
Oxidation & Reduction

$$\frac{e^{-}}{2Na(s) + Cl_{2}(g)} \longrightarrow 2NaCl(s)$$

$$Na \rightarrow Na^+ + e^-$$

$$CI + e^{-} \rightarrow CI^{-}$$

oxidation: it is the loss of electrons.

$$Na \rightarrow Na^+ + e^-$$

reduction: it is the gain of electrons.

$$CI + e^{-} \rightarrow CI^{-}$$

Remember – LEO says GER.

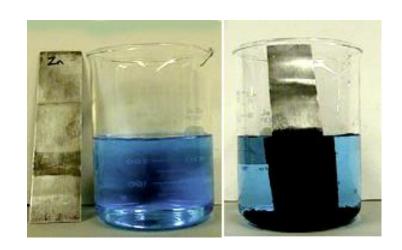
Loss of Electrons is Oxidation
Gain of Electrons is Reduction.

Metal + Nonmetal : Transfer of electrons

Oxidation and Reduction reactions (redox)

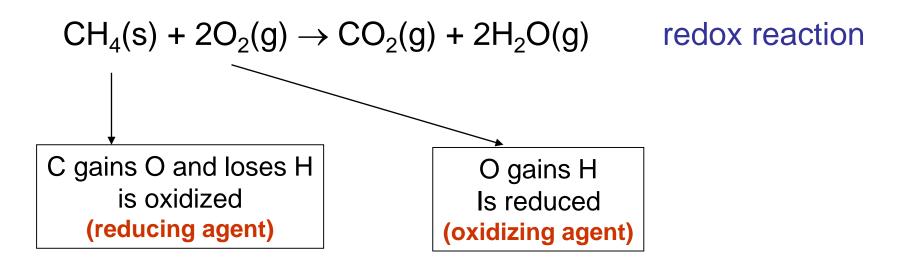
Oxidation and reduction <u>always</u> occur together.

(The lost e⁻ must go somewhere!)


oxidation: it is the loss of electrons.

reduction: it is the gain of electrons.

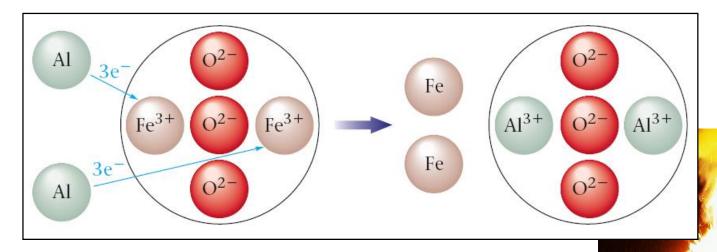
$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 redox reaction


$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 Zn is oxidized (reducing agent)

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 Cu^{2+} is reduced (oxidizing agent)

oxidation: is the gain of oxygen / loss of hydrogen.

reduction: is the loss of oxygen / gain of hydrogen.



single replacement reaction and combustion reactions → redox reactions

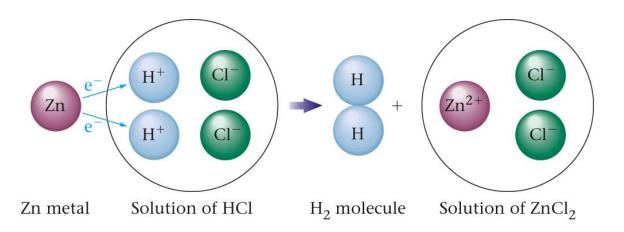
double replacement reactions → non redox

Example 2:

• $2 \text{ Al}(s) + \text{Fe}_2\text{O}_3(s) \rightarrow 2 \text{ Fe}(s) + \text{Al}_2\text{O}_3(s)$ is oxidized is reduced

- Called the Thermite reaction.
- · Let's just say it's vigorous!

Example 3:

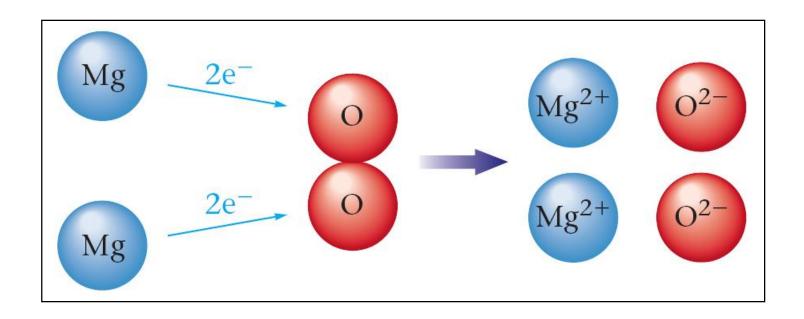


$$Cu(s) + 2 Ag^{+}(aq) \rightarrow 2 Ag(s) + Cu^{2+}(aq)$$

is oxidized is reduced

Example 4:

$$Zn(s) + 2 HCI(aq) \rightarrow H_2(g) + ZnCI_2(aq)$$
 $Zn(s) + 2 H^+(aq) + 2CI^-(aq) \rightarrow H_2(g) + Zn^{2+}(aq) + 2CI^-(aq)$
 $Zn(s) + 2 H^+(aq) \rightarrow H_2(g) + Zn^{2+}(aq)$
 $Zn(s) + 2 H^+(aq) \rightarrow H_2(g) + Zn^{2+}(aq)$
is oxidized is reduced



Note: this reaction also shows the fourth driving force of a reaction, namely, *the formation of a gas*.

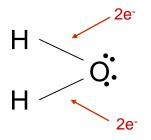
Example 5:

$$2 \text{ Mg(s)} + O_2(g) \rightarrow 2 \text{ MgO(s)}$$

is oxidized is reduced

Oxidation States (Oxidation numbers)

Assigning charges to the various atoms in a compound.


Keep track of electrons in redox reactions.

1. Charge (oxidation state) of a uncombined element is zero.

2. The oxidation state of a monatomic ion is the same as its charge.

$$Al_2S_3$$
 Al^{3+} S^{2-} \longrightarrow $Al: +3$ $S: -2$

For covalent compounds assume the most electronegative atom controls or possesses the shared electrons.

O gained two e^- from H \rightarrow Oxidation state = -2

H lost one $e^- \rightarrow Oxidation state = +1$

4. The oxidation state of H is +1 and O is -2 in covalent compounds.

Exception: Peroxide $(O_2^{2-}) = -1$ H_2O_2

The most electronegative elements: F, O, N, and Cl

5. If two of these elements are found in the same compound, we assign them in order of electronegativity.

$$NO_2$$

O:
$$2 \times (-2) = -4$$
 So N must be +4

6. Sum of oxidation states = 0 in a neutral compound.

7. Sum of oxidation states = charge in an ion.

$$NO_3^-$$

O:
$$3 \times (-2) = -6$$

N must be +5 for an overall charge of -1 for NO₃-.

O:
$$4 \times (-2) = -8$$

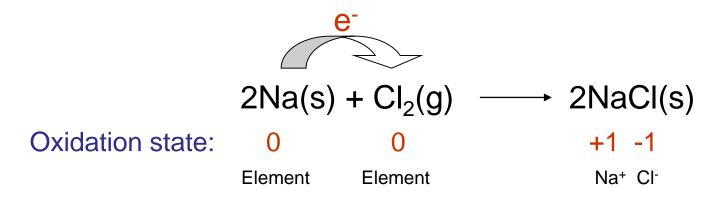
S must be +6 for an overall charge of -2 for SO₄²⁻.

$$K_2Cr_2O_7$$

$$K = +1$$
; $Cr = +6$; $O = -2$

$$C = +4$$
; $O = -2$

$$MnO_2$$


$$Mn = +4$$
; $O = -2$

$$P = +5$$
; $CI = -1$

$$S = +4$$
; $F = -1$

Oxidation-Reduction Reactions

In some redox reactions ions are produced.

$$2Na + Cl_2$$

$$Na \longrightarrow Cl$$

$$Na^+ Cl^-$$

$$Na^+ Cl^-$$

Oxidation-Reduction Reactions

In some redox reactions ions are not produced (all nonmetals).

$$CH_4 \rightarrow CO_2 + 8e^{-}$$

 $CH_4 \rightarrow CO_2 + 8e^-$ C is oxidized. CH_4 is a reducing agent.

$$2O_2 + 8e^- \rightarrow CO_2 + 2H_2O$$
 O is reduced.
 O_2 is an oxidizing agent.

Oxidation-Reduction Reactions

Oxidation: is an increase in oxidation state (a loss of e-).

Reduction: is a decrease in oxidation state (a gain of e⁻).

Oxidizing agent (electron acceptor): the reactant containing the element that is reduced.

Reducing agent (electron donor): the reactant containing the element that is oxidized.

$$CH_4 \rightarrow CO_2 + 8e^-$$

C is oxidized.

CH₄ is a reducing agent.

$$2O_2 + 8e^- \rightarrow CO_2 + 2H_2O$$

O is reduced.

O₂ is an oxidizing agent.

$$Ce^{4+}(aq) + Sn^{2+}(aq) \rightarrow Ce^{3+}(aq) + Sn^{4+}(aq)$$

$$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$$

Reduction half-reaction

$$Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}$$

Oxidation half-reaction

Electrons lost

Number of Electrons lost Mumber of Electrons gained

$$2Ce^{4+}(aq) + 2e^{-} \rightarrow 2Ce^{3+}(aq)$$

$$Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + 2e^{-}$$

$$2Ce^{4+}(aq) + Sn^{2+}(aq) + 2e^{-} \rightarrow 2Ce^{3+}(aq) + Sn^{4+}(aq) + 2e^{-}$$

 $2Ce^{4+}(aq) + Sn^{2+}(aq) \rightarrow 2Ce^{3+}(aq) + Sn^{4+}(aq)$

- Identify and write the equations for the oxidation and reduction half-reactions.
- 2. For each half–reaction:
 - A. Balance all the elements except H and O.
 - B. Balance O using H₂O.
 - C. Balance H using H⁺.
 - D. Balance the charge using electrons.
- 3. If necessary, multiply one or both balanced half—reactions by an integer to equalize the number of electrons transferred in the two half—reactions.
- 4. Add the half-reactions, and cancel identical species.
- 5. Check that the elements and charges are balanced.

$$Cr_2O_7^{2-}(aq) + SO_3^{2-}(aq) \rightarrow Cr^{3+}(aq) + SO_4^{2-}(aq)$$

How can we balance this equation?

- 1. Separate into half-reactions.
- 2. Balance elements except H and O.

$$\operatorname{Cr_2O_7^{2-}}(aq) \to \operatorname{2Cr^{3+}}(aq)$$

$$SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq)$$

3. Balance O's with H₂O and H's with H⁺.

$$14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(aq)$$

$$H_{2}O(aq) + SO_{3}^{2-}(aq) \rightarrow SO_{4}^{2-}(aq) + 2H^{+}(aq)$$

4. How many electrons are involved in each half-reaction? Balance the charges.

5. Multiply whole reactions by a whole number to make the number of electrons gained equal the number of electrons lost.

6e- + 14H⁺(aq) + Cr₂O₇²⁻(aq)
$$\rightarrow$$
 2Cr³⁺(aq) + 7H₂O(aq)
3 × (H₂O(aq) + SO₃²⁻(aq) \rightarrow SO₄²⁻(aq) + 2H⁺(aq) + 2e-)

6. Combine half-reactions cancelling out those reactants and products that are the same on both sides, especially the electrons.

$$8 + 14H^{+}(aq) + Cr_{2}O_{7}^{2-}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_{2}O(aq)$$

$$3H_{2}O(aq) + 3SO_{3}^{2-}(aq) \rightarrow 3SO_{4}^{2-}(aq) + 6H^{+}(aq) + 6e^{-}$$

$$Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$$