Solutions

Mixtures

Mixture: is a combination of two or more pure substances.

Homogeneous: uniform and throughout

Air, Salt in water

Solution

Heterogeneous: nonuniform
Soup, Milk, Blood

Solutions

Gas in gas (air) solid in solid (alloys) liquid in liquid (alcohol in water)
Gas in liquid (cokes) solid in liquid (sugar in water)

Solutions

Well-mixed (uniform) - single phase
homogenous
transparent
cannot be separated by filter
cannot be separated on standing

Solutions (liquid in liquid)

Solvent: greater quantity (water)
for liquid in liquid
Solute: smaller quantity (sugar)

Immiscible: two liquids do not mix.

miscible: two liquids can mix. alcohol in water (in any quantities)

Solvent and Solute

Polar dissolves polar

like dissolves like.
Nonpolar dissolves nonpolar

Solutions

Saturated: solvent contains or holds all the solute it can (at a given T). maximum solute that solvent can hold (Equilibrium).

Unsaturated: solvent can hold more solute (at a given T).
Is not the maximum solute that solvent can hold.

Supersaturated: solvent holds more solute that it can normally hold (at a given T).
(more than an equilibrium condition)

Temperature and Solutions

Solubility: the maximum solute that will dissolve in a given amount of a solvent (at a given T).
$\mathrm{T} \uparrow \quad$ Solubility \uparrow

$\mathrm{T} \downarrow \longmapsto$ Crystal is formed.

Temperature and Solutions

$\mathrm{T} \uparrow \quad$ Solubility \uparrow

Leave it to cool (T \downarrow)

Supersaturated solution

Seeding

A surface on which to being crystallizing.

Gas in Liquid: $\mathrm{T} \uparrow \longmapsto$ Solubility \downarrow

Global Warming

Pressure and Solutions

Henry's law $\quad \mathrm{P} \uparrow \quad$ Solubility \uparrow (gas in liquid)

Solubility of a gas vs. Pressure

Concentration

Concentrated solution: large amount of solute is dissolved.

Strong Coffee

Dilute solution: small amount of solute is dissolved.

Weak Coffee

Concentration

Concentration: amount of a solute in a given quantity of solvent.

1. Percent concentration:

Weight / volume $(\mathrm{W} / \mathrm{V}) \%=\frac{\text { Weight solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{mL})} \times 100$
Weight / Weight $(\mathrm{W} / \mathrm{W}) \%=\frac{\text { Weight solute }(\mathrm{g})}{\text { Weight of solution }(\mathrm{g})} \times 100$
Volume / volume (V/V)\%= $\frac{\text { Volume solute }(\mathrm{mL})}{\text { Volume of solution }(\mathrm{mL})} \times 100$

Concentration

2. Molarity (M, mol/L): number of moles solute dissolved in 1 L of solution.

$$
\text { Molarity }(M)=\frac{\text { moles solute }(\mathrm{n})}{\text { volume of solution }(\mathrm{L})}
$$

Molarity $\times \mathrm{V}=$ number of moles (n)
prepare the solution: $\mathrm{M}, \mathrm{V} \rightarrow \mathrm{n}(\mathrm{mol}) \rightarrow \mathrm{m}(\mathrm{g})$

Prepare the solution

prepare the solution: $\mathrm{M}, \mathrm{V} \rightarrow \mathrm{n}(\mathrm{mol}) \rightarrow \mathrm{m}(\mathrm{g})$

Volumetric flask

Practice:

How would we make 164 mL of a 1.6 M solution of KCl in water?

$$
\begin{aligned}
& M=\frac{\mathrm{mol}(n)}{\text { volume (L) }} \quad 164 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.164 \mathrm{~L} \\
& 1.6 \mathrm{M}=\frac{\mathrm{mol}(\mathrm{n})}{0.164 \mathrm{~L}} \quad \Rightarrow \mathrm{n}=0.26 \mathrm{~mol} \mathrm{KCl}
\end{aligned}
$$

$$
0.26 \mathrm{~mol} \mathrm{KCl} \times \frac{74.55 \mathrm{~g} \mathrm{KCl}}{1 \mathrm{~mol} \mathrm{KCl}}=19 \mathrm{~g} \mathrm{KCl}
$$

Concentration

3. Parts per Million (ppm):

$$
\mathrm{ppm}=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solvent }} \times 10^{6}
$$

Parts per billion (ppb):

$$
\mathrm{ppb}=\frac{\mathrm{g} \text { solute }}{\mathrm{g} \text { solvent }} \times 10^{9}
$$

Dilution

Concentrated solution (Stock solution)

Standard solution: a solution with known concentration.

Dilution

$\mathrm{M}_{1} \mathrm{~V}_{1}=\operatorname{moles}(\mathrm{n}) \quad$ before dilution
Mole remains constant.
$\mathrm{M}_{2} \mathrm{~V}_{2}=\operatorname{moles}(\mathrm{n}) \quad$ after dilution

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
& \% V_{1}=\% V_{2}
\end{aligned}
$$

Practice:

- A chemist measures out 25.0 mL of a 1.00 M acid solution, and then dilutes it with water until the new total volume is 100.0 mL . What is the new concentration?

Concentrated: Dilute:

$$
\begin{array}{ll}
\mathrm{M}_{1}=1.00 \mathrm{M} & \mathrm{M}_{2}=? \mathrm{M} \\
\mathrm{~V}_{1}=25.0 \mathrm{~mL} & \mathrm{~V}_{2}=100.0 \mathrm{~mL}
\end{array}
$$

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} V_{2} \\
1.00 \times 25.0 & =M_{2} \times 100.0
\end{aligned}
$$

$$
\mathrm{M}_{2}=0.250 \mathrm{M}
$$

Ion Concentration

$1.50 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$

Molarity of $\mathrm{PO}_{4}{ }^{3-}$?
Molarity of Na^{+}?

Always look at the subscripts!

Molarity of $\mathrm{Na}^{+}=3 \times(1.50)=4.50 \mathrm{M}$

Molarity of $\mathrm{PO}_{4}{ }^{3-}=1 \times(1.50)=1.50 \mathrm{M}$

Solution Stoichiometry

Practice 1:

$$
2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Pbl}_{2}(\mathrm{~s})+2 \mathrm{KKNO}_{3}(\mathrm{aq})
$$

How much 0.115 M KI solution in liters will completely precipitate the Pb^{2+} in 0.104 L of $0.225 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution?
$0.104 \mathrm{~L} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution $\times \frac{0.225 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \text { solution }} \times \frac{2 \mathrm{~mol} \mathrm{KI}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~L} \text { Solution KI }}{0.115 \mathrm{~mol} \mathrm{KI}}=$

Solution Stoichiometry

Practice 2:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How much 0.430 M NaOH solution in liters do we need to completely neutralize 0.205 L of $0.150 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
$0.205 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution $\times \frac{0.150 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4} \text { solution }} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}} \times \frac{1 \mathrm{~L} \text { Solution } \mathrm{NaOH}}{0.430 \mathrm{~mol} \mathrm{NaOH}}=$
0.143 L NaOH solution

Colloids

Solutions: diameter of the solute particles is under 1 nm .
Colloids: diameter of the solute particles is between 1 to 1000 nm .

non transparent, non uniform, large particles, cloudy (milky)
But it is a stable system.

Colloids

Tyndall effect:

You can see the pathway of the light passes through a colloid. (particles scatter light.)
emulsion: a mixture of immiscible substances (liquid-liquid). (milk and mayonnaise)

Brownian motion

Random motion of colloid particles.

Dust

Why do colloidal particles remain in solution and do not stick together?

1. Surrounding water molecules prevent colloidal molecules from touching and sticking together.
2. A charged colloidal particle encounters another particle of the same charge, they repel each other.

Suspension

suspension: system does not stays stable and settle (> 1000 nm). (sand in water)

But it is not a stable system.

Freezing and boiling point

If we dissolve a solute in a solvent: bp $\uparrow f p \downarrow$
$\Delta T=m k$
ΔT : change of bp or fp $\left(T_{2}-T_{1}\right)$
K : constant (depend on solvent) $-\mathrm{K}_{\mathrm{b}} \mathrm{K}_{\mathrm{f}}$ m : Molality

$$
\mathrm{m}=\frac{\text { Moles solute }}{\boxed{K g} \text { solvent }} \longrightarrow \text { not solution }
$$

Freezing and boiling point

Practice 1:

If 13.7 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ dissolved in 0.86 kg of water, calculate the boiling point of this solution (k_{b} for water is $0.512{ }^{\circ} \mathrm{Ckg} / \mathrm{mol}$).

$$
\begin{aligned}
& \mathrm{m}=\frac{\text { Moles solute }}{\mathrm{Kg} \text { solvent }} \\
& \qquad \begin{array}{l}
13.7 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.0761 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
\mathrm{~m}=\frac{0.0761 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{0.86 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=0.088 \mathrm{~m} \\
\\
\Delta \mathrm{~T}=\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{mk}_{\mathrm{b}} \quad \begin{aligned}
\\
\mathrm{T}_{2}-100.00=0.088 \times 0.512 \\
\mathrm{~T}_{2}-100.00=0.045 \\
\mathrm{~T}_{2}=100.00+0.045 \\
\mathrm{~T}_{2}=100.05 \circ \mathrm{C}
\end{aligned}
\end{array} .
\end{aligned}
$$

Osmotic Pressure

Higher concentration \rightarrow Higher osmotic pressure

Osmotic Pressure

> Water flows from low concentration to

high concentration.

Osmotic Pressure

Osmolarity (osmol) $=\mathrm{M} \times \mathrm{i}$

M: molarity
i: number of particles

Osmolarity $\uparrow \rightarrow$ Osmotic pressure \uparrow

Isotonic solution Hypotonic solution Hypertonic solution

Hemolysis

Crenation

The most typical isotonic solutions

$0.9 \%(\mathrm{~m} / \mathrm{v}) \mathrm{NaCl} \longrightarrow 0.9 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~mL}$ of solution
$5 \%(\mathrm{~m} / \mathrm{v})$ Glucose $\longrightarrow 5 \mathrm{~g}$ glucose $/ 100 \mathrm{~mL}$ of solution

Higher than these numbers \rightarrow Hypertonic solution
Lower than these numbers \rightarrow Hypotonic solution

Dialysis

