Chemical Equilibrium

Reactions at Equilibrium

One examples of equilibrium are people's optimal weight; we are constantly gaining and loosing to be at a desirable weight.

Thermal equilibrium is maintaining a constant temperature.

When we open a freezer, the freezer gets warmer. A cycle to cool it back to it's original temperature begins all over again once the door is closed.

Equilibrium

The exact balancing of two processes, one of which is the opposite if the other.

Equilibrium

Rate of evaporation $=$ Rate of condensation

Equilibrium

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \underset{\text { reverse }}{\stackrel{\text { forward }}{\rightleftarrows}} \mathrm{H}_{2}+\mathrm{CO}_{2}
$$

Equilibrium: rate of the forward reaction = rate of reverse reaction

$$
\text { Rate }_{\text {forward }}=\text { Rate }_{\text {reverse }}
$$

The concentration of all reactants and products remain constant.
No net change in speed

Has reaction stopped???

Equilibrium

At equilibrium, the reaction has not stopped and the system is dynamic.

There is motion on the bridge, but the number of cars is constant.

Equilibrium

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \underset{\text { reverse }}{\stackrel{\text { forward }}{\rightleftarrows}} \mathrm{H}_{2}+\mathrm{CO}_{2}
$$

```
Rate of forward
reaction (\mp@subsup{\textrm{H}}{2}{}\textrm{O}+\textrm{CO}->)}\quad\begin{array}{l}{\mathrm{ reaction }}\\{(\mp@subsup{\textrm{H}}{2}{}+\mp@subsup{\textrm{CO}}{2}{}->)}
```


Note, it's impossible to make more product when at equilibrium. The reaction just appears to have stopped moving.

Reactions not at Equilibrium

Burning methane, CH_{4}, in oxygen is a one-way reaction,

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\text { Energy }
$$

- here we only make products.

Energy released from eating food.
Time only moves in one direction (as we experience it).

Law of Chemical Equilibrium

$$
\mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}
$$

Equilibrium expression $\quad \mathrm{K}_{\mathrm{c}}=\frac{[\operatorname{Product}(\mathrm{s})]}{[\operatorname{Reactant}(\mathrm{s})]}$
[]: M or mol/L
K_{C} : Equilibrium constant

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

$\begin{cases}\mathrm{K}_{\mathrm{c}}>1 \longmapsto[\operatorname{product}(\mathrm{~s})] \uparrow & \text { It lies to the right. } \\ & \\ \mathrm{K}_{\mathrm{c}}<1 \longmapsto[\text { reactant }(\mathrm{s})] \uparrow & \text { It lies to the left. }\end{cases}$

Practice 1:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\left[\mathrm{N}_{2}\right]=0.921 \mathrm{M},\left[\mathrm{H}_{2}\right]=0.763 \mathrm{M}, \text { and }\left[\mathrm{NH}_{3}\right]=0.157 \mathrm{M}
$$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \longrightarrow \text { Reactants }
$$ (coefficients of $1 \& 3$ become powers of $1 \& 3$)

$$
\mathrm{K}_{\mathrm{c}}=\frac{(0.157)^{2}}{(0.921)(0.763)^{3}}=0.0602
$$

Law of Chemical Equilibrium

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$

Table 17.1 Results of Three Experiments for the Reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$ at $500^{\circ} \mathrm{C}$

	Initial Concentrations			Equilibrium Concentrations			$\left[\mathrm{NH}_{3}\right]^{2}$
Experiment	$\left[\mathrm{N}_{2}\right]_{0}$	$\left[\mathrm{H}_{2}\right]_{0}$	$\left[\mathrm{NH}_{3}\right]_{0}$	$\left[\mathrm{N}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{NH}_{3}\right]$	$\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}=K^{*}$
I	1.000 M	1.000 M	0	0.921 M	0.763 M	0.157 M	$\frac{(0.157)^{2}}{(0.921)(0.763)^{3}}=0.0602$
II	0	0	1.000 M	0.399 M	1.197 M	0.203 M	$\frac{(0.203)^{2}}{(0.399)(1.197)^{3}}=0.0602$
III	2.00 M	1.00 M	3.00 M	2.59 M	2.77 M	1.82 M	$\frac{(1.82)^{2}}{(2.59)(2.77)^{3}}=0.0602$

*The units for K are customarily omitted.

Each set of equilibrium concentration is called an equilibrium position and it depends on the initial concentrations (there are an infinite \# of equilibrium positions but only one equilibrium constant).

K remains the same even with the different equilibrium concentrations.

Equilibrium and the Law of Mass Action

For gases:

Equilibrium expression

$$
\mathrm{K}_{\mathrm{p}}=\frac{\text { Partial pressure of product }}{\text { Partial pressure of reactants }}
$$

K_{p} : Equilibrium constant

$$
\begin{array}{ll}
a \mathrm{~A}(\mathrm{~g}) & +\mathrm{bB}(\mathrm{~g}) \rightleftharpoons \mathrm{c}(\mathrm{~g})+\mathrm{dD}(\mathrm{~g}) \\
& \\
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{C}\right)^{c}\left(\mathrm{P}_{D}\right)^{d}}{\left(\mathrm{P}_{A}\right)^{2}\left(\mathrm{P}_{B}\right)^{b}} & \text { here } \underline{P} \text { means } \\
\text { partial pressure }
\end{array}
$$

$K_{p} \neq K_{c}$, something we'll look at shortly.

Practice 2: Write the expression for the equilibrium constant for:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Using $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{C}\right)^{\mathrm{c}}\left(\mathrm{P}_{D}\right)^{\mathrm{d}}}{\left(\mathrm{P}_{A}\right)^{\mathrm{a}}\left(\mathrm{P}_{B}\right)^{b}}$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{S 02}\right)^{2}\left(\mathrm{P}_{\mathrm{H} 2}\right)^{2}}{\left(\mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}\right)^{2}\left(\mathrm{P}_{o 2}\right)^{3}}$

Reminder this is the same as $\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{S o z}\right)^{2} \times\left(\mathrm{P}_{H 2}\right)^{2}}{\left(\mathrm{P}_{H 25}\right)^{2} \times\left(\mathrm{P}_{o 2}\right)^{3}}$

Homogeneous \& Heterogeneous Equilibriums

Homogeneous Equilibria: when all substances are in the same state.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Heterogeneous Equilibria: when more than one state are involved.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Heterogeneous Equilibria

The concentration of "pure" solids and liquids cannot change and they are constants.

The position of a heterogeneous equilibrium does not depend on the amounts of pure solids or liquids present.

$$
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{K}^{\prime}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]} \quad \mathrm{K}^{\prime}=\frac{\mathrm{C}_{1}\left[\mathrm{CO}_{2}\right]}{\mathrm{C}_{2}} \\
\frac{\mathrm{C}_{2} \mathrm{~K}^{\prime}}{\mathrm{C}_{1}}=\mathrm{K}=\left[\mathrm{CO}_{2}\right]
\end{gathered}
$$

The concentrations of pure solids or pure liquids are not included in equilibrium expression.

Heterogeneous Equilibria

Practice 3:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Water is not included because is a pure liquid.

$$
\mathrm{K}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]
$$

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Water is included because is a vapor (gas).

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}
$$

Temperature \& K

Each reaction has its own characteristic equilibrium constant, at it's own temperature.

The extraordinary empirical result, is that, regardless of the initial composition, the reaction adjusts so the activities give the same characteristic value of K for each reaction at that temperature.

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{g})$	300	4.0×10^{31}
	500	4.0×10^{18}
	1000	5.1×10^{8}
$\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}^{-}(\mathrm{g})$	800	2.1×10^{-3}
	1000	0.26
	1200	6.8

Different ways to relate K_{p} and K_{c}

Being able to express equilibrium constants in terms of pressure and concentration are critical to industry.

The important relationship between K_{p} and K_{c} is,
$K_{p}=(R T)^{\Delta n} K_{c} \quad$ (has the form of $P=c R T$, and c is $\mathrm{mol} \cdot \mathrm{L}^{-1}$)
$\mathrm{K}_{\mathrm{p}}=$ equilibrium constants in terms of pressure
$\mathrm{K}_{\mathrm{c}}=$ equilibrium constants in terms of concentration
$\Delta n, n$ is moles, and Δn is $n_{\text {products }}-n_{\text {reactants }}$

Note: your textbook writes K as the standard form, and written here as K_{p} to help differentiate the two.

Practice 3: At $400 .{ }^{\circ} \mathrm{C}$, the equilibrium constant K_{p} for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ is 3.1×10^{4}. What is the value of K_{c} at this temperature?
$\mathrm{K}_{\mathrm{p}}=(\mathrm{RT})^{\Delta \mathrm{n}} \mathrm{K}_{\mathrm{c}}, \mathrm{R}$ is the universal gas constant, $0.08206 \mathrm{~atm} \cdot \mathrm{~L} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$
$\Delta n, n_{\text {products }}-n_{\text {reactants, }} 2-(2+1)=-1$
$\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{K}_{\mathrm{p}}}{(\mathrm{RT})^{\Delta n}}, \frac{3.1 \times 104}{\left[(.08206)\left(400 .{ }^{\circ} \mathrm{C}+273\right) \mathrm{K}\right]-1}=1.7 \times 10^{6}$
An alternative method, using bar, $\mathrm{K}_{\mathrm{p}}=\left(\frac{c^{\circ} \mathrm{RT}}{P^{\circ}}\right)^{\Delta \mathrm{n}} \mathrm{K}_{\mathrm{c}}$ where

$$
\frac{c^{\circ} \mathrm{R}}{P^{\circ}}=\frac{1 \mathrm{bar}}{\left(8.3145 \times 10^{-2} \mathrm{~L} \cdot \mathrm{bar} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)\left(1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)}=12.03 \mathrm{~K}, \text { and }
$$

substituting this we end up with: $\mathrm{K}_{\mathrm{p}}=\left(\frac{\mathrm{T}}{12.03 \mathrm{~K}}\right)^{\Delta \mathrm{n}} \mathrm{K}_{\mathrm{c}}$
Both methods are equivalent.

Alternative Forms of the Equilibrium Constant

The following algebraic manipulations are helpful for deriving different forms of equilibrium constant expressions.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}), \mathrm{K}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\left[\left[\mathrm{I}_{2}\right]\right.\right.}=54$ at $700 .{ }^{\circ} \mathrm{C}$
1
Multiply the equation by $2,2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{HI}(\mathrm{g})$,

$$
\mathrm{K}=\frac{[\mathrm{HI}]^{4}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{I}_{2}\right]^{2}}=54^{2}=2900
$$

2
Reversing the equation, $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$,
$\mathrm{K}=\frac{\left[\mathrm{H}_{2}\left[\mathrm{I}_{2}\right]\right.}{[\mathrm{HI}]^{2}}=\frac{1}{54}=0.019$

Alternative Forms of the Equilibrium Constant

Combining multiply equations and multiply K's to find Overall equilibrium constant.

For example if K's are known for Equations 1 and 2 but not 3 we can manipulate $1 \& 2$ to get 3's K.

Eq. $12 \mathrm{P}(\mathrm{g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{3}(\mathrm{~g})$
Eq. $2 \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g})$
Eq. $32 \mathrm{P}(\mathrm{g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g})$
Eq. 1 can remain unchanged.

$$
\mathrm{K}_{1}=\frac{\mathrm{P}_{\mathrm{PCl} 3^{2}}}{\mathrm{P}_{\mathrm{P}}{ }^{2} \mathrm{P}_{\mathrm{Cl} 2^{3}}}
$$

Eq. 2 is multiplied by $2,2 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g})$

$$
\mathrm{K}_{2}{ }^{2}=\frac{\mathrm{P}_{\mathrm{PCl} 5^{2}}}{\mathrm{P}_{\mathrm{PCl} 3}{ }^{2} \mathrm{P}_{\mathrm{Cl} 2}{ }^{2}}
$$

Alternative Forms of the Equilibrium Constant

Next combine Eq. 1 and Eq. 2 and cancel like species.
Combine K_{1} and $\mathrm{K}_{2}\left(\mathrm{~K}_{2}\right.$ is now square, $\left.\mathrm{K}_{2}{ }^{2}\right)$

$$
\text { Eq. } 1 \quad 2 \mathrm{P}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{3}(\mathrm{~g})
$$

$$
\mathrm{K}_{1}=\frac{\mathrm{P}_{\mathrm{PCl} 3^{2}}}{\mathrm{P}_{\mathrm{P}}{ }^{2} \mathrm{P}_{\mathrm{Cl} 2^{3}}}
$$

Eq. $22 \mathrm{PCl}_{3}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g})$
Eq. $32 \mathrm{P}(\mathrm{g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{PCl}_{5}(\mathrm{~g})$

$$
\mathrm{K}_{2}^{2}=\frac{\mathrm{P}_{\mathrm{PCl}^{2}}}{\mathrm{P}_{\mathrm{PCl} 3}{ }^{2} \mathrm{P}_{\mathrm{Cl} 2}{ }^{2}}
$$

When you add two equation, you should multiply the K values.

$$
\mathrm{K}_{1}\left(\mathrm{~K}_{2}\right)^{2}=\mathrm{K}_{3}=\frac{\mathrm{P}_{\mathrm{PCl}^{2}}}{\mathrm{P}_{\mathrm{P}}{ }^{2} \mathrm{P}_{\mathrm{Cl} 2^{5}}}
$$

Using equilibrium constants

Equilibrium constants are "constants" and are therefore, powerful predicting tools! Next we look at:

1. Calculating K's from knowing equilibrium concentrations;
2. Calculating equilibrium concentrations from knowing K's.

	$\mathrm{P}_{\mathrm{SO2}}$ (bar)	$\mathrm{P}_{\mathrm{O} 2}$ (bar)	$\mathrm{P}_{\mathrm{SO} 3}$ (bar)	K
Exp 1	0.660	0.390	.0840	0.0415
Exp 2	0.110	.0110	.00750	0.0423
Exp 3	1.44	1.98	0.410	0.0409

Regardless of the initial compositions, the final K is always the same.

Using equilibrium constants

Equilibrium reactions like $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, have initial, changing, and final conditions in units of either pressures (P) or concentrations ($\mathrm{mol} \cdot \mathrm{L}^{-1}$).

The most universally adopted method to solve changing condition problems is to set up an equilibrium table.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

	H_{2}	I_{2}	HI
initial			
change			
equil. (final)			

Values going into the matrix are either pressure or $\mathrm{mol} \cdot \mathrm{L}^{-1}$.

Practice 4: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, starting with 1 bar each of H_{2} and I_{2}, the equilibrium pressure of HI was found to be 0.8 bar. What are the final pressures of H_{2} and I_{2} ? Calculate K_{p}.

- We start by building an equilibrium table, and plugging in the given data;
- Initially 1 bar each of H_{2} and I_{2} and no HI ;
- final or at equilibrium was 0.8 bar of HI ;

This is enough information to solve the rest of the table.

	H_{2}	I_{2}	HI
initial	1	1	0
change			0.8

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

	H_{2}	I_{2}	HI
initial	1	1	0
change	$-1 / 20.8=-0.4$	$-1 / 20.8=-0.4$	+0.8
equil.	$1-0.4=0.6$	$1-0.4=0.6$	0.8

To go from 0 to 0.8 , it must have changed by 0.8 ; notice it is " + " because it was created;

The changes are all related by stoichiometry; note the "-" because it is consumed;

The final H_{2} and I_{2} are found by combining the initial and changes;

Practice 4: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, starting with 1 bar each of H_{2} and I_{2}, the equilibrium pressure of HI was found to be 0.8 bar. What are the final pressures of H_{2} and I_{2} ? Calculate K_{p}.

A cleaned-up table.

	H_{2}	I_{2}	HI
initial	1	1	0
change	-0.4	-0.4	+0.8
equil.	0.6	0.6	0.8

At equilibrium $\mathrm{P}_{\mathrm{H} 2}=\mathrm{P}_{\mathrm{I} 2}=0.6$ bar, and $\mathrm{P}_{\mathrm{HI}}=0.8$ bar;
we can calculate K_{p} :
$\mathrm{K}_{\mathrm{p}}=\frac{(0.8 \text { bar })^{2}}{(0.6 \text { bar })(0.6 \text { bar })}=2$

Practice 5: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, starting with 0.5 bar each of H_{2} and N_{2}, it was found at equilibrium that the pressure of NH_{3} was 0.02 bar. What are the final pressures of H_{2} and N_{2} ? Calculate K_{p}.

- Make an equilibrium table with starting values;
- Calculate the one change we know, here NH_{3};
- Using stoichiometry, calculate the changes in H_{2} and N_{2};
- Combine the initial and change to find the final;

Important to remember "-" means consumed (going away) and "+" means being produced (making it).

	H_{2}	$\mathrm{~N}_{2}$	NH_{3}
initial	0.50	0.50	0
change	$-(3 / 2) 0.02=-0.03$	$-(1 / 2) 0.02=-0.01$	+0.02
equil.	$0.50-0.03=0.47$	$0.50-0.01=0.49$	0.02

Practice 5: $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, starting with 0.5 bar each of H_{2} and N_{2}, it was found at equilibrium that the pressure of NH_{3} was 0.02 bar. What are the final pressures of H_{2} and N_{2} ? Calculate K_{p}.

	H_{2}	$\mathrm{~N}_{2}$	NH_{3}
initial	0.50	0.50	0
change	-0.03	-0.01	+0.02
equil.	0.47	0.49	0.02

At equilibrium $\mathrm{P}_{\mathrm{H} 2}=0.47$ bar, $\mathrm{P}_{\mathrm{N} 2}=0.49$ bar, and $\mathrm{P}_{\mathrm{NH} 3}=0.02$ bar;
We have the information to calculate K_{p},

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{N H H}\right)^{2}}{\left(\mathrm{P}_{H 2}\right)^{3} \mathrm{P}_{\mathrm{N} 2}} \bumpeq \frac{(0.02)^{2}}{(0.47)^{3}(0.49)}=7.9 \times 10^{-3}
$$

Another way to use equilibrium expressions

1. The previous 2 examples found K (or K_{p}) from pressures (or concentrations).

$$
\begin{aligned}
\text { Method 1; } \operatorname{Exp} 3: & \frac{(0.00750)^{2}}{(0.110)^{2}(0.110)}=0.0423 \\
& \text { If we know these }
\end{aligned}
$$

2. Now we'll find the final pressures (or concentrations) from K (or K_{p}).

We can find these

If we know this
Method 2; $\operatorname{Exp} 1: \frac{\left(P_{S O 3}\right)^{2}}{\left(P_{S o 2}\right)^{2}\left(P_{o 2}\right)}, \frac{(0.0840)^{2}}{(0.660)^{2}(0.390)}=0.0415$

Practice 6: Suppose that a mixture of $0.482 \mathrm{~mol}_{2}$ and $0.933 \mathrm{~mol} \mathrm{O}_{2}$ is transferred to a reaction vessel of volume 10.0 L and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at 800. K ; at this temp. $\mathrm{K}_{\mathrm{p}}=3.2 \times 10^{-28}$ for the reaction $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$. Calculate the partial pressures of the gases in the equilibrium mixture.

First we find the pressure for each gas using PV = nRT

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{N} 2}=\frac{(0.482 \mathrm{~mol})\left(8.3145 \times 10^{-2} \mathrm{~L} \cdot \mathrm{bar} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)(800 . \mathrm{K})}{10.0 \mathrm{~L}}=3.21 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{O} 2}=\frac{(0.933 \mathrm{~mol})\left(8.3145 \times 10^{-2} \mathrm{~L} \cdot \mathrm{bar} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)(800 . \mathrm{K})}{10.0 \mathrm{~L}}=6.21 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{N} 2 \mathrm{O}}=0 \text { (initially) }
\end{aligned}
$$

We make our equilibrium table from known values.

Here we use " x " to denote the change in concentration which is based on stoichiometry; remembering that " + " means producing and "-" means going away.

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-2 x$	$-x$	$+2 x$
equil.	$3.21-2 x$	$6.21-x$	$+2 x$

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})
$$

Form an equilibrium expression,

$$
\mathrm{K}_{\mathrm{p}}=\frac{(2 \mathrm{x})^{2}}{(3.21-2 \mathrm{x})^{2}(6.21-\mathrm{x})}=3.2 \times 10^{-28}
$$

Practice 6: Suppose that a mixture of $0.482 \mathrm{~mol}_{2}$ and $0.933 \mathrm{~mol} \mathrm{O}_{2}$ is transferred to a reaction vessel of volume 10.0 L and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at 800. K ; at this temp. $\mathrm{K}_{\mathrm{p}}=3.2 \times 10^{-28}$ for the reaction $2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})$. Calculate the partial pressures of the gases in the equilibrium mixture.

Our equilibrium expression,

$$
\mathrm{K}_{\mathrm{p}}=\frac{(2 \mathrm{x})^{2}}{(3.21-2 \mathrm{x})^{2}(6.21-x)}=3.2 \times 10^{-28}
$$

This would be very difficult to solve quickly without using Newton's method or software.

Next we look at a method often called an approximation that can greatly reduce the time we spend solving complex problems.

Previously we found K_{p} is 3.2×10^{-28}, which is in fact very very small.
This means this is a "reactant-favored" reaction but more importantly, it tells us that K_{p} is so small that the amount of disassociation -that is \mathbf{x} - is very very small, so small we can ignore it in this case.

	N_{2}	O_{2}	$\mathrm{N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	-2x	-X	+2x
Equil.	$3.21-2 x$	$6.21-x$	+2x

In reality, the disassociation is small because of K_{p}, that 3.21 and 6.21 are much LARGER, so that our table actually looks like this.

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-2 x$	$-x$	$+2 x$
Equil.	3.21	6.21	$+2 x$

This approximation greatly simplifies our K expression from

$$
\mathrm{K}_{\mathrm{p}}=\frac{(2 \mathrm{x})^{2}}{(3.21-2 \mathrm{x})^{2}(6.21-\mathrm{x})}=3.2 \times 10^{-28}
$$

$$
\begin{aligned}
\text { to, } \quad & 3.2 \times 10^{-28}=\frac{(2 \mathrm{x})^{2}}{(3.21)^{2}(6.21)}= \\
& x=\sqrt{\frac{3.2 \times 10-28(3.21) 2(6.21)}{2}} \\
& x=7.2 \times 10^{-14}
\end{aligned}
$$

Now we can solve for our final concentrations.

Substituting our \mathbf{x} back into our table to find our final concentrations.

$$
x=7.2 \times 10^{-14}
$$

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-2 x$	$-x$	$+2 x$
Equil.	$3.21-2 x$	$6.21-x$	$+2 x$

$N_{2}: 3.21-2 x, \quad 3.21-2\left(7.2 \times 10^{-14}\right)=3.21$ bar N_{2}
$\mathrm{O}_{2}: \quad 6.21-\mathrm{x}, \quad 6.21-\left(7.2 \times 10^{-14}\right)=6.21 \operatorname{bar~}_{2}$
$\mathrm{N}_{2} \mathrm{O}: \quad 2 \mathrm{x}, \quad 2\left(7.2 \times 10^{-14}\right)=1.4 \times 10^{-13} \operatorname{bar} \mathrm{~N}_{2} \mathrm{O}$

Question: When can we "throw" x out?

When $\mathrm{K}\left(\right.$ or K_{p}) is small, and the starting concentrations are large, we assume disassociation, " x ", is negligible.

$$
\mathrm{K}_{\mathrm{p}}=3.2 \times 10^{-28}
$$

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-\underline{-2 \mathrm{x}}$	$\underline{-x}$	+2 x
Equil.	$3.21-\underline{2 x}$	$6.21-\underline{x}$	+2 x

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-2 x$	$-x$	$+2 x$
Equil.	3.21	6.21	$+2 x$

Question: When can we "throw" x out?

$$
<5 \% \text { rule }
$$

The 5% rule says we can ignore " x " when there is less than 5% decomposition or ionization change (the definition of a weak acid). Previously: $x=7.2 \times 10^{-14}$, our initial concentration 3.21 M .
$\%$ ionization $=\frac{7.2 \times 10-14}{3.21} \times 100=2.2 \times 10^{-12}$ which $\lll 5 \%$.

	N_{2}	O_{2}	$\mathrm{~N}_{2} \mathrm{O}$
initial	3.21	6.21	0
change	$-2 x$	$-x$	$+2 x$
Equil.	$3.21-2 x$	$6.21-x$	$+2 x$

A note of good practice is, once solving for x , always plug x back into the original equilibrium table to make sure you're below 5\% -and- to get your final values.

Practice 7: Hydrogen chloride gas at 0.012 bar is added to a reaction vessel containing solid iodine. At the temperature of the experiment, $\mathrm{K}_{\mathrm{p}}=3.5 \times 10^{-32}$ for $2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$. Assume that some I_{2} remains at equilibrium. What are the equilibrium partial pressures of each gaseous substance in the reaction mixture?

	HCl	I_{2}	HI	Cl_{2}
initial	0.012		0	0
change	-2 x		+2 x	+x
equil.	$0.012-2 \mathrm{x}$		2 x	x

Since K_{p} is very small, we'll make the assumption that the $2 x$ in $0.012-2 x$ is negligible; that HCl will not dissociate much.

We solve for $x, K=\frac{(2 x)^{2} x}{(0.012)^{2}}=3.5 \times 10^{-32}$,
This simplifies to $3.5 \times 10^{-32}=\frac{4 x^{3}}{(0.012)^{2}}$,
$x=1.1 \times 10^{-12}$, test first for $<5 \%$

$$
\% \text { change }=\frac{1.1 \times 10-12}{0.012} \times 100=9.2 \times 10^{-9}
$$

plugging x back into our original equation to find the final concentrations,
$\mathrm{HCl}=0.012-\mathrm{x}, \quad 0.012-1.1 \times 10^{-12}=0.012 \mathrm{bar}$
some I_{2} remains
$\mathrm{HI}=2 \mathrm{x}, 2\left(1.1 \times 10^{-12}\right)=2.2 \times 10^{-12} \mathrm{bar}$
$\mathrm{Cl}_{2}=\mathrm{x}, \quad=1.1 \times 10^{-12}$ bar

Practice 8: Suppose that we place 3.12 g of PCl_{5} in a reaction vessel of volume 500. mL and reach equilibrium at $250 .{ }^{\circ} \mathrm{C}$, when $\mathrm{K}_{\mathrm{p}}=78.3$ for the reaction
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. All three substances are gases at $250^{\circ} \mathrm{C}$. Find the composition of the equilibrium mixture in bar.

Since we're given K_{p}, we have enough information to find the pressure of PCl_{5}. Using PV = nRT, we need mole first.

Mole $\mathrm{PCl}_{5}, \frac{3.12 \mathrm{~g}}{208.24 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}$
$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}, \frac{\frac{3.12 \mathrm{~g}}{208.24 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}\left(8.3145 \times 10^{-2} \mathrm{~L} \cdot \mathrm{bar} \cdot \mathrm{K}^{-1} \cdot \mathrm{~mol}^{-1}\right) 523 \mathrm{~K}}{0.500 \mathrm{~L}}=1.30 \mathrm{bar}$

$$
\mathrm{K}_{\mathrm{p}}=78.3 \text { for } \mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) .
$$

	PCl_{5}	PCl_{3}	Cl_{2}
initial	1.30	0	0
change	$-x$	$+x$	+x
equil.	$1.30-\mathrm{x}$	x	x

$K_{p}=\frac{x^{2}}{1.30-x}=78.3$ however, K_{p} is very large, which means " x " in 1.30-x will be substantial; PCl_{5} will dissociate noticeably.

We simplify to;
$78.3(1.30-x)=x^{2}$, or $x^{2}+78.3 x-102$ the only way to solve this is with the quadratic equation.
$\mathrm{K}_{\mathrm{p}}=78.3$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$.
$x^{2}+78 x-102$, using $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\frac{-78 \pm \sqrt{78^{2}-4(102)}}{2}$ we solve and find $x=-79.6$ and 1.28
Since a "-" means the opposite of " + " or perhaps anti-mass, which has no meaning in chemistry. Therefore, $x=1.28$ bar

	PCl_{5}	PCl_{3}	Cl_{2}
initial	1.30	0	0
change	-x	+x	+x
final	$1.30-\mathrm{x}$	x	x

$$
\begin{array}{lll}
\mathrm{PCl}_{5}=1.30 \cdot \text { Equil. } 0-1.28 & =0.02 \mathrm{bar} \\
\mathrm{PCl}_{3}=\mathrm{x} & , & =1.28 \mathrm{bar} \\
\mathrm{Cl}_{2}=\mathrm{x} & & =1.28 \mathrm{bar}
\end{array}
$$

$$
\% \text { change }=\frac{1.28}{1.30} \times 100=98.5
$$

Le Châtelier's Principle

> Because chemical equilibria are dynamic, they respond to changes or disturbances in concentrations, pressure and temperature.

Equilibrium shifts to counter a disturbance.

When a change is imposed on a system at equilibrium, the position of the equilibrium shifts in a direction that tends to reduce the effect of that change.

Le Châtelier's Principle

1. Effect of a change in concentration:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Add $\mathrm{N}_{2} \Longrightarrow\left[\mathrm{NH}_{3}\right] \uparrow$ and $\left[\mathrm{H}_{2}\right] \downarrow$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Le Châtelier's Principle

A more visual representation of an equilibria is what happens to the water level in two beakers joined, in such a way to allow water to freely move between the two beakers.

The water level is the same in each beaker, where the water level is representing an equilibrium in the two beakers.

Adding water to the left beaker will cause the water to flow to the right.

The water flows until a new equilibrium is reached.

Le Châtelier’s Principle

1. Effect of a change in concentration:

- When a reactant or product is added the system shifts away from that added component.
- If a reactant or product is removed, the system shifts toward the removed component.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\text { Add } \mathrm{NH}_{3} \Longleftrightarrow\left[\mathrm{~N}_{2}\right] \uparrow \text { and }\left[\mathrm{H}_{2}\right] \uparrow
$$

$$
\text { Remove } \mathrm{N}_{2} \Longleftrightarrow\left[\mathrm{NH}_{3}\right] \downarrow \text { and }\left[\mathrm{H}_{2}\right] \uparrow
$$

Remove $\mathrm{NH}_{3} \longleftrightarrow\left[\mathrm{~N}_{2}\right] \downarrow$ and $\left[\mathrm{H}_{2}\right] \downarrow$

Le Châtelier's Principle

1. Effect of a change in concentration:

K (equilibrium constant) does not change.
It remains constant.

Practice 9: Consider the equilibrium $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Predict the effect on each equilibrium concentration of (a) the addition of N_{2}; (b) the removal of $\mathrm{H}_{2} \mathrm{O}$.
3. Over time N_{2} will \downarrow
(a) the addition of N_{2},

"1. \uparrow " is an increase in concentration, and (1.) means it was the first event.
"2. \leftarrow " means a shift in equilibrium to the left to get rid of excess N_{2}. Excess N_{2} will react with $\mathrm{H}_{2} \mathrm{O}$ producing more reactants $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{O}_{2}\right)$.

All " 3 " arrows describe the changes in concentration to reach equilibrium.

Forcing products

Le Chatelier's principle suggests a good way to ensure that a reaction goes on generating a substance: simply remove products as they are formed.
(b) the removal of $\mathrm{H}_{2} \mathrm{O}$,

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\begin{array}{llll}
3 . \downarrow & 3 . \downarrow & 3 . \uparrow & 1 . \downarrow
\end{array}
$$

2. \rightarrow

Practice 10: Using the final values from Practice 8 we add $0.0100 \mathrm{~mol} \mathrm{Cl}_{2}(\mathrm{~g})$ to the container (of volume 500 mL) (which is equal to 0.870 bar). Calculate the new composition of the equilibrium mixture,
$\mathrm{K}=78.3$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$.

$$
\begin{aligned}
& \text { Practice } 8: \\
& \mathrm{PCl}_{5}=0.02 \mathrm{bar} \\
& \mathrm{PCl}_{3}=1.28 \mathrm{bar} \\
& \mathrm{Cl}_{2}=1.28 \mathrm{bar}
\end{aligned}
$$

	PCl_{5}	PCl_{3}	Cl_{2}
initial	0.02	1.28	$1.28+0.870$
change	$+x$	$-x$	$-x$
final	$0.02+x$	$1.28-x$	$2.15-x$

When we add to the product side, we expect to produce more reactant; Now the final.

Practice 10: Using the final values from Practice 8 we add $0.0100 \mathrm{~mol} \mathrm{Cl}_{2}(\mathrm{~g})$ to the container (of volume 500 mL) (which is equal to 0.870 bar). Calculate the new composition of the equilibrium mixture,
$\mathrm{K}=78.3$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$.

Write the equilibrium expression
$K=\frac{(1.28-x)(2.15-x)}{0.02+x}=78.3 \quad$ solved with software
$x=81.7,0.144$ though only 0.144 makes sense.

$$
\begin{aligned}
& \mathrm{PCl}_{5}=0.02+\mathrm{x}, 0.02+0.144=0.03 \mathrm{bar} \\
& \mathrm{PCI}_{3}=1.28-\mathrm{x}, 1.28-0.144=1.27 \mathrm{bar} \\
& \mathrm{Cl}_{2}=2.15-\mathrm{x}, 2.15-0.144=2.14 \mathrm{bar}
\end{aligned}
$$

Le Châtelier's Principle

2. Effect of a change in volume:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

V is decreased \rightarrow Molecules hit the wall more often $\rightarrow P$ is increased

Le Châtelier's Principle: System will shift in the direction that reduces P.

Le Châtelier's Principle

2. Effect of a change in volume:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$


```
                                    Key:
                                    O}\mp@subsup{\textrm{N}}{2}{
\(\infty \mathrm{H}_{2}\)
( \(\mathrm{NH}_{3}\)
```

System shifts in the direction that gives the smaller number of gas molecules.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Le Châtelier's Principle

2. Effect of a change in volume:

$\mathrm{V} \downarrow$ or $\mathrm{P} \uparrow \longrightarrow$ Shifts toward the smaller \# of gas molecules.
$\mathrm{V} \uparrow$ or $\mathrm{P} \downarrow \longrightarrow$ Shifts toward the greater \# of gas molecules.

It works if there is a gas molecule.

No gas molecule \rightarrow No change in equilibrium

Le Châtelier's Principle

2. Effect of a change in volume:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

System shifts in the direction that gives the smaller number of gas molecules.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \longleftarrow \longrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Le Châtelier's Principle

2. Effect of a change in volume:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$\mathrm{V} \downarrow$ or $\mathrm{P} \uparrow \Longrightarrow$ to the left $\Longrightarrow \quad\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \uparrow$ and $\left[\mathrm{NO}_{2}\right] \downarrow$
$\mathrm{V} \uparrow$ or $\mathrm{P} \downarrow \Longleftrightarrow$ to the right $\Longrightarrow \quad\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \downarrow$ and $\left[\mathrm{NO}_{2}\right] \uparrow$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

The same \# of gas molecules

The change of V (or P) dose not affect.

Le Châtelier's Principle

2. Effect of a change in volume:

K (equilibrium constant) does not change.
It remains constant.

Le Châtelier's Principle

3. Effect of a change in temperature:

K (equilibrium constant) changes with T .

Exothermic reactions: $\quad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}+$ energy (heat) Heat is a product.

Endothermic reactions: $\mathrm{A}+\mathrm{B}+$ energy (heat) $\rightarrow \mathrm{C}+\mathrm{D}$
Heat is a reactant.

Le Châtelier's Principle

0
At $100^{\circ} \mathrm{C}$ the flask is definitely reddish-brown due to a large amount of NO_{2} present.

b
At $0^{\circ} \mathrm{C}$ the equilibrium is shifted toward colorless $\mathrm{N}_{2} \mathrm{O}_{4}(g)$.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\text { Heat (energy) }
$$

$\mathrm{T} \uparrow \Longleftrightarrow$ to the left

$\left[\mathrm{NO}_{2}\right] \uparrow$
It shifts to consume energy.
$\mathrm{T} \downarrow \Longleftrightarrow$ to the right \Longleftrightarrow

It shifts to produce energy.

Le Châtelier's Principle

Practice 11:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-566 \mathrm{~kJ}
$$

If we would like to increase the amount of product, how can we change the concentrations, P (or V), and T?

An exothermic reaction \rightarrow Heat is a product.
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}_{2}(\mathrm{~g})+$ Heat (energy)

Remove $\left[\mathrm{CO}_{2}\right]$
Add [CO] or Add [O_{2}]
$\downarrow \mathrm{V}$ (or $\uparrow \mathrm{P})$
$\downarrow T$

Catalyst \& Le Châtelier's Principle

A catalyst increases the rate of a chemical reaction without being consumed itself.

Le Châtelier's Principle

A catalyst has no effect on the position of an equilibrium.

The rate of a reaction increases for the both directions at the same extent.

