Oxidation \& Reduction

Oxidation and Reduction reactions (redox)

 $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{s})$

$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$

$$
\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}
$$

Oxidation and Reduction reactions (redox)

oxidation: it is the loss of electrons.

$$
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}
$$

reduction: it is the gain of electrons.

$$
\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}
$$

Remember - LEO says GER. Loss of Electrons is Oxidation Gain of Electrons is Reduction.

Oxidation and Reduction reactions (redox)

Metal + Nonmetal : Transfer of electrons

Oxidation and Reduction reactions (redox)

Oxidation and reduction always occur together.
(The lost e- must go somewhere!)

Oxidation and Reduction reactions (redox)

oxidation: it is the loss of electrons. reduction: it is the gain of electrons.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \quad \text { redox reaction }
$$

$$
\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \mathrm{Zn} \text { is oxidized (reducing agent) }
$$

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{Cu}^{2+} \text { is reduced (oxidizing agent) }
$$

Oxidation and Reduction reactions (redox)

oxidation: is the gain of oxygen / loss of hydrogen.
reduction: is the loss of oxygen / gain of hydrogen.

single replacement reaction and combustion reactions \rightarrow redox reactions double replacement reactions \rightarrow non redox

Oxidation and Reduction reactions (redox)

Example 2:

- $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ is oxidized is reduced

Oxidation and Reduction reactions (redox)

Example 3:

$$
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \rightarrow 2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(a q)
$$

is oxidized is reduced

Oxidation and Reduction reactions (redox)

Example 4:

$$
\begin{aligned}
& \mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{ZnCl}_{2}(a q) \\
& \mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(g)+\mathrm{Zn}^{2+}(a q)+2 \mathrm{Cl}(a q) \\
& \mathrm{Zn}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{Zn}^{2+}(a q) \\
& \text { is oxidized } \text { is reduced }
\end{aligned}
$$

Note: this reaction also shows the fourth driving force of a reaction, namely, the formation of a gas.

Oxidation and Reduction reactions (redox)

Example 5:

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s})
$$

is oxidized is reduced

Oxidation States (Oxidation numbers)

Assigning charges to the various atoms in a compound.

Keep track of electrons in redox reactions.

Rules for assigning oxidation states

1. Charge (oxidation state) of a uncombined element is zero.

$$
\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{Ar}, \mathrm{Na}, \mathrm{~K}
$$

2. The oxidation state of a monatomic ion is the same as its charge.

$$
\begin{array}{llll}
\mathrm{NaCl} & \mathrm{Na}^{+} \mathrm{Cl}^{-} \longrightarrow \mathrm{Na}:+1 & \mathrm{Cl}:-1 \\
\mathrm{Al}_{2} \mathrm{~S}_{3} & \mathrm{Al}^{3+} \mathrm{S}^{2-} \longrightarrow \mathrm{Al}:+3 & \mathrm{~S}:-2
\end{array}
$$

Rules for assigning oxidation states

For covalent compounds assume the most electronegative atom controls or possesses the shared electrons.

O gained two e- from $\mathrm{H} \rightarrow$ Oxidation state $=-2$
H lost one $\mathrm{e}^{-} \rightarrow$ Oxidation state $=+1$
4. The oxidation state of H is +1 and O is -2 in covalent compounds.

Exception: Peroxide $\left(\mathrm{O}_{2}{ }^{2-}\right)=-1 \quad \mathrm{H}_{2} \mathrm{O}_{2}$

Rules for assigning oxidation states

The most electronegative elements: $\mathrm{F}, \mathrm{O}, \mathrm{N}$, and Cl

$$
F:-1, \quad \mathrm{O}:-2, \quad N:-3, \quad \mathrm{Cl}:-1
$$

5. If two of these elements are found in the same compound, we assign them in order of electronegativity.

$$
\mathrm{F}>\mathrm{O}>\mathrm{N}>\mathrm{Cl}
$$

NO_{2}

O: $2 \times(-2)=-4 \quad$ So N must be +4

Rules for assigning oxidation states

6. Sum of oxidation states $=0$ in a neutral compound.
7. Sum of oxidation states $=$ charge in an ion.

$$
\mathrm{NO}_{3}^{-} \quad \mathrm{O}: 3 \times(-2)=-6
$$

N must be +5 for an overall charge of -1 for $\mathrm{NO}_{3}{ }^{-}$.

$$
\mathrm{SO}_{4}^{2-} \quad \mathrm{O}: 4 \times(-2)=-8
$$

S must be +6 for an overall charge of -2 for $\mathrm{SO}_{4}{ }^{2-}$.

Rules for assigning oxidation states

$$
\begin{array}{ll}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & \mathrm{~K}=+1 ; \mathrm{Cr}=+6 ; \mathrm{O}=-2 \\
\mathrm{CO}_{3}^{2-} & \mathrm{C}=+4 ; \mathrm{O}=-2
\end{array}
$$

MnO_{2}
$\mathrm{Mn}=+4 ; \mathrm{O}=-2$
PCl_{5}

$$
\mathrm{P}=+5 ; \mathrm{Cl}=-1
$$

SF_{4}

$$
S=+4 ; F=-1
$$

Oxidation-Reduction Reactions

In some redox reactions ions are produced.

Oxidation-Reduction Reactions

In some redox reactions ions are not produced (all nonmetals).

Oxidation state:

O is reduced.
O_{2} is an oxidizing agent.

Oxidation-Reduction Reactions

Oxidation: is an increase in oxidation state (a loss of e^{-}).

Reduction: is a decrease in oxidation state (a gain of e^{-}).

Oxidizing agent (electron acceptor): the reactant containing the element that is reduced.

Reducing agent (electron donor): the reactant containing the element that is oxidized.

$$
\begin{array}{ll}
\mathrm{CH}_{4} \rightarrow \mathrm{CO}_{2}+8 \mathrm{e}^{-} & \mathrm{C} \text { is oxidized. } \\
& \mathrm{CH}_{4} \text { is a reducing agent. } \\
2 \mathrm{O}_{2}+8 \mathrm{e}^{-} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \mathrm{O} \text { is reduced. } \\
& \mathrm{O}_{2} \text { is an oxidizing agent. }
\end{array}
$$

Half-Reaction Method for balancing

$$
\begin{gathered}
\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq}) \\
\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq}) \\
\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-}
\end{gathered} \text {Reduction half-reaction } \text { Oxidation half-reaction }
$$

Multiply by 2 :

$$
\begin{gathered}
\frac{\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-}}{2 \mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ce}^{3+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})+2 e^{-}} \\
2 \mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Ce}^{3+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})
\end{gathered}
$$

Half-Reaction Method for balancing

1. Identify and write the equations for the oxidation and reduction half-reactions.
2. For each half-reaction:
A. Balance all the elements except H and O .
B. Balance O using $\mathrm{H}_{2} \mathrm{O}$.
C. Balance H using H^{+}.
D. Balance the charge using electrons.
3. If necessary, multiply one or both balanced half-reactions by an integer to equalize the number of electrons transferred in the two half-reactions.
4. Add the half-reactions, and cancel identical species.
5. Check that the elements and charges are balanced.

Half-Reaction Method for balancing

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{SO}_{3}^{2--}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
$$

How can we balance this equation?

1. Separate into half-reactions.
2. Balance elements except H and O .

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq}) \\
\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{gathered}
$$

Half-Reaction Method for balancing

3. Balance O's with $\mathrm{H}_{2} \mathrm{O}$ and H^{\prime} s with H^{+}.

$$
\begin{aligned}
14 \mathrm{H}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) & \rightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(a q) \\
\mathrm{H}_{2} \mathrm{O}(a q)+\mathrm{SO}_{3}^{2-}(a q) & \rightarrow \mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{H}^{+}(a q)
\end{aligned}
$$

4. How many electrons are involved in each half-reaction? Balance the charges.

$$
\begin{gathered}
6 \mathrm{e}^{-}+14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}
\end{gathered}
$$

Half-Reaction Method for balancing

5. Multiply whole reactions by a whole number to make the number of electrons gained equal the number of electrons lost.

$$
\begin{aligned}
& 6 \mathrm{e}-+14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\
& 3 \times\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}-\right)
\end{aligned}
$$

6. Combine half-reactions cancelling out those reactants and products that are the same on both sides, especially the electrons.

$$
\begin{aligned}
& 6 \text { 6 } \mathrm{C}-\mathrm{B} \stackrel{8}{14 \mathrm{H}^{+}(a q)}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+\stackrel{4}{7} \mathrm{H}_{2} \mathrm{O}(a q) \\
& 3 \mathrm{H} / 2 \mathrm{O}(\mathrm{aq})+3 \mathrm{SO}_{3}^{2-}(\mathrm{aq}) \rightarrow 3 \mathrm{SO}_{4}^{2-}(\mathrm{aq})+6 / \mathrm{h}^{+}(a q)+6 \not \alpha-
\end{aligned}
$$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{SO}_{3}{ }^{2-}+8 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{SO}_{4}^{2-}+4 \mathrm{H}_{2} \mathrm{O}
$$

