Quantities In Chemical Reactions

Mole

Mole: formula weight of a substance (in gram).

12 g of $\mathrm{C}=1 \mathrm{molC} \quad 23 \mathrm{~g}$ of $\mathrm{Na}=1 \mathrm{~mol} \mathrm{Na}$
58.5 g of $\mathrm{NaCl}=1 \mathrm{~mol} \mathrm{NaCl}$

18 g of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$

Avogadro's number $\left(6.02 \times 10^{23}\right)$: number of formula units in one mole.
1 mole of apples $=6.02 \times 10^{23}$ apples

1 mole of A atoms $=6.02 \times 10^{23}$ atoms of A
1 mole of A molecules $=6.02 \times 10^{23}$ molecules of A
1 mole of A ions $=6.02 \times 10^{23}$ ions of A

Molar mass ($\mathrm{g} / \mathrm{mol}$): mass of 1 mole of substance (in gram) (Formula weight)
molar mass of $\mathrm{Na}=23 \mathrm{~g} / \mathrm{mol}$ molar mass of $\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol}$

Stoichiometry

Relationships between amounts of substances in a chemical reaction.

Look at the Coefficients!

$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$		
2	2	1
2 moles	2 moles	1 mole
2 liters	2 liters	1 liter
2 particles	2 particles	1 particle
2 grams	2 grams	1 gram

Stoichiometry

1 Step

Mole A \leftrightarrow Mole B

Volume A \leftrightarrow Volume B
\# of Particles A \leftrightarrow \# of Particles B

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

23 mole $\stackrel{A}{\mathrm{CH}_{4}}=$? moles $\stackrel{\mathrm{B}}{\mathrm{H}_{2} \mathrm{O}}$
$10 \operatorname{cc}_{\mathrm{O}_{2}}^{\mathrm{A}}=$? cc $\stackrel{\mathrm{B}}{\mathrm{CO}_{2}}$

$$
10{\operatorname{ce~} O_{2}}^{\left(\frac{1 \operatorname{cc~CO}_{2}}{2 \operatorname{cc} O_{2}}\right)=5 \mathrm{cc} \mathrm{CO}_{2}}
$$

$\stackrel{A}{ } \stackrel{A}{ } \stackrel{B}{\mathrm{~B}^{26}}$ molecules $\mathrm{H}_{2} \mathrm{O}=$? molecules O_{2}
2×10^{26} molecules $\mathrm{H}_{2} \mathrm{O}\left(\frac{2 \times\left(6.02 \times 10^{23} \text { molecules } \mathrm{O}_{2}\right)}{2 \times\left(6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}\right)}\right)=2 \times 10^{26}$ molecules O_{2}

2 Steps

Mole A \leftrightarrow Volume B

Mass A \leftrightarrow Mole B or Volume A
\# of Particles A \leftrightarrow Mole B or Volume A

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$32 \mathrm{~g} \mathrm{CH}_{4}=$? moles $\stackrel{\mathrm{B}}{\mathrm{CO}} \mathrm{O}_{2} \quad 32 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{1 \mathrm{~mole} \mathrm{CO}_{2}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)=2.0$ mole CO
40. $\mathrm{g}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{4}=$? $\stackrel{\mathrm{A}}{\mathrm{C}} \mathrm{H}_{4}$
40. $\mathrm{g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{CH}_{4}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)=56 \mathrm{LCH}_{4}$

STP: 1 mole of substance (gas) $=22.4 \mathrm{~L}=22400 \mathrm{cc}\left(\mathrm{cm}^{3}\right.$ or mL$)$

5 moles $\mathrm{CO}_{2}=$? molecules O_{2}

5 moles $\mathrm{CO}_{2}\left(\frac{2{\text { mole } \mathrm{O}_{2}}_{1 \mathrm{~mole} \mathrm{CO}_{2}}^{1}}{)}\left(\frac{6.02 \times 10^{23} \text { molecules } \mathrm{O}_{2}}{1 \mathrm{~mole} \mathrm{O}_{2}}\right)=6 \times 10^{24}\right.$ molecules O_{2}

3 Steps

Mass A \leftrightarrow Mass B

Mass A \leftrightarrow Volume B or \# of Particles B

$$
\text { \# of Particles } \mathrm{A} \leftrightarrow \text { Volume B }
$$

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\stackrel{\mathrm{A}}{46.0} \mathrm{~g} \mathrm{CH}_{4}=? \mathrm{~g} \mathrm{H}_{2}^{\mathrm{B}} \mathrm{O}
$$

$46.0 \mathrm{~g} \mathrm{CH}_{4}\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16 \mathrm{~g} \mathrm{CH}_{4}}\right)\left(\frac{2 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{CH}_{4}}\right)\left(\frac{18 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{H}_{2} \mathrm{O}}\right)=104 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Limiting Reagents

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

Stoichiometry: 1 mole 1 mole 2 moles
Before reaction: 1 mole 4 moles
After reaction: 0 mole 3 moles 2 moles

Limiting Reagents

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

Limiting Reagents

Limiting reagent

$$
\left.\mathrm{N}_{2}(\mathrm{~g})\right)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

Used up first
Left over

Limiting Reagents

Limiting reagent: is the reactant that is used up first.

Limiting reagents can control a reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

Limiting Reagents

- To solve these problems, follow these steps:

$$
A+B \rightarrow C+D
$$

- Convert reactant A to moles of C (or D).
- Convert reactant B to moles of C (or D).
- Compare moles of C (or D) produced by A and B.

Mass $A \rightarrow$ Mole A

Mole C

Compare: lesser

 amount results from limiting reactant.
Limiting Reagents

Example:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})
$$

A chemist combines 10.0 g of each reactant. Which is the limiting reagent?

$$
\begin{aligned}
& 10.0 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{2 \mathrm{~mol} \mathrm{Al}}=0.371 \mathrm{~mol} \mathrm{AlCl}_{3} \\
& 10.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlCl}_{3}}{3 \mathrm{~mol} \mathrm{Cl}_{2}}=0.0940 \mathrm{~mol} \mathrm{AlCl}_{3}
\end{aligned}
$$

The smallest number is the result of the limiting reactant. $\mathrm{So}, \mathrm{Cl}_{2}$ is the limiting reactant.

Limiting Reagents

2. What mass of product is produced (in g)?

$$
\begin{gathered}
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s}) \\
0.0940 \mathrm{~mol} \mathrm{AlCl}_{3} \times \frac{133.33 \mathrm{~g} \mathrm{AlCl}_{3}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}}=12.54 \mathrm{~g} \mathrm{AICl}_{3}
\end{gathered}
$$

3. What species are present in the final mixture?
$\mathrm{AlCl}_{3}(s)$ and some left-over $\mathrm{Al}(s)$ are present.

Limiting Reagents

4. How much $\mathrm{Al}(s)$ remains?

$$
2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(s)
$$

$10.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{1 \mathrm{~mol} \mathrm{Al}}=\underset{\text { (reacted) }}{2.54 \mathrm{~g} \mathrm{Al}}$

- 10.0 g original -2.54 g used $=7.46 \mathrm{~g} \mathrm{Al}(\mathrm{s})$ remains

Limiting Reagents

Example:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

1. A chemist combines 10.0 g of each reactant. Which is the limiting reagent?
2. What mass of each product is produced (in g)?
3. What species are present in the final mixture?

Limiting Reagents

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

1. A chemist combines 10.0 g of each reactant. Which is the limiting reagent?
$10.0 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.09 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}=\mathbf{0 . 6 8 0} \mathrm{mol} \mathrm{CO}_{2}$
$10.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{5 \mathrm{~mol} \mathrm{O}_{2}}=0.188 \mathrm{~mol} \mathrm{CO}_{2}$

The smallest number is the result of the limiting reactant. So, $\mathbf{O}_{\mathbf{2}}$ is the limiting reactant.

Limiting Reagents

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

2. What mass of each product is produced (in g)?

$$
\begin{aligned}
& 0.188 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=8.27 \mathrm{~g} \mathrm{CO}_{2} \\
& 10.0 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} \times \frac{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=4.50 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\
& \text { Limiting reagent }
\end{aligned}
$$

3. What species are present in the final mixture?
$\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and some remaining $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$.

Limiting Reagents

Example:

$$
\mathrm{CS}_{2}(I)+3 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{SO}_{2}(g)
$$

- You have 1.55 g of $\mathrm{CS}_{2}(I)$ and excess $\mathrm{O}_{2}(g)$. What mass of each product forms?
$1.55 \mathrm{~g} \mathrm{CS}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CS}_{2}}{76.15 \mathrm{~g} \mathrm{CS}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CS}_{2}} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.896 \mathrm{~g} \mathrm{CO}_{2}$
$1.55 \mathrm{~g} \mathrm{CS}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CS}_{2}}{76.15 \mathrm{~g} \mathrm{CS}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{CS}_{2}} \times \frac{64.07 \mathrm{~g} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{SO}_{2}}=2.61 \mathrm{~g} \mathrm{SO}_{2}$

Percent Yield

Percentage yield: a comparison of actual to theoretical yield.

$$
\text { Percent yield }=\frac{\text { Actual yield }}{\text { Theoretical yield }} \times 100 \%
$$

actual yield: mass of product formed (exprimental determination)
theoretical yield: mass of product that should form according to limiting reactant calculation. (according to stoichiometry)

Note: percentage yields can be calculated using units of either moles or grams.

Percent Yield

Example:

- Analysis for sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ uses barium cation $\left(\mathrm{Ba}^{2+}\right)$.

$$
\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

- If a sample containing 1.15 g of $\mathrm{SO}_{4}{ }^{2-}$ is reacted with excess barium chloride, how much BaSO_{4} should form? If a chemist actually collects $2.02 \mathrm{~g} \mathrm{BaSO}_{4}$, what is the percent yield?

Percent Yield

How much BaSO_{4} should form?

$$
\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{BaCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$1.15 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{96.07 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}} \times \frac{233.37 \mathrm{~g} \mathrm{BaSO}_{4}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}}=2.79 \mathrm{~g} \mathrm{BaSO}_{4}$

- If a chemist actually collects 2.02 g BaSO 4 , what is the percent yield?

$$
\text { P.Y. } \%=\frac{2.02 \mathrm{~g} \mathrm{BaSO}_{4}}{2.79 \mathrm{~g} \mathrm{BaSO}_{4}} \times 100 \%=72.4 \%
$$

At-Home Practice

- Practice problem: A chemist reacts 7.67 g of H_{2} gas with 30.46 g of O_{2} gas. What is the theoretical yield of water in grams? (Limiting reactant calculation.)
- The actual experimentally measured amount is only 28.6 g of $\mathrm{H}_{2} \mathrm{O}$. What is the percent yield?
- Next lecture, our clicker questions will be:
* What is the theoretical yield?
* What is the percent yield?

Heat of reaction

$$
2 \mathrm{HgO}(\mathrm{~s})+\text { heat (energy) } \rightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

Endothermic reaction

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\text { heat (energy) }
$$

Exothermic reaction

All combustion reactions are exothermic.

Enthalpy

Enthalpy (Thermochemistry): heat of chemical reactions.

For a reaction in constant pressure, the change of enthalpy is equal to energy that flows as heat.

$\Delta \mathrm{H}_{\mathrm{p}}=$ heat

Enthalpy

Surroundings

Exothermic

Surroundings

Endothermic: $\Delta \mathrm{H}$ is positive. (heat flows into the system).

Heat of reaction

Exothermic (burning)

In endothermic condition, products have the higher energy level than reactants.

Enthalpy

Practice:

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g) \quad \Delta H=-296 \mathrm{~kJ}
$$

- Calculate the quantity of heat released when 2.10 g of sulfur is burned in oxygen at constant pressure.

$$
\begin{aligned}
& 2.10 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.26 \mathrm{~g} \mathrm{~S}}=0.0655 \mathrm{~mol} \mathrm{~S} \\
& 0.0655 \mathrm{~mol} \mathrm{~S} \times \frac{-296 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{~S}}=-19.4 \mathrm{~kJ}
\end{aligned}
$$

Use the $\Delta \mathrm{H}$ value like a conversion factor.

