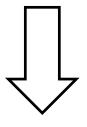

Oxidation & Reduction

Oxidation and Reduction reactions (redox)

Metal + Nonmetal : Transfer of electrons

$Na \rightarrow Na^+ + e^-$	Oxidized

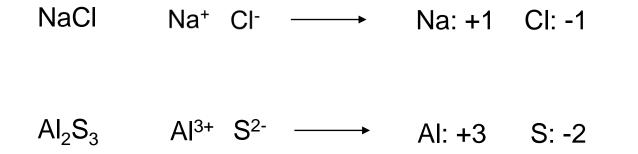

 $CI + e^{-} \rightarrow CI^{-}$ Reduced

Oxidation: a loss of electrons.

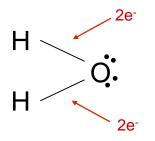
Reduction: a gain of electrons.

Oxidation States (Oxidation numbers)

Assigning charges to the various atoms in a compound.



Keep track of electrons in redox reactions.


1. Charge (oxidation state) of a uncombined element is zero.

H₂, Cl₂, Ar, Na, K

2. The oxidation state of a monatomic ion is the same as its charge.

For covalent compounds assume the most electronegative atom controls or possesses the shared electrons.

O gained two e⁻ from H \rightarrow Oxidation state = -2

H lost one $e^- \rightarrow Oxidation$ state = +1

4. The oxidation state of H is +1 and O is -2 in covalent compounds.

Exception: Peroxide
$$(O_2^{2-}) = -1$$
 H_2O_2

The most electronegative elements: F, O, N, and Cl

F: -1, O: -2, N: -3, CI: -1

5. If two of these elements are found in the same compound, we assign them in order of electronegativity.

F > O > N > CI

 NO_2

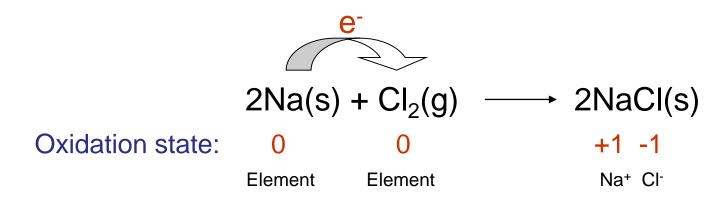
O: $2 \times (-2) = -4$ So N must be +4

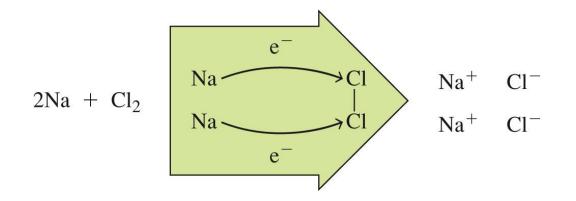
6. Sum of oxidation states = 0 in a neutral compound.

7. Sum of oxidation states = charge in an ion.

$$NO_3^-$$
 O: 3 × (-2) = -6

N must be +5 for an overall charge of -1 for NO_3^{-1} .


$$SO_4^{2-}$$
 O: 4 × (-2) = -8


S must be +6 for an overall charge of -2 for SO_4^{2-} .

$K_2Cr_2O_7$	K = +1; Cr = +6; O = -2
CO ₃ ²⁻	C = +4; O = -2
MnO ₂	Mn = +4; O = -2
PCI ₅	P = +5; Cl = -1
SF ₄	S = +4; F = -1

Oxidation-Reduction Reactions

In some redox reactions ions are produced.

Oxidation-Reduction Reactions

In some redox reactions ions are not produced (all nonmetals).

Oxidation state:

$$\begin{array}{c} \mathsf{CH}_4 \to \mathsf{CO}_2 + 8e^{-1} \\ \downarrow \\ -4 & +4 \end{array}$$

C is oxidized. CH_4 is a reducing agent.

$$2O_2 + 8e^- \rightarrow CO_2 + 2H_2O$$

O is reduced. O_2 is an oxidizing agent.

Oxidation-Reduction Reactions

Oxidation: is an increase in oxidation state (a loss of e⁻).

Reduction: is a decrease in oxidation state (a gain of e⁻).

Oxidizing agent (electron acceptor): the reactant containing the element that is reduced.

Reducing agent (electron donor): the reactant containing the element that is oxidized.

$CH_4 \rightarrow CO_2 + 8e^-$	C is oxidized. CH ₄ is a reducing agent.
$2O_2 + 8e^- \rightarrow CO_2 + 2H_2O$	O is reduced. O ₂ is an oxidizing agent.

$$Ce^{4+}(aq) + Sn^{2+}(aq) \rightarrow Ce^{3+}(aq) + Sn^{4+}(aq)$$

$$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq) \qquad \text{Reduction half-reaction}$$

$$Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-} \qquad \text{Oxidation half-reaction}$$

$$Number \text{ of } \underbrace{\text{must be equal to}}_{\text{Electrons lost}} \xrightarrow{\text{Number of }} \underbrace{\text{Number of }}_{\text{Electrons gained}}$$

Multiply by 2: $2Ce^{4+}(aq) + 2e^{-} \rightarrow 2Ce^{3+}(aq)$

 $Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}$

 $2Ce^{4+}(aq) + Sn^{2+}(aq) + 2e^{-} \rightarrow 2Ce^{3+}(aq) + Sn^{4+}(aq) + 2e^{-}$

 $2Ce^{4+}(aq) + Sn^{2+}(aq) \rightarrow 2Ce^{3+}(aq) + Sn^{4+}(aq)$

- 1. Identify and write the equations for the oxidation and reduction half-reactions.
- 2. For each half–reaction:
 - A. Balance all the elements except H and O.
 - B. Balance O using H_2O .
 - C. Balance H using H⁺.
 - D. Balance the charge using electrons.
- 3. If necessary, multiply one or both balanced half-reactions by an integer to equalize the number of electrons transferred in the two half-reactions.
- 4. Add the half-reactions, and cancel identical species.
- 5. Check that the elements and charges are balanced.

 $\operatorname{Cr}_2\operatorname{O_7^{2-}}(aq) + \operatorname{SO_3^{2-}}(aq) \to \operatorname{Cr}^{3+}(aq) + \operatorname{SO_4^{2-}}(aq)$

How can we balance this equation?

- 1. Separate into half-reactions.
- 2. Balance elements except H and O.

 $Cr_2O_7^{2-}(aq) \rightarrow 2Cr^{3+}(aq)$

 $SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq)$

3. Balance O's with H_2O and H's with H⁺.

 $14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(aq)$ $H_{2}O(aq) + SO_{3}^{2-}(aq) \rightarrow SO_{4}^{2-}(aq) + 2H^{+}(aq)$

4. How many electrons are involved in each half-reaction? Balance the charges.

 $6e^{-} + 14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(aq)$

 $H_2O(aq) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$

5. Multiply whole reactions by a whole number to make the number of electrons gained equal the number of electrons lost.

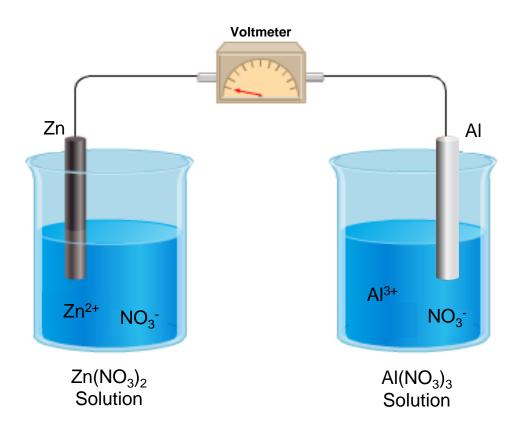
6e- + 14H⁺(aq) + Cr₂O₇²⁻(aq) \rightarrow 2Cr³⁺(aq) + 7H₂O(aq)

 $3 \times (H_2O(aq) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-)$

6. Combine half-reactions cancelling out those reactants and products that are the same on both sides, especially the electrons.

 $8 + 14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(aq)$ $3H_{2}O(aq) + 3SO_{3}^{2-}(aq) \rightarrow 3SO_{4}^{2-}(aq) + 6H^{+}(aq) + 6e^{-1}$

 $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$


Electrochemistry

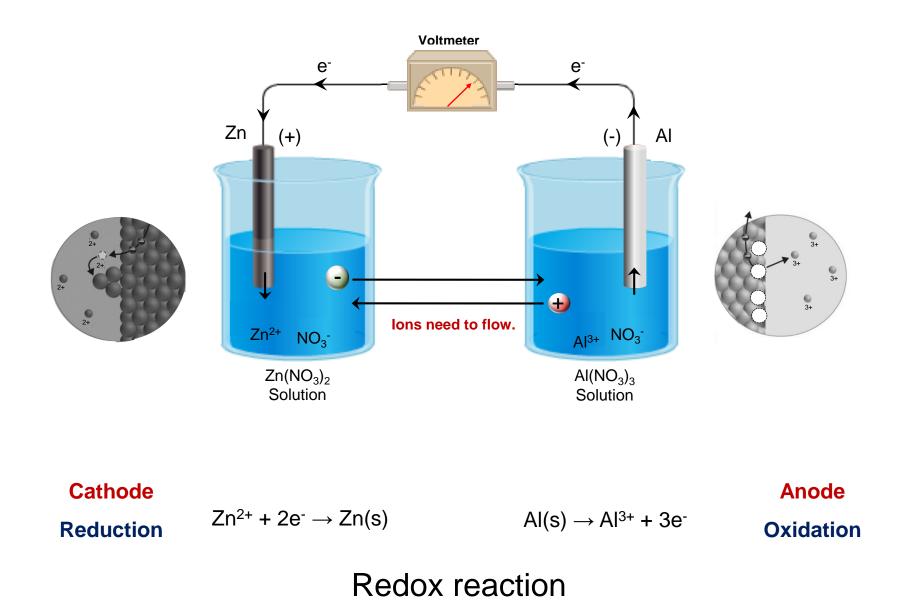
Galvanic Cell

Electrochemistry

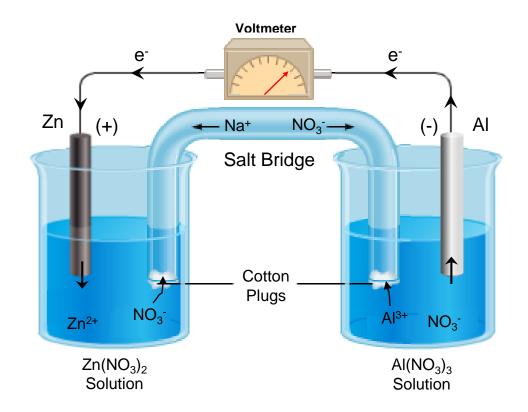
Standard Reduction Potentials

Potential (in volt): pressure of e⁻ to flow from one electrode to the other in a battery.

Increasing strength of oxidation agents

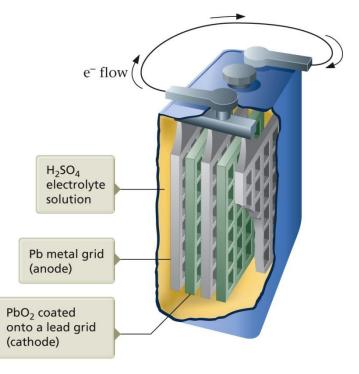

Half-Reaction	E° (volts)	Half-Reaction	E° (volts)
$F_2(g) + 2e^- \rightarrow 2F^-$	+2.87	$Pb^{2+} + 2e^- \rightarrow Pb(s)$	-0.13
$8H^+ + MnO_4^- + 5e^- \rightarrow Mn^{2+} + 4H_2O_4^-$) +1.51	$Sn^{2+} + 2e^- \rightarrow Sn(s)$	-0.14
$Au^{3+} + 3e^- \rightarrow Au(s)$	+1.50	$Ni^{2+} + 2e^- \rightarrow Ni(s)$	-0.26
$Cl_2(g) + 2e^- \rightarrow 2Cl^-$	+1.36	$Co^{2+} + 2e^- \rightarrow Co(s)$	-0.28
$4H^{+} + Cr_2O_7^{2-} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_2Cr^{3+}$) +1.23	$Fe^{2+} + 2e^- \rightarrow Fe(s)$	-0.45
$4H^+ + O_2(q) + 4e^- \rightarrow 2H_2O$	+1.23	$Cr^{3+} + 3e^- \rightarrow Cr(s)$	-0.74
$4H^+ + MnO_2(s) + 2e^- \rightarrow Mn^{2+} + 2H_2C$) +1.22	$Zn^{2+} + 2e^- \rightarrow Zn(s)$	-0.76
$Br_2(l) + 2e^- \rightarrow 2Br^-$	+1.09	$2H_2O + 2e^- \rightarrow 2OH^- + H_2(g)$	-0.83
$Hg^{2+} + 2e^- \rightarrow Hg(/)$	+0.85	$Mn^{2+} + 2e^- \rightarrow Mn(s)$	-1.19
$Ag^+ + e^- \rightarrow Ag(s)$	+0.80	$AI^{3+} + 3e^- \rightarrow AI(s)$	-1.66
$Hg_2^{2+} + 2e^- \rightarrow 2Hg(l)$	+0.80	$Mg^{2+} + 2e^- \rightarrow Mg(s)$	-2.37
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	+0.77	$Na^+ + e^- \rightarrow Na(s)$	-2.71
$l_2(s) + 2e^- \rightarrow 2l^-$	+0.54	$Ca^{2+} + 2e^- \rightarrow Ca(s)$	-2.87
$Cu^+ + e^- \rightarrow Cu(s)$	+0.52	$\mathrm{Sr}^{2+} + 2\mathrm{e}^- \rightarrow \mathrm{Sr}(s)$	-2.89
$Cu^{2+} + 2e^- \rightarrow Cu(s)$	+0.34	$Ba^{2+} + 2e^- \rightarrow Ba(s)$	-2.91
$4H^+ + SO_4^{2-} + 2e^- \rightarrow SO_2(aq) + 2H$	₂ O +0.17	$Cs^+ + e^- \rightarrow Cs(s)$	-2.92
$\mathrm{Sn}^{4+} + \mathrm{2e}^- \rightarrow \mathrm{Sn}^{2+}$	+0.15	$K^+ + e^- \rightarrow K(s)$	-2.93
$2H^+ + 2e^- \rightarrow H_2(g)$	0.00	$Rb^+ + e^- \rightarrow Rb(s)$	-2.98
		$Li^+ + e^- \rightarrow Li(s)$	-3.04

Increasing strength of reducing agents


Zn is a better oxidizing agent \rightarrow It is reduced

Al is a better reducing agent \rightarrow It is oxidized

Galvanic Cell (Electrochemical Battery)


Galvanic Cell (Electrochemical Battery)

Chemical Reaction Electric Energy

Lead Storage Battery

Anode reaction – oxidation

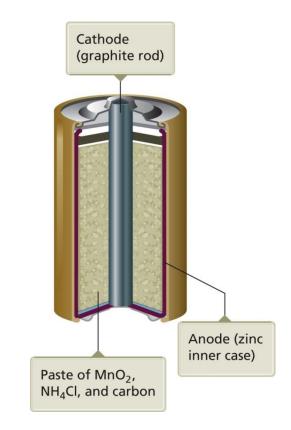
 $Pb + H_2SO_4 \rightarrow PbSO_4 + 2H^+ + 2e^-$

Cathode reaction – reduction

 $PbO_2 + H_2SO_4 + 2e^- + 2H^+ \rightarrow PbSO_4 + 2H_2O$

 $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$

Dry Cell Battery (Acid Version)


They do not contain a liquid electrolyte.

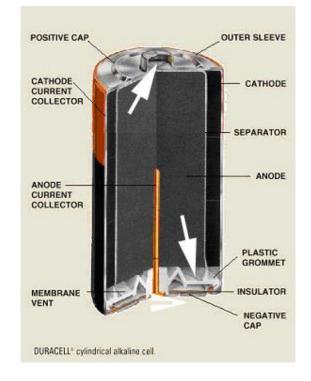
Anode reaction – oxidation

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Cathode reaction – reduction

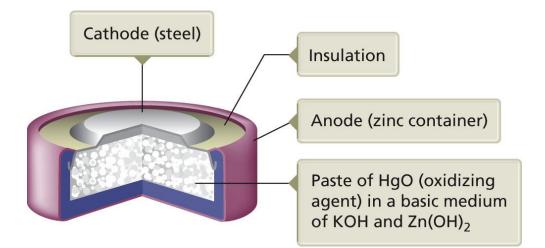
 $2NH_4^{+} + 2MnO_2^{-} + 2e^- \rightarrow Mn_2O_3^{-} + 2NH_3^{-} + 2H_2O$

Dry Cell Battery (Alkaline Version)


They do not contain a liquid electrolyte.

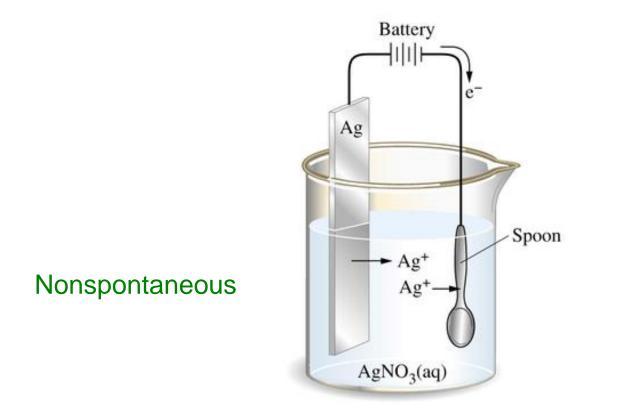
Anode reaction – oxidation

 $Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$


Cathode reaction – reduction

 $2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$

Dry Cell Battery (Other Version)


Silver cell – Zn anode, Ag₂O cathode Mercury cell – Zn anode, HgO cathode

Nickel-cadmium – Rechargeable

Electrolysis

Electrolysis

 $2H_2O(I) \xrightarrow{Forced electric current} 2H_2(g) + O_2(g)$