Matter & Energy

Matter

Matter: has mass and takes space.

States of Matter

Solid

Holds Shape

Fixed Volume

Liquid

Shape of Container Free Surface Fixed Volume

Gas

Shape of Container

Volume of Container

Changes

Chemical change (chemical reaction):

substance(s) are used up (disappear) \rightarrow others form

burning or cooking the egg

Physical change: identities of the substances do not change. (change of state)

evaporation of water or melting

Physical Changes

Boiling is a physical change.

Physical Changes

Composition of the substance is not affected.

Change of states

Chemical Changes (reactions)

Electrolysis

Decomposition

Chemical and physical Changes

Think about it: Classify each of the following as a **physical** or **chemical** change.

- Bleaching clothes
- Burning of wood
- Dissolving of sugar in water
- Melting a popsicle on a warm summer day
- Baking soda (sodium carbonate) forming $CO_2(g)$
- Iron metal melting

Physical and Chemical Properties

Physical Properties: a directly observable characteristic of a substance exhibited as long as no chemical change occurs.

Color, Odor, Volume, State, Density, Melting and boiling point.

Chemical Properties: Ability to chemical changes. (forming a new substance(s))

Burning wood – rusting of the steel

Elements

Element: is a substance consists of identical atoms.

Cannot be divided by chemical & physical methods.

Carbon, Hydrogen, Oxygen

116 elements – 88 in nature

Element Symbols

The first letter or two first letters of element name:

Oxygen	0	Silicon	Si
Carbon	С	Argon	Ar

Sometimes, two letters are not the first letters:

Chlorine Cl Zinc Zn

Sometimes, old names are used (Latin or Greek):

Iron (Ferrum) Fe Lead (Plumbum) Pb

Compounds

Compound: is a pure substance made up of two or more elements in a fixed ratio by mass.

H₂O (Water): 2 Hydrogen & 1 Oxygen

CO₂: 1 Carbon & 2 Oxygen

20 million compounds

By Chemical Methods

H_2O

Subscript (number of each atom)

Subscript 1 is not written.

Elements & Compounds

The character of each element is lost when forming a compound.

Elements & Compounds

Sodium (Na)

Chlorine (CI)

6µm 5000X

Compound & molecule

Molecule:

- 1. the smallest unit of a compound that retains the characteristics of that compound. H_2O, CO_2
- 2. atoms of one element bonded into a unit. Buckyballs, C_{60} oxygen, O_2 ozone, O_3

NaCl, salt

Buckyball, C₆₀

molecule

Ethanol, C₂H₆O compound molecule

Pure substance & Mixture

Pure substance: same composition

Elements - Compounds

Water

Mixture: different composition

Different water samples (impurities).

salad dressing

Coffee

Mixtures

Mixture: is a combination of two or more pure substances.

Homogeneous (solutions): uniform and throughout

Air, Salt in water

Heterogeneous: nonuniform

Soup, Milk, Blood, sand in water

Separation of Mixtures

Mixture

Two or more pure substances

Different Physical Property	Technique	
Boiling point	Distillation	
State of matter	Filtration	
(solid/liquid/gas)		
Adherence to a surface	Chromatography	
Volatility	Evaporation	

Separation of Mixtures

Distillation

Distillation

Distillation Tower

Filtration

For Heterogeneous mixtures.

Salt, Sand and Water

Separation

Kinetic energy (KE): energy of motion

Potential energy: stored energy

Law of conservation of energy

Energy

Amount of heat = specific heat capacity× mass × change in temperature

Amount of heat = $C \times m \times (T_f - T_i)$

 T_f = final temperature

 T_i = initial temperature

C = Specific heat capacity (cal/g °C)

• Specific heat capacity is the energy required to change the temperature of a mass of one gram of a substance by one Celsius degree.

Table 10.1The Specific Heat Capacitiesof Some Common Substances

	Specific Heat Capacity	
Substance	(J/g °C)	
water (l)* (liquid)	4.184	
water (s) (ice)	2.03	
water (g) (steam)	2.0	
aluminum (s)	0.89	
iron (s)	0.45	
mercury (l)	0.14	
carbon (s)	0.71	
silver (s)	0.24	
gold (s)	0.13	

Practice 1:

- Calculate the amount of heat energy (in joules) needed to raise the temperature of 6.25 g of water from 21.0°C to 39.0°C.
- We are told the mass of water and the temperature increase. We look up the specific heat capacity of water, 4.184 J/g°C.

 $\mathbf{Q} = \mathbf{C} \times \mathbf{m} \times \Delta \mathbf{T}$

Q = (4.184 J/g°C) x (6.25 g) x (39.0°C – 21.0°C)

Q = 471 J

Practice 2:

ΑI

• A silver-gray metal weighing 15.0 g requires 133.5 J to raise the temperature by 10.°C. Find the heat capacity.

$$Q = C \times m \times \Delta T$$

(133.5 J) = **C** × (15.0 g) × (10.°C)

C = 0.89 J/g°C

Can you determine the identity of the metal using Table 10.1?