay-Lussac's law: m,V: constant

Gay-Lussac's Law

Temperature T (K)

Combined Gas Law

Combined gas law:

m (or n): constant

 $\frac{PV}{T} = k$ (a constant)

Practice:

 A sample of gas occupies 249 L at 12.1 mm Hg pressure. The pressure is changed to 654 mm Hg; calculate the new volume of the gas. (Assume temperature and moles of gas remain the same).

Practice:

 A 25.2 mL sample of helium gas at 29°C is heated to 151°C. What will be the new volume of the helium sample? (Assume pressure remains the same).

Practice:

 A nitrogen gas sample at 1.2 atm occupies 14.2 L at 25°C. The sample is heated to 34°C as the volume is decreased to 8.4 L. What is the new pressure?

$$\frac{\mathsf{P}_1\mathsf{V}_1}{\mathsf{T}_1} = \frac{\mathsf{P}_2\mathsf{V}_2}{\mathsf{T}_2}$$

Avogadro's Law

Avogadro's law: P,T: constant

Avogadro's Law

increasing the moles of gas at constant pressure means more volume is needed to hold the gas.

Avogadro's Law

Practice:

 If 0.105 mol of helium gas occupies a volume 2.35 L at a certain temperature and pressure, what volume would 0.337 mol of helium occupy under the same conditions?

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$
$$\frac{2.35 \text{ L}}{0.105 \text{ mol}} = \frac{V_2}{0.337 \text{ mol}}$$
$$V_2 = 7.54 \text{ L}$$

Ideal Gas Law

Ideal gas law:

n: number of moles (mol) R: universal gas constant V: volume (L) P: pressure (atm) T: temperature (K)

Standard Temperature and Pressure (STP)

Ideal Gas Law

Practice:

- Given three of the variables in the Ideal Gas Law, calculate the fourth, unknown quantity.
- P = 0.98 atm, n = 0.1021 mol, T = 302 K. V = ???

PV = nRT

 $(0.98 \text{ atm})V = (0.1021 \text{ mol})(0.08206 \frac{\text{L atm}}{\text{mol K}})(302 \text{ K})$

$$\mathbf{V}=\mathbf{2.6}\,\mathbf{L}$$

Ideal Gas Law

Practice:

• At what temperature will a 1.00 g sample of neon gas exert a pressure of 500. torr in a 5.00 L container?

$$PV = nRT$$
 $1.00 \text{ g} \times \frac{1 \text{ mol}}{20.18 \text{ g}} = 0.0496 \text{ mol}$

 $500.\,\text{torr} \times \frac{1\,\text{atm}}{760\,\text{torr}} = 0.658\,\text{atm}$

 $(0.658 \text{ atm}) (5.00 \text{ L}) = (0.0496 \text{ mol})(0.08206 \frac{\text{L atm}}{\text{mol K}}) \times \text{T}$

T = 809 K

At-Home Practice

- 1a. A 5.00 g sample of neon gas at 25.0 °C is injected into a rigid container. The measured pressure is 1.204 atm. What is the volume of the container?
- **1b**. The neon sample is then heated to 200.0 °C. What is the new pressure?
- 2. An initial gas sample of 1 mole has a volume of 22 L. The same type of gas is added until the volume increases to 44 L. How many moles of gas were <u>added</u>?

Dalton's Law

Dalton's law of partial pressure:

 $P_T = P_1 + P_2 + P_3 + \dots$

Dalton's Law

$$P_{T} = P_{1} + P_{2} + P_{3}$$

$$P_{T} = n_{1}(RT/V) + n_{2}(RT/V) + n_{3}(RT/V)$$

$$P_{T} = (n_{1} + n_{2} + n_{3}) (RT/V)$$

$$P_T = n_{total} \left(\frac{RT}{V}\right)$$

Dalton's Law

For a mixture of ideal gases, the total number of moles is important. (not the identity of the individual gas particles)

- 1. Volume of the individual gas particles must not be very important.
- 2. Forces among the particles must not be very important.