Molecular Shapes & Structures

VSEPR Model

VSEPR: Valence-Shell Electron-Pair Repulsion method

Bond angle: angle between two atoms bonded to a central atom.

Regions of electron like to be as far away as possible from the others.

Regions of electron density

Four regions of electron density around an atom:

•• Lone Pair

Bond Angles & Geometric Structures

. 109° 4 regions

Tetrahedral Electron Pair Geometry (Molecular Geometry-Shape)

 PF_5 has <u>5 electron</u> regions, therefore it has a **Trigonal bipyramidal** shape of electron regions.

Phosphorus pentachloride, PCl₅

90°, 120°, 180°

Sulfur hexafluoride, SF₆

 SF_6 has <u>6 electron</u> regions, therefore it has a **Octahedral** shape of electron regions.

90°

Electron Pair Shapes (Geometry)

Linear

Trigonal bipyramidal

Trigonal planer

Octahedral

Tetrahedral

Electron Pair Shapes (Geometry)

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3), and (3) VSEPR molecular shape name.

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, and (3) VSEPR molecular shape name.

Draw the Lewis structure.

Count the bonds and lone pairs on the central atom. Draw the 3D shape. Assign the electron arrangement.

Identify the shape considering only atoms .

Angular or Bent Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, and (3) VSEPR molecular shape name.

Draw the Lewis structure.

Count the bonds and lone pairs on the central atom. Draw the 3D shape. Assign the electron arrangement.

Identify the shape considering only atoms.

Trigonal pyramidal

VSEPR Formula

The generic VSEPR formula $^{"}AX_{n}E_{m}^{"}$ helps identify bonding pair, and lone pairs attachments to the central atom.

"A" represent a central atom, "X" an attached atom, and "E" a lone pair.

Boron trifluoride, BF3

AX₃

 BF_3 has three attached fluorine atoms and no lone pairs so is an example of an AX_3 species.

$$: \overset{\circ}{\text{O}}: \square^{2-}$$

AX_3E

 SO_3^{2-} has one lone pair so is an example of an AX_3E species.

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3) VSEPR formula, and (4) VSEPR molecular shape name.

(2) 5 electron groups = trigonal bipyramidal

(3) AX_3E_2

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3) VSEPR formula, and (4) VSEPR molecular shape name.

XeF₄

(2) 6 electron groups = octahedral

(3) AX_4E_2

The basic VSEPR model

When there is more than one central atom, we consider the bonding about each atom independently.

Lewis Diagram

VSEPR 3D shape

Trigonal planar

Molecules with Lone Pairs on the Central Atom

Identify the electron arrangement around the central atom and the generic VSEPR formula for sulfite.

 SO_3^{2-} , which has one lone pair, is an example of an AX_3E species.

Tetrahedral

Molecules with Lone Pairs on the Central Atom

Lone pairs cause **smaller bond angles than expected**. Lone pairs **push** bonding atoms closer together.

lone pair repulsions energies follow as: lone pair-lone pair > lone pair-atom > atom-atom

See-Saw

Polarity

- 1. It has polar bonds.
- 2. Centers of δ + and δ lie at different places (sides).

Some of the consequences of molecular shape

Electrostatic potential diagram (Elpot) for CO₂.

The negative charge converges on the positive center, so the molecule is nonpolar.

Carbon dioxide, CO_2

High electron density

Low electron density

Some of the **consequences** of molecular shape

Changing one atom.

Asymmetric dipole = Polar

CCI_{4} **Symmetric dipole** = Non-polar

CHCl₃

Some of the **consequences** of molecular shape

Double or triple bonds fix atoms into a position.

Opposing dipoles

Symmetric dipole = Non-polar

directional dipoles

Asymmetric dipole = Polar

Predicting the polar character of a molecule for (a) a boron trifluoride molecule, BF_3 , and (b) an ozone molecule O_3 .

Predict whether (a) PCI_5 , (b) IF_5 is polar or nonpolar.

Valence-Bond Theory (VB)

Types of bonds in Valence-Bond Theory

Sigma Bonds

The simplest molecule of all is H_2 .

A "ground-state" hydrogen atoms has one electron in a 1s-orbital.

As two H atoms come together, their 1selectrons pair (denoted $\uparrow\downarrow$) begin to overlap.

The resulting sausage-shaped distribution of electrons density is <u>between the</u> <u>nuclei</u>, and called a " σ -bond" (a sigma bond).

Types of bonds in Valence-Bond Theory

Sigma Bonds

Н

Atomic orbitals

F

F has an unpaired electron atom in the $2p_z$ -orbital. Hydrogen has an unpaired electron in the 1s-orbital.

The orbitals overlap and merge into a cloud that spreads over both atoms

A different type of bond in a nitrogen molecule, N_2 .

There is a single electron in each three 2p-orbitals.

However, due to **bond angles**, only one of the three orbitals overlaps head-to-head to form a **σ-bond**

A different type of bond in a nitrogen molecule, N₂.

These p-orbitals can overlap only in a side-by-side arrangement.

This overlap results in a " π -bond."

Two π -bond merge forming a long doughnut-shaped cloud surrounding the σ -bond cloud, resembling a **cylindrical hot dog**.

How many σ -bonds and how many π -bonds are there in (a) NH₃ and (b) HCN?

Valence-bond theory:

A single bond is a σ -bond. A double bond is a σ -bond plus one π -bond. A triple bond is a σ -bond plus two π -bonds.

Difficulties with polyatomic molecules in VB theory.

A carbon atom has an electron configuration [He] $2s^22p_x^12p_y^1$ with four valence electrons.

It looks as though a carbon atom should have a valence of 2 and form only two perpendicular bonds.

However, it always has a valence of 4 (it is commonly "tetravalent").

Hybridization - sp³

One electron is promoted (relocated) to a higher-energy orbital.

What about the bond angles?

The 90° bond angles of our original orbitals do not match our observed 109.5° bond angles.

Hybridization - sp³

These new patterns are called hybrid orbitals.

Wavefunctions have the opposite signs, the overall amplitude is reduced and might cancel.

4 new hybrid orbitals

Hybrid orbital names

S

Each of the four hybrid orbitals, designated h_n. Each of the four hybrid orbital is formed from a linear **combinations** of the four original atomic orbitals:

For every sigma bond we need a hybrid orbital.

Hybridization - sp²

One electron is promoted (relocated) to a higher-energy orbital.

Hybridization - sp²

Hybridization - sp²

Hybridization - sp

One electron is promoted (relocated) to a higher-energy orbital.

Hybridization - sp

Hybridization - sp

sp hybrid orbitals

$$\ddot{O} = C = \ddot{O}$$

only 2 sigma bonds form, and two p-orbitals are not hybridized.

$$h_1 = s + p_x$$
$$h_2 = s - p_x$$

Suggest a structure in terms of hybrid orbitals for each carbon atom in ethyne, C_2H_2 .

The unhybridized 2p-orbital, is perpendicular to the C-C plane.

The electrons in the two unhybridized 2p-orbitals form a π -bond through side-by-side overlap.

π -bond spin-pairing

Double bond properties

Double bond prevents one part of a molecule from rotating around another.

The π -bonds of ethene, hold the entire molecule flat.

Rotation around the C-C bond is prohibited.

Triple bond properties

Ethyne HC-CH (acetylene) has sp hybridized carbon.

Each carbon has two remaining p-orbitals, each forms two π -bonds.

The two π orbitals built from p-orbitals, form a cylindrical symmetry.

The triple bond is weaker than the sum of three carbon–carbon single bonds.

hybridization orbitals showing the amplitude of a single wavefunction.

How do we account of 5 σ -bonds in trigonal bipyramidal or 6 σ -bonds in octahedral compounds?

Trigonal bipyramidal have five electron pairs, so one d-orbital along with the valence s- and porbitals of the atom.

3p

3s

3s

five sp³d hybrid orbitals

six electron pairs, in an octahedral, use two dorbitals in addition to the valence s- and p-orbitals to form.

3d

3d

Summery

Number of electron regions = Number of hybrid orbitals

Molecular Geometry	Number of electron regions	Hybridization of central atom	Number of hybrid orbitals
Linear	2	sp	2
Trigonal Planar	3	sp^2	3
Tetrahedral	4	sp ³	4
Trigonal Bipyramidal	5	sp ³ d	5
Octahedral	6	sp ³ d ²	6

Summery

Summery

To Find the hybridization of the central atom:

- 1. Draw the Lowis structure.
- 2. Determine the electron regions around the central atom.
- 3. Identify the molecular shape (molecular geometry)
- 4. # of electron regions = # of hybrid orbitals
- 5. Construct the hybrid orbitals, starting with s-orbital, and proceeding to the p- and d-orbitals.

Sample exercise: Assigning a hybridization scheme for phosphorous in PCI_5 ?

- 1. Draw the Lewis structure.
- 2. Determine the electron regions around the central atom.

:Ċl: ;Ċl ;Ċl ;Ċl;

Trigonal bipyramidal

- 3. Identify the molecular shape. Trigonal bipyramidal
- 4. Select the same number of atomic orbitals as there are hybrid orbitals.

5. Construct the hybrid orbitals, starting with the s-orbital, then p- and d-orbitals.

five sp³d hybrid orbitals

5

Sample exercise: Assigning a hybridization scheme for bromine in BrF_4^- ?

1. Draw the Lewis structure. 2. Determine the electron regions around the central octahedral atom. Square planar 3. Identify the molecular shape. 4. Select the same number of atomic 6 orbitals as there are hybrid orbitals. 5. Construct the hybrid orbitals, starting with the s-orbital, then pand d-orbitals.

6 sp³d² hybrid orbitals

Characteristics of Multiple Bonds

Atoms of the Period 2 elements C, N, and O readily form double bonds (especially oxygen).

However, double bonds are rarely found between atoms of elements in Period 3 and later periods, because the atoms are so *large* and *bond lengths consequently are so great* that it is difficult for their porbitals to take part in effective side-by-side overlap.

Characteristics of Multiple Bonds

Ethene, $CH_2 = CH_2$ has a double bond.

All six atoms in ethene lie in the same plane, with a bond angles near 120°.

This angle suggests a trigonal planar electron arrangement and sp² hybridization for each C atom.

Account for the structure of a formic acid molecule, HCOOH, in terms of hybrid orbitals, bond angles, and σ - and π -bonds.

In benzene, the C and H atoms all lie in the same plane, and carbons join forming a ring.

The Kekulé structures of benzene show 6 hybridized sp² carbon atoms.

Since every carbon neighbor has a π -bond, there are two or **resonance hybrid** structures.

The electrons are **spread around** the entire ring through the π -bonds .

