Oxidation & Reduction

Bohr model

Electron orbits the nucleus in circles.

Electrons are moving in only allowed energy levels.

Wave mechanical model of atom

Electron acts as a wave.

Electron does not orbit the nucleus in circles.

Electrons move randomly; however, there is more chance to find them close to nucleus.

Emission of energy by atoms

Only certain energy changes are allowed.

Energy levels are quantized.

Hydrogen Emission Spectrum

Only certain types of photons are produced.

Pauli exclusion principle

Orbital: is a region of space and can hold maximum 2 electrons

Two electrons can stay together even with their opposite charges.

Sublevels: s p d f

2 2+2+2=6 2+2+2+2=10 2+2+2+2+2=14

Level	Orbitals	Maximum number of electrons
1	1s	2
2	2s, 2p	2 + 6 = 8
3	3s, 3p, 3d	2 + 6 + 10 = 18
4	4s, 4p, 4d, 4f	2 + 6 + 10 +14 = 32

Principal energy level

Orbitals

Electrons configuration: description of the orbitals that its electrons occupy.

Noble gas notation

Orbital filling order

Hf (72): $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^2$

			Noti exc	ice t epti	that ons	Cr a to t	and he ι	Cu Jsua	are al tro	end.							
		Having half-filled d orbitals															
		adds some stability.															
К 4 <i>s</i> ¹	Ca 4s ²	Sc 3d ¹	Ti 3d²	V 3 <i>d</i> ³	Cr 4s ¹ 3d ⁵	Mn 3d ⁵	Fe 3 <i>d</i> ⁶	Co 3d ⁷	Ni 3d ⁸	Cu 4s ¹ 3d ¹⁰	Zn 3d ¹⁰	Ga 4p ¹	Ge 4 <i>p</i> ²	As 4p ³	Se 4p ⁴	Br 4p ⁵	Kr 4p ⁶

(You must be able to write the electron configurations for the first 4 periods.)

Valence level: outermost principle energy level

Valence electrons: electrons in highest principal energy level.

- CI (17) $1s^2 2s^2 2p^6 3s^2 3p^5 \longrightarrow 7$ valence electrons
- Ar (18) $1s^2 2s^2 2p^6 3s^2 3p^6 \longrightarrow 8$ valence electrons
 - C (6) $1s^2 2s^2 2p^2 \longrightarrow 4$ valence electrons
 - Ne (10) $1s^2 2s^2 2p^6 \longrightarrow 8$ valence electrons

Noble gases — Filled valence level

Only valance electrons are involved in chemical bond and chemical reactions.

Inner electrons (core electrons) are not involved.

Elements in same column (group) have the same number of electrons in their valance levels.

Same chemical and physical properties.

Lewis dot structure

Only for main-group element: # of group = # of valance electrons

Atomic Size

Size of atom: is the size of its outermost occupied orbital.

H II															+	: 14
											· B	• C	N N	• 0	• F	a Ne
0 0	1									2	8 Al	* S		• S	р () 0	= Ar
• К » С	n 8e	- 18 0	31 V 	a Cr	n Ma	a Fr	r Ce	a Ni	9 Ca	• Za	n Ga	ar Ge	н Ал	. 5	* Br	* Kr
· E5 • 5		• 2	4 M	e Mo		- Ra	e Rh	- 14	* Ag	. 64	• 1•		n 56	e Te	- 1	n Xe
e Ci s Bi	ar-ti La-La	- Hf	1 Th	• W	. R.	9 Os	17 Br	• 11	њ Аж 0	- 11g	• 11	• 75	* Bi	n Pu	* At	= Rs
e Fr a Ra	Acle		- 01													11.
	+ La	* 6	= Pr	- Nd	e Pm	< 5m	o Es	= Gd	- Th	= Dy	e Ho	a Er	- Ta	+ 13	n La	
	= Ar	* Th	a Pa	n U	n Np	» Pe	n Am	n Ca	er Bå	a (1	e Es	-To	- 36	ie:No	-le	

Ionization Energy

$Li + energy \rightarrow Li^+ + e^$ ion

Ionization energy: the energy required to remove the most loosely held electron from an atom in the gaseous state.

Ions Electron Configuration

• Ions have *electron configurations* where the neutral atom has lost or gained electrons.

Oxygen, O, 1s²2s²2p⁴

Oxide, O²⁻, 1s²2s²2p⁶

Sodium, Na, **1s²2s²2p⁶3s¹**

sodium cation, Na⁺, $1s^22s^22p^63s^0 = 1s^22s^22p^6$

 Notice both O²⁻ and Na⁺ have electron configurations identical to the noble gas neon.

Practice

- What is the correct electron configuration for the element phosphorus?
- What is the correct electron configuration for the element titanium?
- Which noble gas electron configuration is exactly the same as the electron configuration for the Ca²⁺ ion?
- Which noble gas electron configuration is exactly the same as the electron configuration for the Se²⁻ ion?