Molecular Shapes \& Structures

VSEPR Model

VSEPR: Valence-Shell Electron-Pair Repulsion method

Bond angle: angle between two atoms bonded to a central atom.

Regions of electron like to be as far away as possible from the others.

Regions of electron density

Four regions of electron density around an atom:

Lone Pair

Bond Angles \& Geometric Structures

Linear molecules
 2 regions

Formaldehyde

Ethylene

Tetrahedral arrangement
4 regions

Tetrahedral Electron Pair Geometry (Molecular Geometry-Shape)

Methane $\left(\mathrm{CH}_{4}\right)$

Ammonia $\left(\mathrm{NH}_{3}\right)$
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

Tetrahedral

Trigonal Pyramidal

Bent (V-Shaped)

Case	Number of Electron Pairs	Bonds	Electron Geometry (Arrangement) Ball-andStick Model	Angle Between Pairs	Molecular Geo (Shape)	Partial etry Lewis Structure	Ball-and- Stick Model	Example
1	2	2	Linear	180°	Linear	A-B-A	$A=B=A$	BeF_{2}
2	3	3	Trigonal planar (triangular)	120°	Trigonal planar (triangular)			BF_{3}
3	4	4	Tetrahedral	109.5°	Tetrahedral			CH_{4}
4	4	3	Tetrahedral	109.5°	Trigonal pyramid			NH_{3}
5	4	2	Tetrahedral	109.5°	Bent or V-shaped	$\mathrm{A}-\ddot{\mathrm{B}}-\mathrm{A}$		$\mathrm{H}_{2} \mathrm{O}$

Phosphorus pentachloride, PCl_{5}
PF_{5} has 5 electron regions, therefore it has a Trigonal bipyramidal shape of electron regions.

$90^{\circ}, 120^{\circ}, 180^{\circ}$

Sulfur hexafluoride, SF_{6}
SF_{6} has 6 electron regions, therefore it has a Octahedral shape of electron regions.

Octahedral

Electron Pair Shapes (Geometry)

Linear

Trigonal
bipyramidal

Trigonal
planer

Octahedral

Tetrahedral

Electron Pair Shapes (Geometry)

Number of Structural Pairs

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3), and (3) VSEPR molecular shape name.

BF_{3}

BF_{3} Lewis structure
BF_{3} has 3 electron regions, therefore it has a Trigonal planar shape of electron regions.

Boron trifluoride, BF_{3}

Boron trifluoride, BF_{3}

3 electron regions

VSEPR 3D shape

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, and (3) VSEPR molecular shape name.

Draw the Lewis structure.

Count the bonds and lone pairs on the central atom. Draw the 3D shape. Assign the electron arrangement.

Trigonal planar

Angular or Bent

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, and (3) VSEPR molecular shape name.

Draw the Lewis structure.

Count the bonds and lone pairs on the central atom. Draw the 3D shape. Assign the electron arrangement.

Identify the shape considering only atoms.

Tetrahedral

Trigonal
pyramidal

VSEPR Formula

The generic VSEPR formula " $\mathbf{A X} \mathbf{X}_{\mathrm{m}}$ " helps identify bonding pair, and lone pairs attachments to the central atom.
"A" represent a central atom, "X" an attached atom, and "E" a lone pair.

AX_{3}
BF_{3} has three attached fluorine atoms and no lone pairs so is an example of an $\mathbf{A X}_{3}$ species.

$\mathrm{AX}_{3} \mathrm{E}$
$\mathrm{SO}_{3}{ }^{2-}$ has one lone pair so is an example of an $\mathbf{A X}_{3} \mathbf{E}$ species.

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3) VSEPR formula, and (4) VSEPR molecular shape name.

I_{3}

(1)
(2) 5 electron groups = trigonal bipyramidal
(3) $\mathrm{AX}_{3} \mathrm{E}_{2}$

"T" shaped

Determine the (1) Lewis structure, (2) VSEPR electron arrangement name, (3) VSEPR formula, and (4) VSEPR molecular shape name.

XeF_{4}

(4) Square planar

(2) 6 electron groups = octahedral
(3) $\mathrm{AX}_{4} \mathrm{E}_{2}$

The basic VSEPR model

When there is more than one central atom, we consider the bonding about each atom independently.

Lewis Diagram
VSEPR 3D shape

Molecules with Lone Pairs on the Central Atom

Identify the electron arrangement around the central atom and the generic VSEPR formula for sulfite.

$\mathrm{SO}_{3}{ }^{2-}$, which has one lone

Tetrahedral pair, is an example of an $\mathbf{A X}_{3} \mathbf{E}$ species.

Molecules with Lone Pairs on the Central Atom

Lone pairs cause smaller bond angles than expected. Lone pairs push bonding atoms closer together.

CH_{4}

(a)

NH_{3}

$\mathrm{H}_{2} \mathrm{O}$

Lone pairs are not localized so they spread over a larger volume.

Ione pair repulsions energies follow as: Ione pair-lone pair > lone pair-atom > atom-atom

This lone pair has 3 neighbors at 90°

This lone pair has 2 neighbors at 90°

The one with the least amount of repulsion.

Polarity

1. It has polar bonds.
2. Centers of $\delta+$ and δ - lie at different places (sides).

nonpolar molecule

polar molecule

Some of the consequences of molecular shape

Electrostatic potential diagram (Elpot) for CO_{2}.
The negative charge converges on the positive center, so the molecule is nonpolar.

$\mathrm{H}_{2} \mathrm{O}$

High electron density

Water, $\mathrm{H}_{2} \mathrm{O}$

Some of the consequences of molecular shape

Changing one atom.

> Asymmetric dipole = Polar

CCl_{4}
CHCl_{3}
Symmetric dipole $=$ Non-polar

Some of the consequences of molecular shape

Double or triple bonds fix atoms into a position.

directional dipoles

Symmetric dipole $=$ Non-polar

Asymmetric dipole $=$ Polar

Predicting the polar character of a molecule for (a) a boron trifluoride molecule, BF_{3}, and (b) an ozone molecule O_{3}.
(1) Draw the Lewis structure.
(2) Assign the electron arrangement.

Trigonal planar
(3) Identify the VSEPR formula.
(4) Name the molecular shape.
(5) Identify the polarity.

Symmetric dipole nonpolar asymmetric dipole polar

Predict whether (a) PCl_{5}, (b) IF_{5} is polar or nonpolar.
(1) Draw the Lewis structure.

trigonal bipyramidal
(3) Identify the VSEPR formula.

AX_{5}
octahedral
$\mathrm{AX}_{5} \mathrm{E}$
(4) Name the molecular shape. trigonal bipyramidal
(5) Identify the polarity.

square
pyramidal

Asymmetric dipole polar
Symmetric dipole nonpolar

Valence-Bond Theory (VB)

Types of bonds in Valence-Bond Theory

Sigma Bonds
The simplest molecule of all is H_{2}.
A "ground-state" hydrogen atoms has one electron in a 1 s -orbital.

As two H atoms come together, their 1selectrons pair (denoted $\uparrow \downarrow$) begin to overlap.

The resulting sausage-shaped distribution of electrons density is between the nuclei, and called a " σ-bond" (a sigma bond).

Types of bonds in Valence-Bond Theory

F has an unpaired electron atom in the $2 \mathrm{p}_{\mathrm{z}}-$ orbital. Hydrogen has an unpaired electron in the 1 s -orbital.

The orbitals overlap and merge into a cloud that spreads over both atoms

Hydrogen fluoride, HF

Sigma Bonds
H
Atomic orbitals

A different type of bond in a nitrogen molecule, N_{2}.

There is a single electron in each three 2p-orbitals.
*However, due to bond angles, only one of the three orbitals overlaps head-to-head to form a σ-bond

A different type of bond in a nitrogen molecule, N_{2}.

The other two $2 p$-orbitals ($2 \boldsymbol{p}_{\mathrm{x}}$ and
${ }^{*} 2 p_{y}$) are perpendicular to the internuclear axis.

These p-orbitals can overlap only in a side-by-side arrangement.

This overlap results in a "т-bond."

$$
\pi\left(2 p_{x}, 2 p_{x}\right)
$$

$$
\pi\left(2 \mathrm{p}_{y}, 2 \mathrm{p}_{y}\right)
$$

Two m-bond merge forming a long doughnut-shaped cloud surrounding the σ-bond cloud, resembling a cylindrical hot dog.

How many σ-bonds and how many π-bonds are there in (a) NH_{3} and (b) HCN?

Valence-bond theory:
A single bond is a σ-bond.
A double bond is a σ-bond plus one π-bond.
A triple bond is a σ-bond plus two π-bonds.

Difficulties with polyatomic molecules in VB theory.

A carbon atom has an electron configuration $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 p_{x}{ }^{1} 2 p_{y}{ }^{1}$ with four valence electrons.

It looks as though a carbon atom should have a valence of 2 and form only two perpendicular bonds.

However, it always has a valence of 4 (it is commonly "tetravalent").

Hybridization - sp ${ }^{3}$

One electron is promoted (relocated) to a higher-energy orbital.

What about the bond angles?

The 90° bond angles of our original orbitals do not match our observed 109.5° bond angles.

Shape of the orbitals is wrong

Correct number of orbital
109.5°

Merging these two ideas together

Hybridization - sp ${ }^{3}$

These new patterns are called hybrid orbitals.

The wavefunctions overlap (with either positive or negative amplitudes) and constructively \longrightarrow reinforced each other.

Wavefunctions have the opposite signs, the overall amplitude is reduced and might cancel.

4 new hybrid orbitals

Hybrid orbital names

Each of the four hybrid orbitals, designated h_{n}. Each of the four hybrid orbital is formed from a linear
combinations of the four original atomic orbitals:

Atomic orbitals

For every sigma bond we need a hybrid orbital.

$$
3 @ \sigma N s p^{3}, H 1 s
$$

$s \quad p_{x} \quad p_{y} \quad p_{z}$
Atomic orbitals

$$
s^{3} \quad s p^{3} \quad s p^{3} \quad s p^{3}
$$

Hybrid orbitals

Hybridization - sp²

BF_{3}
${ }_{\substack{B-F \\ 1 \\ F}}$
Three single bonds (δ bonds) - Trigonal Planar (120으)

B (5)

One electron is promoted (relocated) to a higher-energy orbital.

Hybridization - sp²

1 s-orbital
3 p-orbitals
$3 \mathrm{sp}^{2}$-orbitals
1 unchanged p-orbital

Trigonal Planar geometry

Hybridization - sp²
sp^{2} hybrid orbitals

only 3 sigma
bonds form,
one p-orbital is
not hybridized.

$$
\begin{aligned}
& h_{1}=s+2^{1 / 2} p_{y} \\
& h_{2}=s+\left(\frac{3}{2}\right)^{1 / 2} p_{x}-\left(\frac{1}{2}\right)^{1 / 2} p_{y} \\
& h_{3}=s+\left(\frac{3}{2}\right)^{1 / 2} p_{x}-\left(\frac{1}{2}\right)^{1 / 2} p_{y}
\end{aligned}
$$

Hybridization - sp

$\mathrm{BeCl}_{2} \quad \mathrm{Cl}-\mathrm{Be}-\mathrm{Cl} \quad$ Two single bonds (δ bonds) - Linear (180으)

One electron is promoted (relocated) to a higher-energy orbital.

Hybridization - sp

Hybridization - sp

sp hybrid orbitals

only 2 sigma bonds
form, and two p-orbitals are not hybridized.

$$
\begin{aligned}
& h_{1}=s+p_{x} \\
& h_{2}=s-p_{x}
\end{aligned}
$$

Suggest a structure in terms of hybrid orbitals for each carbon atom in ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$.

The unhybridized $2 p$-orbital, is perpendicular to the C-C plane.

The electrons in the two unhybridized 2 p -orbitals form a π-bond through side-by-side overlap.

Double bond properties

Double bond prevents one part of a molecule from rotating around another.

The π-bonds of ethene, hold the entire molecule flat.

Rotation around the C-C bond is prohibited.

Triple bond properties

Ethyne HC-CH (acetylene) has $s p$ hybridized carbon.
Each carbon has two remaining p-orbitals,

$$
\pi\left(\mathrm{C} 2 \mathrm{p}_{x}, \mathrm{C} 2 \mathrm{p}_{x}\right) \quad \pi\left(\mathrm{C} 2 \pi_{y}, \mathrm{C} 2 \mathrm{p}_{y}\right)
$$ each forms two m-bonds.

The two π orbitals built from p-orbitals, form a cylindrical symmetry.

The triple bond is weaker than the sum of three carbon-carbon single bonds.

hybridization orbitals showing the amplitude of a single wavefunction.

2 -bonds linear

3σ-bonds trigonal planar

4σ-bonds tetrahedral

How do we account of 5σ-bonds in trigonal bipyramidal or 6σ-bonds in octahedral compounds?

Trigonal bipyramidal have five electron pairs, so one d-orbital along with the valence s - and p orbitals of the atom.

five $s p^{3} d$ hybrid orbitals
six electron pairs, in an octahedral, use two dorbitals in addition to the valence s - and p-orbitals to form.

six $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbitals

Summery

Number of electron regions $=$ Number of hybrid orbitals

Molecular Geometry	Number of electron regions	Hybridivation of central atom	Number of hybrid orbitals
Linear	2	sp	2
Trigonal Planar	3	sp^{2}	3
Tetrahedral	4	sp^{3}	4
Trigonal Bipyramidal	5	$\mathrm{sp}^{3} \mathrm{~d}$	5
Octahedral	6	$\mathrm{sp}^{3} \mathrm{~d}^{2}$	6

Summery

Two electron pairs
$s p$

Summery

To Find the hybridization of the central atom:

1. Draw the Lowis structure.
2. Determine the electron regions around the central atom.
3. Identify the molecular shape (molecular geometry)
4. \# of electron regions = \# of hybrid orbitals
5. Construct the hybrid orbitals, starting with s-orbital, and proceeding to the p - and d-orbitals.

Sample exercise: Assigning a hybridization scheme for phosphorous in PCl_{5} ?

1. Draw the Lewis structure.
2. Determine the electron regions around the central atom.

Trigonal bipyramidal
4. Select the same number of atomic orbitals as there are hybrid orbitals.
5. Construct the hybrid orbitals, starting with the s-orbital, then p - and d-orbitals.

five $s p^{3} d$ hybrid orbitals

Sample exercise: Assigning a hybridization scheme for bromine in BrF_{4}^{-}?

1. Draw the Lewis structure.
2. Determine the electron regions around the central atom.

octahedral
3. Identify the molecular shape. Square planar
4. Select the same number of atomic orbitals as there are hybrid orbitals.

5. Construct the hybrid orbitals, starting with the s-orbital, then p and d-orbitals.

$6 s p^{3} d^{2}$ hybrid orbitals

Characteristics of Multiple Bonds

Atoms of the Period 2 elements C, N, and O readily form double bonds (especially oxygen).

However, double bonds are rarely found between atoms of elements in Period 3 and later periods, because the atoms are so large and bond lengths consequently are so great that it is difficult for their p orbitals to take part in effective side-by-side overlap.

Characteristics of Multiple Bonds

Ethene, $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ has a double bond.
All six atoms in ethene lie in the same plane, with a bond angles near 120°.
This angle suggests a trigonal planar electron arrangement and sp^{2} hybridization for each C atom.

Account for the structure of a formic acid molecule, HCOOH , in terms of hybrid orbitals, bond angles, and σ - and π-bonds.

Draw the Lewis structure.

O has 4 groups or sp^{3}
C has 3 groups or sp²

Use the VSEPR model to identify the electron arrangements around the central C and O atoms.

Form the bonds.

In benzene, the C and H atoms all lie in the same plane, and carbons join forming a ring.

The Kekulé structures of benzene show 6 hybridized sp^{2} carbon atoms.

Since every carbon neighbor has a π-bond, there are two or resonance hybrid structures.

The electrons are spread around the entire ring through the $\pi-$ bonds.

