CIVIL ENGINEERING
 SYSTEMS ANALYSIS

Dr. Kaveh Zamani

2
 Today's Lecture

1. Tree Diagrams
2. Decision Criteria
3. Decision Trees

How to make a "good" decision?

\square Sometime, in the course of a project, an engineer or team leader needs to select a path between two (or more than two) choices.
\square Is there a quantitative methodology to rationally make that decision to reduce the risk?
\square The purpose of decision analysis is to assist decision makers in making better decisions in complex situations, usually under uncertainty.
\square Decision analysis is modeling procedure based on the techniques of "Statistics" and "Operation Research" to find quantitative insight into the consequence(s) of each option in decision making.

Make Decision Under Uncertainty

Newsweekrecalls 125,000

Hillary Clinton signs a copy of Newsweek's 'Madam President' commemorative magazine on November 7 CREDT: Justinsuluvangeetrymages

Revisit some concepts of probability

\square Expected value: Suppose random variable X can take value x_{1} with probability P_{1}, value x_{2} with probability P_{2}, and so on, up to value x_{k} with probability P_{k}. Then the expectation of this random variable is defined as:

- $E[X]=P_{1} x_{1}+P_{2} x_{2}+\cdots+P_{k} x_{x}$
\square Bayes' rule
$\square \operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}$ (Probability of event A given that event B happened)
- Bayes' theorem is used to update the probability for a hypothesis as more evidence or information becomes available. In simple words you reduce the number of possible events based on given information.

Tree diagrams

\square A tree diagram is a device to calculate all the logical possibilities of a sequence of events when each event can occur in a finite number of ways.

- Tree diagram for toss of a coin:
\square All permutations of $\{a, b, c\}$

The six permutations are listed on the right of the diagram.

Example 1

\square A man is at the origin on the x-axis and takes a one unit step either to the left or to the right. He stops if he reaches 3 or -3 , or if he occupies any position - other than origin more than once. Find the number of different paths he can travel.
\square There are 14 different paths, each pass associated with an end point of the tree branches

Example 2

\square Teams A and B play in a tournament. The team that first wins 3 games wins the tournament. Find all number of possible ways which may occur.

Decision making under uncertainty

\square These are the kinds of decision making in the face of great uncertainty that decision analysis is designed to address. Decision analysis provides a framework and methodology for rational decision making when the outcomes are uncertain.

- An oil company deciding whether to drill for oil in a particular location. How likely is oil there? How much? How deep will they need to drill?
\square Should we make the decision immediately or first do some testing (at some expense) to reduce the level of uncertainty? decision analysis divides.
\square Decision making between the cases of without experimentation and with experimentation. Example?

Decision making

\square In general terms, the decision maker must choose an action from a set of possible actions. The set contains all the feasible alternatives under consideration for how to proceed with the problem of concern.
\square These random factors determine what situation will be found at the time that the action is executed. Each of these possible situations is referred to as a possible state of nature.
\square For each combination of an action and a state of nature, the decision maker knows what the resulting payoff would be. The payoff is a quantitative measure of the value to the decision maker of the consequences of the outcome.

Example 3

\square A company owns a land that may contain oil. A geologist has reported that there is 1 chance in 4 of oil. Because of this prospect, someone has offered to purchase the land for $\$ 90,000$. However, the company is considering holding the land in order to drill for oil itself. The cost of drilling is $\$ 100,000$. If oil is found, the revenue will be $\$ 800,000$.

TABLE 15.1 Prospective profits for the Goferbroke Company

Status of Land	Oil	Payoff
	$\$ 700,000$	Dry
	$\$ 90,000$	$-\$ 100,000$
Sell the land	1 in 4	$\$ 90,000$
Chance of status		3 in 4

Procedure

1. The decision maker needs to choose one of the alternative actions.
2. Nature then would choose one of the possible states of nature.
3. Each combination of an action and state of nature would result in a payoff, which is given as one of the entries in a payoff table.
4. This payoff table should be used to find an optimal action for the decision maker according to an appropriate criterion.
\square One additional element needs to be added to the decision analysis framework. The decision maker generally will have some information that should be taken into account about the relative likelihood of the possible states of nature. Such information can usually be translated to a probability.

Decision making criterion

\square Maximin payoff criterion: For each possible action, find the minimum payoff over all possible states of nature. Next, find the maximum of these minimum payoffs. Choose the action whose minimum payoff gives this maximum.
\square Maximum likelihood criterion: Identify the most likely state of nature (the one with largest probability). For this state of nature, find the action with the maximum payoff. Choose this action.
\square Bayes' decision rule: Using the best available estimates of the probabilities of the respective states of nature (currently the prior probabilities), calculate the expected value of the payoff for each of the possible actions. Choose the action with the maximum expected payoff.

Example 3-1: Maximin payoff criterion

- Maximin payoff criterion: For each possible action, find the minimum payoff over all possible states of nature. Next, find the maximum of these minimum payoffs. Choose the action whose minimum payoff gives this maximum.

	A	B	c	D	E	F	G	H	I
1	Maximin Payoff Criterion for the Goferbroke Co. Problem								
2									
3					of			Minimum	
4		Alternative	Oil	Dry				in Row	
5		Drill	700	-100				-100	
6		Sell	90	90				90	Maximin
7									
8									
9									

Note: this criterion is not often used in decision making against nature because it is an extremely conservative criterion. this criterion normally is of interest only to a very cautious decision maker!

Example 3-2: Maximum likelihood criterion

Maximum likelihood criterion: Identify the most likely state of nature (the one with the largest prior probability). For this state of nature, find the action with the maximum payoff. Choose this action.

	A	B	c	D	E	F	G	H
1	Maximum Likelihood Criterion for the Goferbroke Co. Problem							
2								
3				Sta	of			
4		Alternative	Oil	Dry				
5		Drill	700	-100				
6		Sell	90	90				Maximum
7								
8								
9								
10		Prior Probability	0.25	0.75				
11				Maximum				

The drawback of the criterion is that it ignores much relevant information. No state of nature is considered other than the most likely one. In a problem with many possible states of nature, the probability of the most likely one may be quite small, so focusing on just this one state of nature is quite unwarranted.

Example 3-3: Bayes' decision rule

Bayes' decision rule: Using the best available estimates of the probabilities of the respective states of nature (currently the prior probabilities), calculate the expected value of the payoff for each of the possible actions. Choose the action with the maximum expected payoff.

	A	B	c	D	E	F	G	H	I
1	Bayes' Decision Rule for the Goferbroke Co. Problem								
2									
3					of			Expected	
4		Alternative	Oil	Dry				Payoff	
5		Drill	700	-100				100	ximum
6		Sell	90	90				90	-
7									
8									
9									
10		Prior Probability	0.25	0.75					

- Advantage of Bayes' decision rule is that it incorporates all the available information!
- Disadvantage of Bayes' decision rule: sometimes the estimates of the probabilities necessarily are largely subjective and shaky to be trusted!

18 Decision Tree

Decision Tree

\square Decision trees provide a way of visually displaying the problem and then organizing the computational work of decision making.
\square The nodes of the decision tree are referred to as forks, and the arcs are called branches. A decision fork, represented by a square, indicates that a decision needs to be made at that point in the process. A chance fork, represented by a circle, indicates that a random event occurs at that point.

Example 3: Cont.

\square Which action (drill for oil or sell the land) should be chosen in the example 1?
\square Decision fork, represented by a square (Sell or not sell?)
\square Chance fork, represented by a circle (ls there an oil reservoir?)

Example 4: (Textbook, Hillier and Lieberman)

\square You are given the following payoff table (in units of thousands of dollars) for a decision analysis problem, (a) Which alternative should be chosen under the maximin payoff criterion? (b) Which alternative should be chosen under the maximum likelihood criterion? (c) Which alternative should be chosen under Bayes' decision rule? (d) Using Bayes' decision rule analysis graphically with respect to the prior probabilities of states S 1 and S2 (without changing the prior probability of state S3) to determine the decision

	State of Nature		
Alternative	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$
$A_{\mathbf{1}}$	220	170	110
$A_{\mathbf{2}}$	200	180	150
Prior probability	0.6	0.3	0.1

Example 4: Cont.

- a) A_{2} must be chosen

	State of Nature			
Alternative	S_{1}	S_{2}	S_{3}	Min
A_{1}	220	170	110	110
$\mathrm{~A}_{2}$	200	180	150	150
Prior Probability	0.6	0.3	0.1	

\square b) The most likely state of nature is S_{1} and the alternative with highest profit in this state is A_{1}.
\square c) A_{1} must be chosen

	State of Nature			Exp.
Alternative	S_{1}	S_{2}	S_{3}	Payoff
A_{1}	220	170	110	194
$\mathrm{~A}_{2}$	200	180	150	189
Prior Probability	0.6	0.3	0.1	

Example 4: Cont.

Part d)

$P(S 1)=0.6 ; P(S 2)=0.3 ; P(S 3)=0.1$

$E[A 1]=220(0.6)+170(0.3)+110(0.1)$ $=132+51+11=194$
$E[A 2]=200(0.6)+180(0.3)+150(0.1)$

$$
=120+54+15=189<194
$$

