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Conservation laws 
 

 

• Many of physical laws are described as conservation laws. 
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Conservation laws 
 

• For a typical scalar quantity,U , conservation law can be 

written as: 
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Conservation laws… 
 

 

• If U is a vector, then the flux F becomes a tensor and we get 
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• Conservation of mass: 
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• Conservation of momentum: 
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Conservation laws… 
 

• Conservation of Energy: 2/2V+= eE  
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• Its differential form becomes 
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Conservation Forms 
 

• The conservation of equations can be 
written as 
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• If a non-conservative form is used for a 

numerical scheme, it can easily lead to 
violation of conservation laws. 

• For example, the mass balance may not be 
satisfied. 

• Lax has shown that the use of non-
conservative form will lead to in-
accurate jump relations through a 
discontinuity. 

• In general, there are 3 form for 
equations; conservative form, primitive 
form and characteristic form. 



Euler Equations 
 

• For an inviscid flow, we have 
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• A Quasi-linear form of the equation is 
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• For a Cartesian coordinate system 
),,( zyx we get 
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Euler Equations… 
 
• For a fluid with the constitutive 

relation as )(efp ρ=  where e is the 
internal energy, yx FF ,  and zF  are 
homogenous functions of degree one of the 
conservative variables, U : 
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• By differentiating w.r.t λ  and setting 
1=λ , we get (prove!) 
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• In other words, the Euler equation for 

such fluids can be written as 
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Euler Equations… 
 
• This form and the quasi-linear form can 

be equivalent as long as the functions 
are continuous. 

• However, from the numerical point of 
view, the two formulations do not lead to 
identical discretization. 

• For a perfect gas, we have: 
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Primitive Variables 
 

• Using the vector [ ]TpwvuV ρ=  as the 

vector of primitive variables, we get 
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• We note that this Jacobian is in a much 

simpler form. 



Primitive Variables… 
 
• The Jacobian of transformation from the 

conservative to primitive variables is 
defined by (M  is a similarity transformation) 
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• Which results in 
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• Multiplying by 1−M  gives: 
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Primitive Variables… 
 
• For a 1D case, we get: 
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Characteristic Variables 
 
• Define the left and right eigen-values of 

A~  in a direction κ~ : (i.e. κ~.~~ AK = ) 
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• A wave like solution will exist if the 

eigen-values of K~  for arbitrary κ~  are 
real with linear independence of the 
corresponding left eigen-vectors. 

 
 
 



Characteristic Variables… 
 
• The Jacobian matrix can be diagonalized 

using L  matrix whose rows are the left 
eigen-vectors of )(~ jl  : 
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• Therefore, we can decouple the equations 
in the direction κ~ . 

• Since K~  is not symmetric, there exists a 
set of right eigen-vectors: 
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Characteristic Variables… 
 
• Multiplying the eigen-vectors )(~ jl  in the 

primitive equation, we get: 
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• Or after grouping these equations for all 
eigen-values, we obtain: 
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• Substituting MUV =  we see: 
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• So that P will diagonalize κA.K = : 
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Characteristic Variables… 
 
• Note that the rows of 1−P  are the left 

eigen-vectors of K  while the columns of 
Pare the right eigen-vectors of the same 
matrix.  

• Defining a new set of characteristic 
variables as 
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• Then, we have WLV δδ = . 
• The compatibility equation becomes 
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Characteristic Variables… 
 
• Note that the characteristic variables 

are now associated with a given direction 
of propagation κ  and therefore are a 
function of κ . 

 
• Also, note that except when eigen-values 

are constant, we cannot directly evaluate 
W as VLW 1−=  and in other cases we only 
work with Wδ . 

 
• The variables W are also called Riemann 

variables. 
 
• Whenever, W remains constant, it is 

called Riemann invariant. 
 



Characteristic Lines 
 

• At each point in the domain, we can draw 
three lines corresponding to the three 
characteristic directions. 

 
• −C  and +C  are called Mach lines. 
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Shock and Contact Discontinuity 
 

• In the case of an isentropic flow we have 
12 −== γγ ργρ kckp  

• This gives 
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Shock… 
 

• The area between the characteristic lines 
shows the region of dependence of the 
solution at point P. 

 
• The region between the characteristics 

emanating from P is called the domain of 
influence of P. 

 
• We also have 
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Shock 
 
• Due to the nonlinearity of the flow 

equations, the streamline slopes may 
decrease (in particular if 0/)( <∂+∂ xcu ) 
and we have the situation where the +C  
characteristic emanating from 

+1P  

intersect the +C  characteristic from +P  
and multi-valued quantities would occur 
in 1P . 
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Shock 
 

• In this case we have 
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• This impossible situation leads to a 
discontinuous flow behaviour called a 
shock wave.  

• From this we find that for a shock to 
occur the following relations holds 
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Shock… 
 

• If 
++

<
1

)()( PP PP  then an expansion fan will 

occur. 
 
• A contact discontinuity is an interface 

between two fluid regions of different 
densities but equal pressures. The 
velocity is continuous over a contact 
discontinuity. (like a free moving 
piston) 

 
• A hypothetical Expansion Shock would lead 

to a situation where  
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   And characteristics carry information 
   away from the discontinuity.  
 
 
 



Physical Boundary Conditions 
 

• The number of boundary conditions to be 
imposed will depend on the way the 
information transported along the 
characteristics interacts with the 
boundaries. 

 
 Subsonic Supersonic 

Inlet 2 conditions 
givenWandW 21  

3 conditions 
givenWandWW 321 ,  

Outlet one conditions 
givenW3  

None 

 
• As numerical schemes require the values 

of all flow variables on the boundaries, 
additional conditions called Numerical 
Boundary Conditions must be given in 
order to define the numerical problem 
completely. 

  
 



Physical Boundary Conditions… 
 

• The choice of boundary conditions has a 
significant effect on the accuracy, 
stability and convergence rate of many 
schemes. 

 
• Many implicit schemes which are linearly, 

unconditionally stable, appear to be only 
conditionally stable in practice if an 
improper boundary treatment is 
introduced. 

 
 
 

 
 
 
 
 
 
 
 



Characteristic Boundary Conditions 
 

• In many numerical schemes we work with 
the primitive variables, and need to know 
which combinations of the primitive 
variables may be applied as physical 
boundary conditions that do not lead to 
an ill-posed problem. 

 

• We  know that VLw ∆=∆ −1  , therefore 
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• Here, P  denotes physical and N  denotes 
numerical boundary conditions. 

 
• The group of variables IV  represents the 

imposed conditions while the group IIV  
represents the free variables to be 
defined by the numerical or internal 
information. 



Boundary Conditions… 
 

• The condition for well-posedness of the 
choice of variables is that IIV  can be 
recovered from the information carried by 
the characteristics Nw  which intersect 
the boundary from the interior of the 
flow domain. 

• If we write 
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• The free variables IIV  are defined by 
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• Hence, the condition for well-posedness 
is that the matrix N

IIL )( 1−  is non-singular, 
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1D Euler Equation 
 

 

• For this equation, we have 
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• Let us consider a subsonic outflow. Then, 
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1D Euler Equation… 
 

• We can see that any three variables u,ρ  and p can be 

chosen as a physical boundary condition, since none of the 

sub-matrices  nw   is zero.  

 

• For a subsonic inlet, the choice ),( pu  as a physical boundary 

condition is not well-posed. Any other combination involving 

ρ  as a physical condition is well-posed. 

 

• For a steady-state subsonic nozzle flow with equal inlet and 
outlet areas leads to non-unique solutions if the same variable 
is specified at outlet and inlet. 

 
 
 
 
 



Boundary Conditions and Accuracy 
 

• Gustafsson proved that, for linear equations, the boundary 
scheme can be one order lower than the interior scheme 
without reducing the global order of accuracy of the complete 
scheme.  

 

• Important types of Boundary Conditions are: 
o Far field 
o Inviscid wall (slip b.c.) 
o Viscous wall (no-slip b.c.) 
o Symmetry plane 
o Adiabatic wall 
o Isothermal wall 
o Injection or suction wall 
o Moving wall 

 
 



Simplified Forms of the Navier-Stokes 
Equations 

 

• Several simplified forms of the Navier-Stokes equations exist. 
These forms help to get a better mathematical behaviour from 
the governing equations. 

 

• This normally results in using a simplified and specific 
numerical method for the solution. 

 

• Here, we introduce the following approximation types:  
o Thin Shear Layer (TSL) 
o Parabolized Navier-Stokes (PNS) 
o Boundary layer 
o Inviscid Flow Model (Euler)   

 
 
 
 



Thin Shear Layer Equations 
 

 
 When the viscous layers (wall shear layer, wake or free shear 

layers) are of limited size, then the influence of the shear 
stresses will come essentially from the gradients transverse 
to the main flow direction.  

 This approximation is normally reasonable for high Reynolds 
numbers. 

 In this case, the contribution of other gradients on the 
stresses is neglected.  

 

Viscous dominated region

zn ≡



Thin Shear Layer Equations 
 
 For example, if the direction normal to the wall is z  , we get: 
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 In a flow with large separation or wake, TSL cannot be used.  



Parabolized Navier-Stokes Equations 
 
 This is similar to TSL but is applied to the steady-state 

formulations. 
 
 In this case, the following conditions exist: 

 
o A pre-dominated main flow direction (such as channel 

flow) exists such that the cross flow components are of 
lower order of magnitude. 

 
o Along the solid boundaries the viscous regions are 

assumed to be dominated by the normal gradients, 
hence, the stream-wise diffusion of momentum and 
energy can be neglected. 

 



Parabolized Navier-Stokes Equations… 
 

 Consider a flow with dominated velocity in the direction x  

while the flow is 3D  yx,  and .z  The x -derivatives in the 

shear stress terms are all neglected compared to other terms. 
 
 We get (for x -direction) the following parabolic equation: 
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 Here, if the term xxu ∂∂∂∂ /)/(µ  were present, we had an 

elliptic equation in ),,( zyx  space. 

 
 However, now, the equation ca be solved for x  as a pseudo-

time variable.  
 
 The equation can be integrated by advancing in x - direction, 

while solving an elliptic problem in zy −  plane. 



Parabolized Navier-Stokes Equations… 
 
 In the same way, we get: 
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Boundary Layer & Inviscid Equations 
 
Boundary Layer: 
 
 The idea was introduced by L. Prandtl and in this method the 

flow is solved as a viscous region separated from an adjacent 
inviscid region. 

 Pressure is normally computed from outside the boundary 
layer using a potential flow model. 

 
Inviscid Flow: 
 
 All viscous terms are neglected in the whole flow regions.  
 In addition all heat conduction terms are dropped from the 

energy equation. 

 
 


