Matter \& Energy

Matter

Matter: has mass and takes space.

States of Matter

Solid
Holds Shape

Fixed Volume

Liquid
Shape of Container Free Surface Fixed Volume

Gas
Shape of Container
Volume of Container

Changes

> Chemical change (chemical reaction):
> substance(s) are used up (disappear) \rightarrow others form
burning or cooking the egg

Physical change: identities of the substances do not change. (change of state)

Physical Changes

move faster

Kinetic energy \uparrow

Boiling is a physical change.

Physical Changes

Composition of the substance is not affected.

Change of states

Chemical Changes (reactions)

Electrolysis

Decomposition

Chemical and physical Changes

Think about it: Classify each of the following as a physical or chemical change.

- Bleaching clothes
- Burning of wood
- Dissolving of sugar in water
- Melting a popsicle on a warm summer day
- Baking soda (sodium carbonate) forming $\mathrm{CO}_{2}(g)$
- Iron metal melting

Physical and Chemical Properties

Physical Properties: a directly observable characteristic of a substance exhibited as long as no chemical change occurs.

Color, Odor, Volume, State, Density, Melting and boiling point.

Chemical Properties: Ability to chemical changes. (forming a new substance(s))

Burning wood - rusting of the steel

Elements

Element: is a substance consists of identical atoms.
Cannot be divided by chemical \& physical methods.

Carbon, Hydrogen, Oxygen
116 elements - 88 in nature

Monatomic
Diatomic
Polyatomic

Ar

S_{8}

Element Symbols

The first letter or two first letters of element name:
Oxygen O
Silicon Si
Carbon C
Argon Ar

Sometimes, two letters are not the first letters:

Chlorine Cl
Zinc $\quad \mathrm{Zn}$

Sometimes, old names are used (Latin or Greek):

Lead (Plumbum) Pb

Compounds

Compound: is a pure substance made up of two or more elements in a fixed ratio by mass.

$\mathrm{H}_{2} \mathrm{O}$ (Water): 2 Hydrogen \& 1 Oxygen

$$
\mathrm{CO}_{2}: 1 \text { Carbon \& } 2 \text { Oxygen }
$$

20 million compounds

Compounds $\xrightarrow{\text { By Chemical Methods }}$ Elements

Compounds

Identifies each element
Ratios

Subscript (number of each atom)

Subscript 1 is not written.

Elements \& Compounds

The character of each element is lost when forming a compound.

Elements \& Compounds

Chlorine (Cl)

Compound \& molecule

Molecule:

1. the smallest unit of a compound that retains the characteristics of that compound. $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$
2. atoms of one element bonded into a unit. Buckyballs, $\mathrm{C}_{60} \quad$ oxygen, O_{2} ozone, O_{3}

NaCl , salt
compound

Buckyball, C_{60}

molecule

Ethanol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
compound molecule

Pure substance \& Mixture

Pure substance: same composition

Elements - Compounds

Water

Mixture: different composition

Different water samples (impurities).
salad dressing
Coffee

Mixtures

Mixture: is a combination of two or more pure substances.

Homogeneous (solutions): uniform and throughout

Air, Salt in water

Heterogeneous: nonuniform

Soup, Milk, Blood, sand in water

Separation of Mixtures

Physical Methods
Mixture
\geq Two or more pure substances

Different Physical Property	Technique
Boiling point	Distillation
State of matter (solid/liquid/gas)	Filtration
Adherence to a surface	Chromatography
Volatility	Evaporation

Separation of Mixtures

Distillation

Separation by using the differences in boiling points.

(Physical change)

Salt \& Water

Distillation

Distillation Tower

Filtration

Salt, Sand and Water

Separation

Energy

Kinetic energy (KE): energy of motion

Potential energy: stored energy

Law of conservation of energy

Heat

units of heat: calorie (cal) or joule (J)

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

Amount of heat $=$ specific heat capacity \times mass \times change in temperature

$$
\text { Amount of heat }=C \times m \times\left(T_{f}-T_{i}\right)
$$

$\mathrm{C}=$ Specific heat capacity (cal/g ${ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& T_{f}=\text { final temperature } \\
& T_{i}=\text { initial temperature }
\end{aligned}
$$

Heat

- Specific heat capacity is the energy required to change the temperature of a mass of one gram of a substance by one Celsius degree.

Table 10.1 The Specific Heat Capacities of Some Common Substances

Specific Heat Capacity
($\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$)

Substance	$\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
water $(l)^{\star}$ (liquid)	4.184
water (s) (ice)	2.03
water (g) (steam)	2.0
aluminum (s)	0.89
iron (s)	0.45
mercury (l)	0.14
carbon (s)	0.71
silver (s)	0.24
gold (s)	0.13

Heat

Practice 1:

- Calculate the amount of heat energy (in joules) needed to raise the temperature of 6.25 g of water from $21.0^{\circ} \mathrm{C}$ to $39.0^{\circ} \mathrm{C}$.

- We are told the mass of water and the temperature increase. We look up the specific heat capacity of water, $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\mathrm{Q}=C \times m \times \Delta T \\
\mathrm{Q}=\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right) \times(6.25 \mathrm{~g}) \times\left(39.0^{\circ} \mathrm{C}-21.0^{\circ} \mathrm{C}\right) \\
\mathbf{Q}=471 \mathrm{~J}
\end{gathered}
$$

Heat

Practice 2:

- A silver-gray metal weighing 15.0 g requires 133.5 J to raise the temperature by $10 .{ }^{\circ} \mathrm{C}$. Find the heat capacity.

$$
\begin{gathered}
\mathrm{Q}=\boldsymbol{C} \times m \times \Delta T \\
(133.5 \mathrm{~J})=\boldsymbol{C} \times(15.0 \mathrm{~g}) \times\left(10 .{ }^{\circ} \mathrm{C}\right) \\
\boldsymbol{C}=\mathbf{0 . 8 9 ~ J} / \mathbf{g}^{\circ} \mathrm{C}
\end{gathered}
$$

Can you determine the identity of the metal using Table 10.1?

