Radioactivity & Nuclear Energy

Review

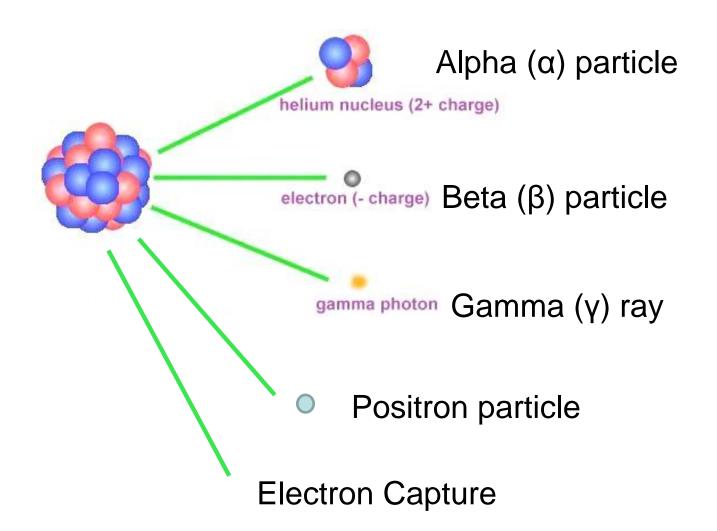
Mass number (A): Protons + Neutrons

Atomic number (Z): Protons

 $\begin{array}{ccc} \text{Mass number} & & & & \\ \text{Atomic number} & & & & \\ & & & & \\ \end{array} \xrightarrow{A} X \end{array}$

Isotopes: atoms with the same number of protons and electrons but different numbers of neutrons.

Radioactive Decay


Radioactive: nucleus which spontaneously decomposes forming a different nucleus and producing one or more particles.

Nuclear Equation: shows the radioactive decomposition of an element.

$$^{14}_{6}C \rightarrow ^{14}_{7}N + \overset{0}{}_{-1}e \rightarrow ^{\beta}$$
 Particle

Mass # and Atomic # must be conserved.

Types of Radioactive Decay

Alpha (α) Particle

• Alpha particle – helium nucleus $\binom{4}{2}$ He)

Examples:

$$^{222}_{88}\text{Ra} \rightarrow ^{4}_{2}\text{He} + ^{218}_{86}\text{Rn}$$

 $^{230}_{90}\text{Th} \rightarrow ^{4}_{2}\text{He} + ^{226}_{88}\text{Ra}$

 Net effect is loss of 4 in mass number and loss of 2 in atomic number. Mainly occurs in elements of atomic number 80 or higher.

Beta (β) Particle

• Beta particle – electron $\begin{pmatrix} 0\\-1 \end{pmatrix}$

Examples:

$$^{234}_{90}\text{Th} \rightarrow ^{234}_{91}\text{Pa} + ^{0}_{-1}\text{e}$$

 $^{131}_{53}\text{I} \rightarrow ^{0}_{-1}\text{e} + ^{131}_{54}\text{Xe}$

• Net effect is to change a neutron into a proton.

Gamma (y) Ray

• Gamma ray – high energy photon of light $\begin{pmatrix} 0\\0\gamma \end{pmatrix}$

No charge, No mass.

Example:

$$^{238}_{92}U \rightarrow {}^{4}_{2}He + {}^{234}_{90}Th + 2{}^{0}_{0}\gamma$$

• Net effect is no change in mass number or atomic number.

Positron Particle

• Positron – particle with same mass as an electron but with a positive charge $\binom{0}{1}e$.

Example:

$$^{22}_{11}Na \rightarrow ^{0}_{1}e + ^{22}_{10}Ne$$

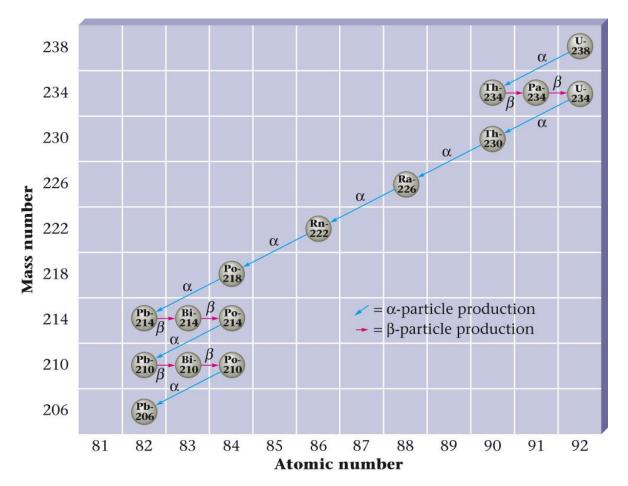
• Net effect is to change a proton into a neutron.

Electron Capture

 Process in which one of the inner-orbital electrons is captured by the nucleus to change a proton into a neutron.

Example:

$$^{201}_{80}\text{Hg} + {}^{0}_{-1}\text{e} \rightarrow {}^{201}_{79}\text{Au} + {}^{0}_{0}\gamma$$


$$\uparrow$$
Inner-orbital electron

Types of Radioactive Decay

Table 19.1 Various Types of Radioactive Processes				
Process	Example			
β -particle (electron) production	$^{227}_{89}\text{Ac} \rightarrow ^{227}_{90}\text{Th} + ^{0}_{-1}\text{e}$			
positron production	$^{13}_{7}N \rightarrow ^{13}_{6}C + ^{0}_{1}e$			
electron capture	$^{73}_{33}As + {}^{0}_{-1}e \rightarrow {}^{73}_{32}Ge$			
α -particle production	$^{210}_{84}$ Po $\rightarrow ^{206}_{82}$ Pb + $^{4}_{2}$ He			
γ-ray production	excited nucleus \rightarrow ground-state nucleus $+ {}^{0}_{0}\gamma$			
	excess energy lower energy			

Decay Series

Sometimes, a decay series occurs until a stable nuclide is formed.

Nuclear Transformation

- Change of one element to another.
- Bombard elements with particles.

Examples:

Rutherford 1919:
$${}^{14}_{7}N + {}^{4}_{2}He \rightarrow {}^{17}_{8}O + {}^{1}_{1}H$$
Curie 1933: ${}^{27}_{13}Al + {}^{4}_{2}He \rightarrow {}^{30}_{15}P + {}^{1}_{0}n$

Transuranium Elements

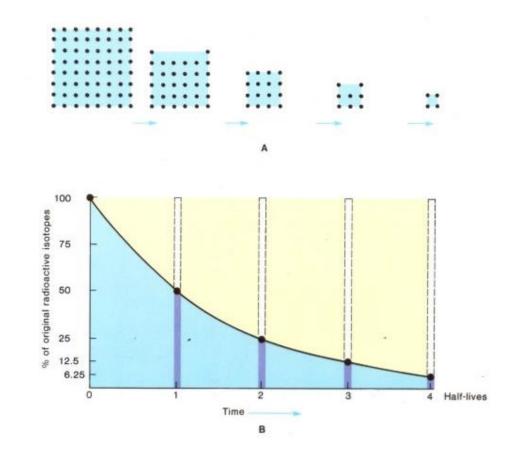

 Elements with atomic numbers greater than 92 (uranium) which have been synthesized by neutron or positive-ion bombardment.

Table 19.2 Syntheses of Some of the Transuranium Elements						
Neutron Bombardment	neptunium ($Z = 93$)	$^{238}_{92}U + ^{1}_{0}n \rightarrow ^{239}_{92}U \rightarrow ^{239}_{93}Np + ^{0}_{-1}e$				
	americium ($Z = 95$)	$^{239}_{94}Pu + 2 \ ^{1}_{0}n \rightarrow ^{241}_{94}Pu \rightarrow ^{241}_{95}Am + ^{0}_{-1}e$				
Positive-Ion Bombardment	curium ($Z = 96$)	$^{239}_{94}Pu + {}^{4}_{2}He \rightarrow {}^{242}_{96}Cm + {}^{1}_{0}n$				
	californium ($Z = 98$)	${}^{242}_{96}\text{Cm} + {}^{4}_{2}\text{He} \rightarrow {}^{245}_{98}\text{Cf} + {}^{1}_{0}\text{n or}$				
		$^{238}_{92}$ U + $^{12}_{6}$ C $\rightarrow ^{246}_{98}$ Cf + 4 $^{1}_{0}$ n				
	rutherfordium ($Z = 104$)	$^{249}_{98}Cf + {}^{12}_{6}C \rightarrow {}^{257}_{104}Rf + 4 {}^{1}_{0}n$				
	dubnium ($Z = 105$)	$^{249}_{98}Cf + {}^{15}_{7}N \rightarrow {}^{260}_{105}Db + 4 {}^{1}_{0}n$				
	seaborgium ($Z = 106$)	$^{249}_{98}Cf + {}^{18}_{8}O \rightarrow {}^{263}_{106}Sg + 4 \;^{1}_{0}n$				

Half-Life

Half-life $(t_{1/2})$: the time it takes for one half of any sample of radioactive material to decay.

It does not matter how big or small a sample is.

Half-Life

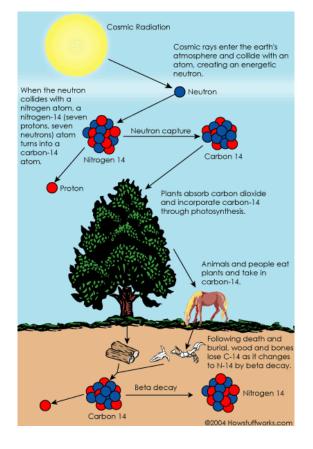
Example:

10 mg of ${}^{131}_{53}$ I \longrightarrow $t_{1/2}$ of lodine-131 = 8 days

How much will be left over after 32 days?

 $10 \text{ mg} \times 1/2 \times 1/2 \times 1/2 \times 1/2 = 0.625 \text{ mg}$

32 days (4 half-lives)


Radiocarbon Dating (Carbon-14 Dating)

Based on the radioactivity of carbon-14.

$${}^{14}_{6}C \rightarrow {}^{0}_{-1}e + {}^{14}_{7}N$$

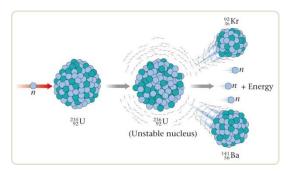
• Used to date wood and artifacts

Radiotracers

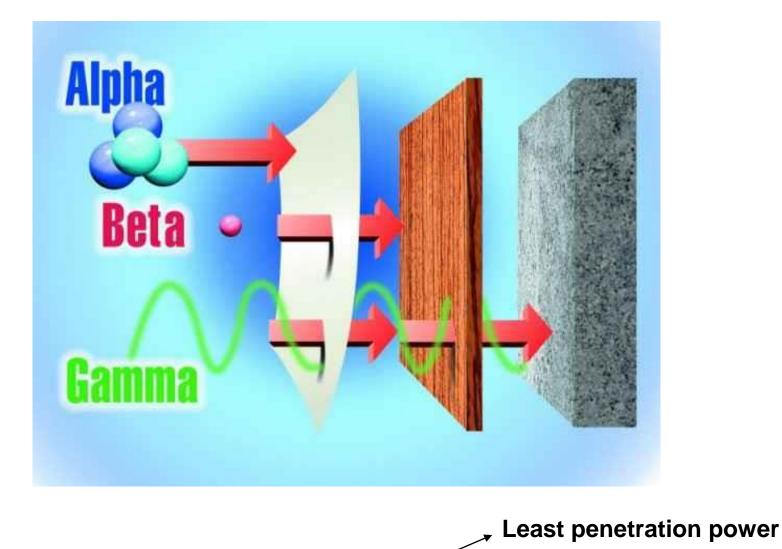
 Radioactive nuclides that can be introduced into organisms and traced for diagnostic purposes.

 Table 19.4
 Some Radioactive Nuclides, Their Half-lives, and Their Medical Applications as Radiotracers*

Nuclide	Half-life	Area of the Body Studied	
¹³¹ I	8.1 days	thyroid	
⁵⁹ Fe	45.1 days	red blood cells	
⁹⁹ Mo	67 hours	metabolism	
³² P	14.3 days	eyes, liver, tumors	
⁵¹ Cr	27.8 days	red blood cells	
⁸⁷ Sr	2.8 hours	bones	
⁹⁹ Tc	6.0 hours	heart, bones, liver, lungs	()
¹³³ Xe	5.3 days	lungs	
²⁴ Na	14.8 hours	circulatory system	


*Z is sometimes not written when listing nuclides.

Nuclear Energy


Two types of nuclear processes can produce energy:

 Fusion: Combining two light nuclei to form a heavier nucleus.

 Fission: Splitting a heavy nucleus into two nuclei with smaller mass numbers.

Effect of Radiation

Alpha: most massive and most highly charge

Lowest energy