Quantities In Chemical Reactions

Mole

Mole: formula weight of a substance (in gram).

12g of
$$C = 1 \text{ mol } C$$

 $23g ext{ of } Na = 1 ext{ mol Na}$

58.5 g of NaCl = 1 mol NaCl

18 g of $H_2O = 1$ mol of H_2O

Avogadro's number (6.02×10²³): number of formula units in one mole.

1 mole of apples = 6.02×10^{23} apples

1 mole of A atoms = 6.02×10^{23} atoms of A

1 mole of A molecules = 6.02×10^{23} molecules of A

1 mole of A ions = 6.02×10^{23} ions of A

Molar mass (g/mol): mass of 1 mole of substance (in gram) (Formula weight)

molar mass of Na = 23 g/mol molar mass of $H_2O = 18$ g/mol

Stoichiometry

Relationships between amounts of substances in a chemical reaction.

Look at the Coefficients!

$$2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$$
2 2 1
2 moles 2 moles 1 mole
2 liters 2 liters 1 liter
2 particles 2 particles 1 particle
2 grams 2 grams 1 gram

Stoichiometry

1 Step

Mole $A \leftrightarrow Mole B$

Volume A ↔ Volume B

of Particles A \leftrightarrow # of Particles B

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

A B 23 mole
$$CH_4 = ?$$
 moles H_2O

23 mole
$$CH_4$$
 ($\frac{2 \text{ moles H}_2O}{1 \text{ mole } CH_4}$) = 46 moles H_2O

$$10 \operatorname{ce} O_2(\frac{1 \operatorname{cc} CO_2}{2 \operatorname{cc} O_2}) = 5 \operatorname{cc} CO_2$$

A
 2×10²⁶ molecules $H_2O = ?$ molecules O_2

$$2\times10^{26}$$
 molecules H₂O ($\frac{2\times(6.02\times10^{23} \text{ molecules O}_2)}{2\times(6.02\times10^{23} \text{ molecules H}_2\text{O})}$) = 2×10^{26} molecules O₂

2 Steps

Mole A ↔ Volume B

Mass $A \leftrightarrow Mole B$ or Volume A

of Particles A ↔ Mole B or Volume A

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

32 g
$$CH_4$$
 = ? moles CO_2 32 g CH_4 ($\frac{1 \text{ mole } CH_4}{16 \text{ g } CH_4}$)($\frac{1 \text{ mole } CO_2}{1 \text{ mole } CH_4}$) = 2.0 mole CO_2

40. g
$$CH_4 = ? L CH_4$$
 40. g $CH_4 (\frac{1 \text{ mole } CH_4}{16 \text{ g } CH_4})(\frac{22.4 \text{ L } CH_4}{1 \text{ mole } CH_4}) = 56 \text{ L } CH_4$

STP: 1 mole of substance (gas) = $22.4 L = 22400 cc (cm^3 or mL)$

A B 5 moles
$$CO_2$$
 = ? molecules O_2

5 moles
$$CO_2$$
 ($\frac{2 \text{ mole } O_2}{1 \text{ mole } CO_2}$)($\frac{6.02 \times 10^{23} \text{ molecules } O_2}{1 \text{ mole } O_2}$) = 6×10^{24} molecules O_2

3 Steps

Mass $A \leftrightarrow Mass B$

Mass A ↔ Volume B or # of Particles B

of Particles A ↔ Volume B

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

A B
$$46.0 \text{ g CH}_4 = ? \text{ g H}_2\text{O}$$

46.0 g CH₄ (
$$\frac{1 \text{ mole CH}_4}{16 \text{ g CH}_4}$$
)($\frac{2 \text{ mole H}_2\text{O}}{1 \text{ mole CH}_4}$)($\frac{18 \text{ g H}_2\text{O}}{1 \text{ mole H}_2\text{O}}$) = 104 g H₂O

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

Stoichiometry: 1 mole 1 mole 2 moles

Before reaction: 1 mole 4 moles

After reaction: 0 mole 3 moles 2 moles

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

Stoichiometry: 1 mole 1 mole 2 moles

Before reaction: 1 mole 4 moles

After reaction: (0 mole) (3 moles) 2 moles

Used up first Left over

Limiting reagent: is the reactant that is used up first.

Limiting reagents can control a reaction:

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

To solve these problems, follow these steps:

$$A + B \rightarrow C + D$$

- Convert reactant A to moles of C (or D).
- Convert reactant B to moles of C (or D).
- Compare moles of C (or D) produced by A and B.

Example:

$$2 \text{ Al}(s) + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ AlCl}_3(s)$$

A chemist combines 10.0 g of each reactant. Which is the limiting reagent?

10.0 g Al x
$$\frac{1 \text{ mol Al}}{26.98 \text{ g Al}}$$
 x $\frac{2 \text{ mol AlCl}_3}{2 \text{ mol Al}}$ = **0.371 mol AlCl**₃

10.0 g Cl₂ x
$$\frac{1 \text{ mol Cl}_2}{70.9 \text{ g Cl}_2}$$
 x $\frac{2 \text{ mol AlCl}_3}{3 \text{ mol Cl}_2} =$ **0.0940 mol AlCl**₃

The *smallest* number is the result of the limiting reactant. So, **Cl**₂ is the limiting reactant.

2. What mass of product is produced (in g)?

$$2 \text{ Al}(s) + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ AlCl}_3(s)$$

0.0940 mol AlCl₃ x
$$\frac{133.33 \text{ g AlCl}_3}{1 \text{ mol AlCl}_3} = \boxed{12.54 \text{ g AlCl}_3}$$

3. What species are present in the final mixture?

 $AlCl_3(s)$ and some left-over Al(s) are present.

4. How much Al(s) remains?

$$2 \text{ Al}(s) + 3 \text{ Cl}_2(g) \rightarrow 2 \text{ AlCl}_3(s)$$

Limiting reagent
$$10.0 \text{ g Cl}_2 \text{ x} \quad \frac{1 \text{ mol Cl}_2}{70.9 \text{ g Cl}_2} \text{ x} \quad \frac{2 \text{ mol Al}}{3 \text{ mol Cl}_2} \text{ x} \quad \frac{26.98 \text{ g Al}}{1 \text{ mol Al}} = 2.54 \text{ g Al} \text{ (reacted)}$$

10.0 g original – 2.54 g used = 7.46 g Al(s) remains

Example:

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

- 1. A chemist combines 10.0 g of each reactant. Which is the limiting reagent?
- 2. What mass of each product is produced (in g)?
- 3. What species are present in the final mixture?

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

1. A chemist combines 10.0 g of each reactant. Which is the limiting reagent?

10.0 g
$$C_3H_8$$
 x $\frac{1 \text{ mol } C_3H_8}{44.09 \text{ g } C_3H_8}$ x $\frac{3 \text{ mol } CO_2}{1 \text{ mol } C_3H_8}$ = **0.680 mol CO_2**

$$10.0 \text{ g O}_2 \times \frac{1 \text{ mol O}_2}{32.00 \text{ g O}_2} \times \frac{3 \text{ mol CO}_2}{5 \text{ mol O}_2} = \boxed{\textbf{0.188 mol CO}_2}$$

The *smallest* number is the result of the limiting reactant. So, **O**₂ is the limiting reactant.

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

2. What mass of each product is produced (in g)?

0.188 mol
$$CO_2 \times \frac{44.01 \text{ g } CO_2}{1 \text{ mol } CO_2} = 8.27 \text{ g } CO_2$$

10.0 g
$$O_2$$
 x $\frac{1 \text{ mol } O_2}{32.00 \text{ g } O_2}$ x $\frac{4 \text{ mol } H_2O}{5 \text{ mol } O_2}$ x $\frac{18.016 \text{ g } H_2O}{1 \text{ mol } H_2O}$ = 4.50 g H_2O

3. What species are present in the final mixture? $CO_2(g)$, $H_2O(g)$ and some remaining $C_3H_8(g)$.

Example:

$$CS_2(I) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$$

You have 1.55 g of CS₂(I) and excess O₂(g). What mass of each product forms?

1.55 g CS₂ x
$$\frac{1 \text{ mol CS}_2}{76.15 \text{ g CS}_2}$$
 x $\frac{1 \text{ mol CO}_2}{1 \text{ mol CS}_2}$ x $\frac{44.01 \text{ g CO}_2}{1 \text{ mol CO}_2} = \boxed{\textbf{0.896 g CO}_2}$

1.55 g CS₂ x
$$\frac{1 \text{ mol CS}_2}{76.15 \text{ g CS}_2}$$
 x $\frac{2 \text{ mol SO}_2}{1 \text{ mol CS}_2}$ x $\frac{64.07 \text{ g SO}_2}{1 \text{ mol SO}_2}$ = **2.61 g SO₂**

Percent Yield

Percentage yield: a comparison of actual to theoretical yield.

actual yield: mass of product formed (exprimental determination)

theoretical yield: mass of product that should form according to limiting reactant calculation.

(according to stoichiometry)

Note: percentage yields can be calculated using units of either moles or grams.

Percent Yield

Example:

Analysis for sulfate (SO₄²⁻) uses barium cation (Ba²⁺).

$$SO_4^{2-}(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2 Cl^{-}(aq)$$

If a sample containing 1.15 g of SO₄² is reacted with excess barium chloride, how much BaSO₄ should form? If a chemist actually collects 2.02 g BaSO₄, what is the percent yield?

Percent Yield

How much BaSO₄ should form?

$$SO_4^{2-}(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2 Cl^-(aq)$$

$$1.15 \text{ g SO}_{4}^{2-} \text{ x } \frac{1 \text{ mol SO}_{4}^{2-}}{96.07 \text{ g SO}_{4}^{2-}} \text{ x } \frac{1 \text{ mol BaSO}_{4}}{1 \text{ mol SO}_{4}^{2-}} \text{ x } \frac{233.37 \text{ g BaSO}_{4}}{1 \text{ mol BaSO}_{4}} = 2.79 \text{ g BaSO}_{4}$$

 If a chemist actually collects 2.02 g BaSO₄, what is the percent yield?

$$P.Y.\% = \frac{2.02 \text{ g BaSO}_4}{2.79 \text{ g BaSO}_4} \times 100\% = 72.4 \%$$

At-Home Practice

- Practice problem: A chemist reacts 7.67 g of H₂ gas with 30.46 g of O₂ gas. What is the theoretical yield of water in grams? (Limiting reactant calculation.)
- The actual experimentally measured amount is only 28.6 g of H₂O. What is the percent yield?
- Next lecture, our clicker questions will be:
 - What is the theoretical yield?
 - What is the percent yield?

Heat of reaction

$$2HgO(s) + heat (energy) \rightarrow 2Hg(I) + O_2(g)$$

Endothermic reaction

$$C_3H_8(s) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I) + heat (energy)$$

Exothermic reaction

All combustion reactions are exothermic.

Enthalpy

Enthalpy (Thermochemistry): heat of chemical reactions.

For a reaction in constant pressure, the change of enthalpy is equal to energy that flows as heat.

$$\Delta H_p = heat$$
Constant pressure

Enthalpy

Exothermic: ΔH is negative. (heat flows out of the system).

Exothermic

Endothermic: ΔH is positive. (heat flows into the system).

Endothermic

Heat of reaction

In endothermic condition, products have the higher energy level than reactants.

Enthalpy

Practice:

$$S(s) + O_2(g) \rightarrow SO_2(g)$$
 $\Delta H = -296 \text{ kJ}$

 Calculate the quantity of heat released when 2.10 g of sulfur is burned in oxygen at constant pressure.

$$2.10 \text{ g S } \times \frac{1 \text{ mol S}}{32.26 \text{ g S}} = 0.0655 \text{ mol S}$$

0.0655 mol S x
$$\frac{-296 \text{ kJ}}{1 \text{ mol S}} = \boxed{-19.4 \text{ kJ}}$$

Use the ΔH value like a conversion factor.

