Atoms

Electromagnetic radiation

Energy is transferred by light.

Electromagnetic radiation

A wave characterized by three properties:

Electromagnetic radiation

Wavelength (λ) : distance from one wave peak to the next.

Frequency (v) : number of peaks that pass a given point in one second.

$$
\lambda=\frac{C}{v} \quad c: \text { speed of light }=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Electromagnetic radiation

Photon: a stream of tiny packets of energy.
(smallest unit of electromagnetic radiation)

shorter λ (higher v) \rightarrow higher energy
longer λ (lower v) \rightarrow lower energy

Electromagnetic radiation

Snapshot of an Electromagnetic Wave traveling $3.00 \times 10^{8} \mathrm{~ms}^{-1}$ or 670 million mph:

Intensity = amplitude ${ }^{2}$

The Electric component of photons is the portion that pushes electrons.

TABLE 1.1 Color, Frequency, and Wavelength of Electromagnetic Radiation

Radiation type	Frequency $\left(10^{14} \mathrm{~Hz}\right)$	Wavelength $(\mathrm{nm}, 2 \mathrm{sf})^{*}$	Energy per photon $\left(10^{-19} \mathrm{~J}\right)$
x-rays and γ-rays	$\geq 10^{3}$	≤ 3	$\geq 10^{3}$
ultraviolet	8.6	350	5.7
visible light			
violet	7.1	420	4.7
blue	6.4	470	4.2
green	5.7	530	3.8
yellow	5.2	580	3.4
orange	4.8	620	3.2
red	4.3	700	2.8
infrared	3.0	1000	2.0
microwaves and radio waves	$\leq 10^{-3}$	$\geq 3 \times 10^{6}$	$\leq 10^{-3}$

wavelength \times frequency $=$ speed of light $(\lambda \nu=c)$

$$
1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}
$$

wavelength \times frequency $=$ speed of light $(\lambda \nu=c)$

Blue light has

(a) Short wavelength, high frequency
distance traveled

Red light has
$\lambda \uparrow, \nu \downarrow$
(b) Long wavelength, low frequency

Large changes in electric field
Small changes in electric field

It's all about wavelength size

If we had X-ray vision

If we had infrared vision

visible vision

Practice 1: What is the wave length of the signal from a $\lambda \nu=c$ or $\lambda=\frac{c}{v}$ radio station transmitting at 98.4 MHz ?
$\lambda=\frac{3.00 \times 10^{8} \mathrm{~ms}^{-1}}{9.84 \times 10^{6} \mathrm{~s}^{-1}}=30.5 \mathrm{~m}$

Practice 2: Calculate the wavelength of $5.75 \times 10^{14} \mathrm{~Hz}$

$$
\frac{3 \times 10^{8} \mathrm{~ms}^{-1}}{5.75 \times 10^{14} \mathrm{~s}^{-1}}=521 \mathrm{~nm} ; \text { Green } \xrightarrow[\gamma \text {-ray } \frac{1 \mathrm{pm}}{0.1 \mathrm{pm}}]{\text { x-ray }}
$$

Absorbed by the ozone layer.

Electro-magnetic Force

Electromagnetism is the study of electrical charge
a) Light
b) Lightening or static electricity
c) Batteries

4 known forces in the universe:

1. Strong force: called the gluon that holds protons to neutrons, experienced as atomic bombs;
2. Weak force: holds the neutron together, the proton and electron, experienced as radiation;
3. Electro-magnetic force: called the photon and it's relative electron, it holds atoms, molecules together and responsible for how we see-light, this force is what humans experience all the time;
4. Gravitational force: holds the universe together.

Nuclear Atom

In 1897 British physicist J. J. Thomson provided the earliest evidence that atoms had internal structure.

Thomson was able to measure the value of $\frac{-e}{m_{e}}$, the ratio of an electron's charge -e to its mass m_{e}

Nuclear Atom

Thomson suggested a model of an atom as a blob of a positively charged, jellylike material, with the electrons suspended in it like raisins in pudding. Rutherford tested Thompson's hypothesis.

Firing a-particles at Pt, "It was almost as incredible," said Rutherford, "as if you had fired a 15inch shell at a piece of tissue paper and it had come back and hit you."

Almost all the mass is concentrated in the tiny nucleus

Electromagnetic radiation emitted by a heated Black Body caused one of the greatest revolutions that has ever occurred in science.

The "hot object" is known as a black body (even though it might be glowing white hot!).

At high temperatures an object begins to glow-the phenomenon of incandescence. As the object is heated to higher temperatures it glows more brightly, and the color of light it gives off changes from red through orange and yellow toward white.

The problem is the curve should be linear, going straight UP, not dying away in UV!

Stefan-Boltzmann Law

Describes the behavior of Blackbody Radiation-intensity/temp

Total intensity $=$ constant $\times T^{4}$

The total intensity of radiation emitted increases as the fourth power of the temperature.

A body at 1000 K emits 120 times more energy as is emitted at 300 K .

Wien's Law

Shows that a maxima existed in Blackbody radiation

Wavelength (um) Often used by astronomers to measure a stars surface temperature.

Practice 3: The maximum intensity of solar radiation occurs at 490. nm . What is the temperature of the surface of the Sun?

$$
T \lambda_{\max }=\text { constant }
$$

$T=\frac{2.9 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~K}}{4.90 \times 10^{-7} \mathrm{~m}}=\quad 5.9 \times 10^{3} \mathrm{~K}$

That is, the surface temperature of the Sun is about 6000 K .

Ultraviolet Catastrophe

Atoms give off light as they get hotter because atoms oscillate (like a spring) and the electrons start jumping around inside the atom. But we only observe color up to ultraviolet radiation no matter how hot!

A human body at $37^{\circ} \mathrm{C}$ would glow in the dark.

There would, in fact, be no darkness.

Where are the ultraviolet, x-ray, and γ-ray radiations with a low wavelength?

Planck Law

Max Planck hypothesizes that oscillations start at a particular energy level with a minimum energy.

To make oscillations occur at higher energies requires a specific or minimum amount of energy or "Packet" sometimes called quantahints at Particles!

$$
\mathrm{E}=h \mathrm{v} \quad \begin{gathered}
h=6.626 \times 10^{-34} \mathrm{Js} \\
\text { Plank's constant }
\end{gathered}
$$

Planck describes that atomic vibrations as requiring a "minimum" amount of energy to "move."

At low T, there is not enough energy to stimulate oscillations at very high frequencies-short wavelengths (it explains ultraviolet catastrophe).

The simplest atom: hydrogen

When an electric current passes through a sample of "PURE" hydrogen gas, the electric current acts like a storm of electrons, exciting the electrons in the atom to higher and higher energies.

Excited electrons quickly discard excess energy by emitting light.

Each spectral line corresponds to an electron transition between two specific states, showing the particle nature.

Joseph Balmer, a Swiss schoolteacher 1885, identified a pattern in the lines of the visible region of the spectrum. The frequencies of all the lines could be generated by:

$$
\lambda \propto \frac{n^{2}}{n^{2}-4} \quad n=3,4, \ldots
$$

As experimental techniques advanced, more lines were discovered, and the Swedish spectroscopist Johann Rydberg noticed that all of the lines could be predicted from the expression:
$v=\mathcal{R}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \quad n_{1}=1,2, \ldots$.
Where $n_{2}=n_{1}+1, n_{1}+2, \ldots$

Bohr's Theory

Bohr's idea of Quanta, or quantized energy exemplifies the particle nature of electrons.

Bohr interpreted this picture as the atom; when electrons moved between the rings, the $h v$ corresponded to different colors.

The nucleus is at the center, though, the size of a fly in a domed stadium.

The energy of a photon is conserved.

$$
E_{\text {photon }}=K E_{\text {electron }}+\text { Work Function }_{\text {metal }}
$$

Φ is the energy needed to remove an electron from the metal.
If $h v>\Phi$ then $K E_{\text {electron }}$ will be non-zero and an electron is ejected.

Color comes from electrons shedding excess energy whey they relax to their original, unexcited state.

Again, this adheres to Plank's ladder or quantized idea: "Electrons going between levels produces different colors."

Now, what we need is a way to explain what is a wave-particle?
This opened the way for quantum mechanics.
Countless experiments show Both (wave and particle) are true.

Changing the Box
As L (length) increases:

- energies of levels decrease
- separations between levels decrease

Energy levels are quantized, n

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

$\mathrm{n}=1,2, \ldots$ must be integers;
L is the length of the box (in meter); m is mass of electron ($9.109 \times 10^{-31} \mathrm{~kg}$); h is a constant $\left(6.626 \times 10^{-34} \mathrm{Js}\right)$

Lowest E, closest to the nucleus

A 3D plot of Erwin Schrödinger Particle-Wave functions.

Higher probability of finding an electron nearest the nucleus

Electron cloud

TABLE 1.3 Quantum Numbers for Electrons in Atoms

Name	Symbol	Values	Specifies	Indicates
principal	n	$1,2, \ldots$	shell	size
orbital angular momentum*	l	$0,1, \ldots, n-1$	subshell:	shape
			 magnetic	m_{l}
mpin $, d, f, g, \ldots, \ldots$				
spagnetic	m_{s}	$l, l-1, \ldots,-l$	orbitals of subshell	orientation
			spin state	spin direction

No two electrons in the same atom have the same four quantum numbers.

90% likelihood of finding electron within
Boundary surfaces
Radial nodes

$$
\begin{aligned}
& n=1,2, \ldots \\
& l=0 \\
& m l=0
\end{aligned}
$$

$$
1 \mathrm{~s} \quad 2 \mathrm{~s} \quad 3 \mathrm{~s}
$$

The Three p-orbitals

$n=2,3, \ldots$
$l=1$
$m l=+1,0,-1$

p_{x}

Nodal plane

p_{y}

The Five d-orbitals

$$
\begin{aligned}
& n=3,4, \ldots \\
& l=2 \\
& m l=+2,+1,0,-1,-2
\end{aligned}
$$

2 nodal planes

red (+)
light orange (-)

The Seven f-orbitals

$$
\begin{aligned}
& n=4,5, \ldots \\
& I=3 \\
& m l=+3,+2,+1,0,-1,-2,-3
\end{aligned}
$$

dark purple (+)
light purple (-)

$\mathrm{f}_{x^{3}-3 x y^{2}}$

$\mathrm{f}_{z x^{2}-z y^{2}}$

3 nodal planes

Pauli Exclusion Principle

Spin magnetic quantum number $\left(m_{\mathrm{s}}\right)$ has two possible values:

Parallel spins Higher energy (unstable)

Paired spins Lower energy (stable)

Shield Effect \& Penetrating

There are two opposite forces applied to each electron:

1. Attraction by nucleus
2. Repulsion by other electrons

Shield Effect: each electron is said to be shield from the full attraction of the nucleus because of the repulsion by the other electrons.

Penetrating: if an electron can be found close to the nucleus, we say it is penetrated through the inner shells.
p -electrons penetrates much less than s-electrons.

Relative Energies of Orbitals in a Multi-electron Atom

Allowable Combinations of Quantum Numbers

$$
\begin{aligned}
& \mathrm{n}=1,2, \ldots \\
& I=0,1,2,3,4, \ldots(\mathrm{n}-1) \\
& \mathrm{s}, \mathrm{p}, \mathrm{~d}, \mathrm{f}, \ldots \\
& m_{l}=I,(I-1), \ldots,-I
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}=1,2, \ldots \\
& I=0,1,2,3,4, \ldots(\mathrm{n}-1) \\
& \mathrm{s}, \mathrm{p}, \mathrm{~d}, \mathrm{f}, \ldots \\
& m_{l}=I,(I-1), \ldots,-I
\end{aligned}
$$

Allowed orbitals

2 electrons per orbital

Electron Configurations and four quantum numbers for H and He Building-up Principle

$\mathrm{He} 1 \mathrm{~s}^{\mathbf{2}}$

1s electron ($n, l, m_{l,} m_{s}$)

- 1, 0, 0, ($+1 / 2$ or $-1 / 2$)

$\left(n, l, m_{l}, m_{s}\right)$
Pauli exclusion principle:
No more than 2 electron in each orbital, their spins must be paired.

Electron Configurations \& Noble Gas electron configuration

$1 s$ electrons (n, I, m_{l}, m_{s})

- $1,0,0,+1 / 2$
- $1,0,0,-1 / 2$
$2 s$ electron*
- $2,0,0,+1 / 2$

$1 s$ electrons (n, I, m_{l}, m_{s})
-1, 0, $0,+1 / 2$
-1, 0, 0, - $-1 / 2$
$2 s$ electrons
-2, 0, 0, +1⁄2
-2, 0, 0, - $-1 / 2$

Hund's Rule

$1 s$ electrons (n, I, m_{l}, m_{s})
-1, 0, 0, +1⁄2
-1, 0, 0, -1/2
$2 s$ electrons
-2, 0, 0, +1⁄2
-2, 0, 0, -1/2
$2 p$ electron*

- $2,1,+1,+1 / 2$
$+1,0,-1 \quad$ Parallel spins

C $1 s^{2} 2 s^{2} 2 p^{2}$, [He] $2 s^{2} 2 p^{2}$
$1 s$ electrons $\left(n, I, m_{l}, m_{s}\right)$

- $1,0,0,+1 / 2$
-1, 0, 0, - $-1 / 2$
$2 s$ electrons
- $2,0,0,+1 / 2$
-2, 0, 0, -1/2
$2 p$ electrons*
- $2,1,+1,+1 / 2$
- $2,1,0,+1 / 2$

Electron Configurations: N and O

He core $\left(n, I, m_{1}, m_{s}\right)$

- $1,0,0,+1 / 2$
-1, 0, 0, - $1 / 2$
-2, 0, 0, +1/2
-2, 0, 0, - $1 / 2$
$2 p$ electrons*
- $2,1,+1,+1 / 2$
-2, 1, 0, $+1 / 2$
- $2,1,-1,+1 / 2_{2}$

He core (n, I, m_{1}, m_{s})

- $1,0,0,+1 / 2$
-1, 0, 0, -1/2
-2, 0, 0, +1/2
-2, 0, 0, -1/2
$2 p$ electrons*
- $2,1,+1,+1 / 2$
-2, 1, 0, +1/2
- 2, $1,-1,+^{1 / 2}$
- $2,1,+1,-1 / 2$

Electron Configurations: F and Ne

Filled or closed shell

He core (n, l, m_{l}, m_{s})
$2 p$ electrons*

- 2, $1,+1,+1 / 2$
- $2,1,+1,-1 / 2$
-2, 1, 0, +1/2
-2, 1, 0, -1/2
- 2, 1, $-1,+^{1 / 2}$

$\mathrm{Ne} 1 s^{2} 2 s^{2} 2 p^{6},[\mathrm{He}] 2 s^{2} 2 p^{6}$
He core $\left(n, I, m_{l}, m_{s}\right)$
$2 p$ electrons
- $2,1,+1,+1 / 2$
-2, $1,+1,-1 / 2$
-2, $1,0,+1 / 2$
-2, 1, 0, -1/2
-2, $1,-1,+1 / 2$
-2, $1,-1,-1 / 2$

Practice

For the following $\mathrm{V}, \mathrm{Cr}, \mathrm{Cr}^{3+}, \mathrm{Fe}, \& \mathrm{Fe}^{3+}$ write the:

1. Electron configuration
2. Orbital box diagram
3. Four quantum numbers n, I, m_{l}, m_{s}

Electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s 3 s^{3}$
Orbital box diagram

To determine the 4 quantum numbers we need to look at the last subshell where the last electron goes.

Spin is up $=\boldsymbol{+ 1} / \mathbf{2}$

Since the d's have five orbitals we write them out We number with " + " m_{l} values first
Place e- going up "+" m_{s} values first, follow Hund's Rule to minimize repulsive energy

We obtain the n and I value from last shell and subshell values
We obtain the m_{l} and m_{s} value from the position of the last e^{-} n, l, m_{1}, m_{s}
3, $2,0,+1 / 2$

$$
I=\begin{array}{cccc}
s & p & d & f \\
0 & 1 & 2 & 3
\end{array}
$$

Expected

Electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{4}$
Orbital box diagram
Observed

A similar re-arrangement occurs with Cu
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{4}$

Element Cr

 Cr and Cr^{3+}Electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$
Orbital box diagram

$$
\mathrm{Cr}^{3+}
$$

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{3}
$$

Transition metals always lose electrons from their s-orbital first.

Element Fe

Fe and Fe^{3+}

Electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$
Orbital box diagram
Fe^{3+}

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{0} 3 d^{5}
$$

Transition metals always lose electrons from their s-orbital first.

Stability

Stability (meaning non-reactive or low energy) is based on Filled-Shells! That is when atoms get a filled shell they tend to stop reacting.

$10 \mathrm{Ne} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6},[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$

Noble Gas Electron Configuration
Noble gases

Elements in Group 1A-7A (and transition metals) are all reactive.
Atoms gain and lose to get a Noble Gas Electron Configuration.

Halogens

2 Inherent Physical Factors in Atoms

What causes differences in atomic physical properties like:

- Atomic Radii
- How many Electrons they Gain or Lose
- Metal Characteristics

1. Valence shells
2. Effective nuclear charge

Looking at the periodic table helps us see these effects

Periodic Trend: Atomic Radius

increases down a group Valence Shells

decreases across a period Effective Nuclear Force

Periodic Trend: Ionic Radius

atom \rightarrow cation
radius decreases

$$
\text { atom } \rightarrow \text { anion }
$$

radius increases

Removing electrons:

1. Lose of a shell;
2. Higher "+Z" in nucleus draws e-in.

Adding electrons:

1. Weakens $+Z$ nuclear electrostatic attraction
2. An increase in e-to e-repulsions.

Trends in Ionization Energy

Minimum energy needed to remove an electron from an atom. Valence electron easiest to remove.

Periodic Trend: Multiple lonizations

Ionization Energy of Elements 1-56

Elements by Atomic Number

Reason: All values are positive since a physical bond is broken; it takes energy to remove a negativity charged "-" electron from a positively charged " + " nucleus.

Removing an electron from nitrogen makes the orbitals higher in energy than the original ground state orbitals.

Group 5A Valance Shell, i.e. Nitrogen

The overall effect is that half-filled shells are more stable in partially filled shells.

Periodic Trend: Electron Affinity

The energy changes when an electron attaches to an atom.

$$
F+e^{-} \rightarrow F^{-}
$$

$\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}$
Negative values: energy is required to add an electron Positive values: energy released or favorable.

Why is Group 4A so favorable and Group 5A so unfavorable?

The overall effect is that half-filled shells are more stable in partially filled shells.

when carbon gains an electron, the
orbitals are lower in energy than the original ground state orbitals.

Carbon +122 EA
Nitrogen -7 EA
Group 5A Valance Shell, i.e. nitrogen
Group 4A Valance Shell, i.e. carbon

when nitrogen gains an electron, the orbitals are higher in energy than the original ground state orbitals.

Metallic Character

Physical and Chemical properties

Metals:

Malleable (bend) and ductile (make a wire).
Shiny so reflect light (mirrors).
Electrical and thermal conduct.
Basic.
Lose electrons-oxidized.

Nonmetals:

Brittle.
Dull.
Electrical and thermal insulators.
Acidic.
Gain electrons-reduced.

Electrons in the sea are mobile. This enables metals to conduct an electric current. Also accounts for their luster, and malleability-being deformed without shattering.

The Inert-Pair Effect

Tin and lead both 2 of s-electrons and 2 of p-electrons.

Tin forms $\mathbf{S n}^{2+}$ or $\mathbf{S n}^{4+}$ while lead only forms Pb^{2+} because its s electrons are very low in energy and unreactive, so will it will always loss it's 2 p-electrons.

Tin(II) oxide reacts with oxygen to form tin(IV) oxide.

The Inert-Pair Effect: losing p-electrons first.

