Matter \& Measurement

Chemistry

Chemistry: science that deals with materials (matters) and their changes.

Central Science

All sciences are connected to chemistry.

Changes

Chemical change (chemical reaction):
substance(s) are used up (disappear) \rightarrow other forms
burning a paper or a leaf changes color in the fall

Physical change: identities of the substances do not change. (change of state)
evaporation of water or melting

Physical and Chemical Properties

Physical Properties: a directly observable characteristic of a substance exhibited as long as no chemical change occurs.

Color, Odor, Volume, State, Density, Melting and boiling point.

Chemical Properties: Ability to chemical changes. (forming a new substance(s))

Burning wood - rusting of the steel

Scientific method

1. Fact: is a statement based on direct experience (observation).

State the problem and collect data.

Qualitative observation: Water is liquid.

Quantitative observation: water boils at $100^{\circ} \mathrm{C}$.

Measurement

Scientific method

2. Hypothesis: is statement that is proposed to explain the observation.

(without actual proof)

3. Experiment: performing some tests to prove hypothesis.
(find a proof)

Scientific method

4. Theory (model): is a set of tested hypotheses.

We have a stronger belief in it because of more evidence supports it.

Law: is a summery of observed behavior.
We formulate this observations.

Serendipity: Observation by chance

Theory verses Law

Scientific theory : Very general, "Why it happens," often includes many "Laws"

Scientific law : Very specific, "What will happen" often expressed in mathematical equations.

A Heat Theory and (many) Heat Law(s),

The kinetic molecular theory of motion is the idea that particles move faster because they are hotter.

Charles Law will tell us the consequences of the heating process, the exact, numerical value, what happens to pressure after heating an object.

> How science progresses insight \rightleftarrows data \rightleftarrows law or theory

Why it happens

Matter

Matter: has mass and takes space.

Matter \& Energy

Are they related?

All objects move, except at the hypothetical temperature zero Kelvin.

A common energy formula: $E_{\text {kinetic }}=\frac{m v^{2}}{2}$ shows the relationship between energy, mass and speed.

We see in many energy equations this mass and motion relationship.

Matter \& Energy

Matter has mass and volume.

3-states of matter

Speed

a) Solids
b) Liquids
c) Gases

Atoms begin to move faster as temperature is increased.

Solid

Gas

Measurements

Measurements

Measurement consists of two parts:

Number - Unit

Measurement and Units

Metric system or SI (International System of Units) meter, liter, gram ...

English system (use in the United States) miles, gallons, pounds ...

Advantages of SI: we have base unit for each kind of measurement other units are related to the base unit by power of 10 .

Prefix (symbol)	Value
giga (G)	10^{9}
mega (M)	10^{6}
kilo (k)	10^{3}
deci (d)	10^{-1}
centi (c)	10^{-2}
milli (m)	10^{-3}
micro (μ)	10^{-6}
nano (n)	10^{-9}

base unit of length: meter (m)
1 kilometer $(\mathrm{km})=1000$ meter (m)
1 centimeter (cm) $=0.01$ meter (m)
1 nanometer $(\mathrm{nm})=1 \times 10^{-9}$ meter (m)
base unit of mass: gram (g)
1 kilogram (kg) = 1000 gram (g)
1 milligram (mg) $=0.001$ gram (g)
base unit of volume: liter (L)
1 milliliter $(\mathrm{mL})=0.001$ liter (L)
1000 milliliter $(\mathrm{mL})=1$ liter (L)
base unit of time: second (s)
60 seconds (s) $=1$ minute (min) 60 minutes $(\mathrm{min})=1$ hour (h)
$1 \mathrm{~mL}=1 \mathrm{cc}=1 \mathrm{~cm}^{3}$

Tools (equipment) of measurement

Length: Meterstick or Ruler

Volume: Graduated cylinder, Pipette

Mass: Balance

Temperature

english system \longrightarrow Fahrenheit (${ }^{\circ} \mathrm{F}$) metric system or $\mathrm{SI} \longrightarrow$ Celsius or centigrade $\left({ }^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32 \\
& { }^{\circ} \mathrm{C}=\frac{{ }^{\circ} \mathrm{F}-32}{1.8}
\end{aligned}
$$

Kelvin scale or absolute scale (K)

$$
\begin{aligned}
& \mathrm{K}={ }^{\circ} \mathrm{C}+273 \\
& { }^{\circ} \mathrm{C}=\mathrm{K}-273
\end{aligned}
$$

Temperature

Temperature

1. Size of degree is the same for Celsius and Kelvin scales.
2. Fahrenheit scale is smaller than others.
3. The zero points are different on all there scales.

Scientific (exponential) notation

based on power of 10

$10000=1 \times 10^{4}$
$0.0001=1 \times 10^{-4}$
$4500000=4.5 \times 10^{6}$
$94800=9.48 \times 10^{4}$
$0.000078=7.8 \times 10^{-5}$
$0.0121=1.21 \times 10^{-2}$

Positive power: greater than 1
Negative power: Less than 1

Scientific (exponential) notation

Scientific (exponential) notation

$\left(3.62 \times 10^{6}\right)\left(7.43 \times 10^{3}\right)=26.90 \times 10^{9}=2.69 \times 10^{10}$

$$
\frac{\left(3.62 \times 10^{7}\right)}{\left(1.35 \times 10^{5}\right)}=2.68 \times 10^{2}
$$

Moving the decimal point to right \qquad

Moving the decimal point to left

Conversion of Units

Conversion Factor:

$$
1 \mathrm{~m}=1000 \mathrm{~mm}
$$

Equivalence statement (Equality)
$\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}$ or $\frac{1000 \mathrm{~mm}}{1 \mathrm{~m}} \quad$ Conversion factor

Ratios of two parts of equality

Conversion of Units

Factor-Label method (dimensional analysis):

$$
36 \mathrm{~m}=? \mathrm{~mm}
$$

$36 \mathrm{~m} \times$ conversion factor $=? \mathrm{~mm}$

Conversion of Units

Factor-Label method

$25 \mathrm{~kg}=? \mathrm{lb}$

$$
25 \mathrm{~kg} \times \frac{2.205 \mathrm{lb}}{1 \mathrm{~kg}}=55 \mathrm{lb}
$$

78 mile $=? \mathrm{~km}$
$45 \mathrm{~m} / \mathrm{hr}=? \mathrm{in} / \mathrm{min}$
$45 \frac{\mathrm{~m}}{\mathrm{hr}} \times \frac{39.37 \mathrm{in}}{1 \mathrm{~m}} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=30 . \mathrm{in} / \mathrm{min}$

A note of good practice to students

$$
\begin{aligned}
& \left(\frac{2}{x}\right)^{2}=\frac{4}{x^{2}} \quad \text { Which can also be writt } \\
& \left(\frac{1 \mathrm{~cm}}{10^{-2} m}\right)^{-3}=\left(\frac{10^{-2} m}{1 \mathrm{~cm}}\right)^{3}=\frac{10^{-6} m^{3}}{1 \mathrm{~cm}^{3}} \\
& \frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}
\end{aligned}
$$

Example: Express an acceleration of $9.81 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ in kilometers per hour squared ($\mathrm{km} \cdot \mathrm{hr}^{-2}$).

$$
\begin{aligned}
& 1 \mathrm{~km}=1000 \mathrm{~m} \\
& 1 \mathrm{hr}=3600 \mathrm{~s}
\end{aligned}
$$

$\frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{9.81 \mathrm{~m}}{\mathrm{~s}^{2}} \times\left(\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)^{2}=\frac{1.27 \times 10^{5} \mathrm{~km}}{\mathrm{hr}^{2}}$

Our measured number with the least SF is 9.81 or 3 SF

Extensive \& Intensive Properties

Extensive properties are physical properties that depend on the quantity of matter (n atoms):
Volume \& Mass

Cutting coins in half will give you half the number of atoms

Extensive \& Intensive Properties

Intensive properties are independent of the quantity of matter: Density \& Temperature

Same temperature different volumes.

Density and Specific gravity

density: amount of mass present in a given volume.

$$
\mathbf{d}=\frac{\mathbf{m}}{\mathbf{V}} \quad \text { d: density }\left(\mathrm{g} / \mathrm{mL} \text { or } \mathrm{g} / \mathrm{cm}^{3}\right) \quad \mathrm{m}: \text { mass } \quad \mathrm{V} \text { : volume }
$$

The density of ice is less than the density of liquid water, so the ice floats on top of the water.

Salad oil is less dense than vinegar.

Density and Specific gravity

Substance	Physical State	Density ($\mathrm{g} / \mathrm{cm}^{3}$)
oxygen	gas	0.00133*
hydrogen	gas	0.000084^{*}
ethanol	liquid	0.785
benzene	liquid	0.880
water	liquid	1.000
magnesium	solid	1.74
salt (sodium chloride)	solid	2.16
aluminum	solid	2.70
iron	solid	7.87
copper	solid	8.96
silver	solid	10.5
lead	solid	11.34
mercury	liquid	13.6
gold	solid	19.32

Gas = low density

Liquids: close to $1 \mathrm{~g} / \mathrm{cm}^{3}, 1 \mathrm{~g} / \mathrm{mL}$

Metals: various heavy densities.

Density Examples

Example 1. A gas fills a volume of $1200 . \mathrm{mL}$ and has a mass of 1.60 g. What is the density of the gas?

$$
\mathrm{d}=\frac{\mathrm{m}}{\mathrm{~V}}=\frac{1.60 \mathrm{~g}}{1200 \mathrm{~mL}}=0.00133 \mathrm{~g} / \mathrm{mL}
$$

Example 2. A cube of pure silver measures 2.0 cm on each side. The density of silver is $10.5 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of the cube?

$$
\begin{gathered}
V=\mathrm{L} \times \mathrm{H} \times \mathrm{W}=2.0 \mathrm{~cm} \times 2.0 \mathrm{~cm} \times 2.0 \mathrm{~cm}=8.0 \mathrm{~cm}^{3} \\
\mathrm{~m}=\mathrm{d} \times \mathrm{V}=8.0 \mathrm{~cm}^{3} \times 10.5 \mathrm{~g} / \mathrm{cm}^{3}=84 . \mathrm{g}
\end{gathered}
$$

Density Examples

Example 3: The density of air is $1.25 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of air in a room that is 5.00 meters long, 4.00 meters wide and 2.2 meters high?

$$
\mathrm{V}=\mathrm{L} \times \mathrm{H} \times \mathrm{W}
$$

$$
\begin{aligned}
& \mathrm{V}=5.0 \mathrm{~m} \times 4.0 \mathrm{~m} \times 2.2 \mathrm{~m}=44 \mathrm{~m}^{3} \quad \mathrm{Hmm}, \text { not so helpful. } \\
& \mathrm{V}=500 . \mathrm{cm} \times 400 . \mathrm{cm} \times 220 \mathrm{~cm}=44000000 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
d=\frac{m}{V} \quad m=d \times V
$$

$$
\mathrm{m}=\left(4.4 \times 10^{7} \mathrm{~cm}^{3}\right) \times\left(1.25 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}\right)=55000 \mathrm{~g} \text { or } 55 \mathrm{~kg}
$$

Density and Specific gravity

Specific gravity:

$$
\mathbf{S G}=\frac{\mathbf{d}_{\text {substance }}}{\mathbf{d}_{\text {water }}}
$$

No units (dimensionless)

Hydrometer

Significant Figures

Exact numbers: we do not use a measuring devise.
(Counting numbers)

Number of students in class, $1 \mathrm{~m}=100 \mathrm{~cm}$

Inexact numbers: we use a measuring devise.
(measuring numbers)

Temperature of room, mass of table

Precise verses Accurate

Precise \& Accurate

Accurate

Neither precise nor accurate

Significant Figures

We always have errors in measurement: Personal and instrumental errors.

All measurements need an estimate.

between 11.6 and $11.7 \longrightarrow 11.62$ or 11.63 or 11.67 or \ldots

Significant Figures

Certain numbers: 11.6

Uncertain number: 11.66

(estimated digit - only the last digit)

Significant Figures: all numbers recorded in a measurement. (certain and uncertain)

We only write the correct number of digits in our reports, these are called significant figures.

When we report, we show uncertainty with \pm
11.66 ± 0.01

Recording Measurements

When using a measuring tool 1. Write all the digits you see 2. Make one guess
3. Add units

Recording Measurements

When using a measuring tool

1. Write all the digits you see
2. Make one guess
3. Add units

25
25.7
$25.7^{\circ} \mathrm{C}$

Recording Measurements

When using a measuring tool

1. Write all the digits you see
8.0
8.00
8.00 cm

This number has 3 digits

Reading liquid: get eye level with the Bottom of the meniscus

Adhesion

Cohesion

Reading liquid: get eye level with the Bottom of the meniscus

What would the volume reading be?
What do you see: What is your guess: Final:

16
16.4
16.4 mL

Significant Figures rules

1. Nonzero digits count as significant figures. $297.32 \longrightarrow 5$ S.F.
2. Zeros:
a) Zeros at the beginning of numbers do not count as S.F. (Leading zeros).

$$
0.0031 \longrightarrow 2 \text { S.F. }
$$

b) Zeros between two nonzero digits count as S.F. (Captive zeros).

$$
600067 \longrightarrow 6 \text { S.F. }
$$

c) Zeros at the end of numbers (Trailing zeros):

If there is a decimal point, count as S.F. $2.800 \longrightarrow 4$ S.F.
If there is not a decimal point, do not count as S.F.

Rounding off

1. If the digit to be removed:
a) is less than 5 , the preceding digit stays the same.
$5.343 \longrightarrow 5.34$ (2 decimal places) $\quad 5.343 \longrightarrow 5.3$ (1 d.p.)
b) is equal to or greater than 5 , the preceding digit is increased by 1 .
$6.456 \longrightarrow 6.46$ (2 decimal places) $\quad 6.456 \longrightarrow 6.5$ (1 d.p.)
2. We round off at the end of calculation.

Significant Figures in calculation

1. Multiplication or division:

Number of significant figures in result $=$ Smallest number of significant figures.

$$
\begin{aligned}
& 4.000 \times 560 \times 7001 \times 0.003=47046.72=50000 \\
& 4 \text { S.F. } \quad 2 \text { S.F. } \quad 4 \text { S.F. } \quad 1 \text { S.F. }
\end{aligned}
$$

$$
\begin{aligned}
& 4 \text { S.F. } \longleftarrow \frac{8.600}{44000}=0.000195454=\begin{array}{r}
0.00020 \\
2 \text { S.F. } \longleftarrow
\end{array} \frac{\text { S.F. }}{4400}
\end{aligned}
$$

Significant Figures in calculation

2. Addition or subtraction:

Number of decimal places in result $=$ Smallest number of decimal places.

$$
\begin{aligned}
& 57.93+0.05-0.230+4600=4657.75=4658 \\
& 2 \text { d.p. } 2 \text { d.p. } \quad 3 \text { d.p. } \quad 0 \text { d.p. } \quad 0 \text { d.p. } \\
& 710.0-0.0063-4098.1+4.63=-3383.4763=-3383.5 \\
& 1 \text { d.p. } 4 \text { d.p. } \quad 1 \text { d.p. } \quad 2 \text { d.p. } \\
& 1 \text { d.p. }
\end{aligned}
$$

Significant Figures in calculation

More practice:
Stop at the least SF digit

1200
$+250$
1450

500.
$+\quad 0.00021$
500.00021

Recorded Answers
1500
500.

0

The zero does not count since there is no decimal.

Significant Figures in calculation

More practice:

6600
+25.0
6625.0

10
-4.85
5.15

Recorded Answers

6600

. 2
0
10

Significant Figures in calculation

- Significant Figures in Mixed operations

$$
\left(1.7 \times 10^{6} \div 2.63 \times 10^{5}\right)+7.33=? ? ?
$$

Step 1: Divide the numbers in $(\underline{6.463878327 \ldots)}+7.33$ the parenthesis. How many sig figs?

Step 2: Add the numbers. How many decimal places to keep?

6.4	$63878327 \ldots$
+7.3	3
13.7	938

Step 3: Round answer to the appropriate decimal place.
13.8 or 1.38×10^{1}

