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FVM: Basics 
 
 

• The finite volume method was introduced by McDonald (1971) 
and McCormack & Paullay (1972) into the field of CFD. 

• The method works with the conservation laws in the integral 
form and tries to preserve the conservation property. 

• It is applicable to a general non-orthogonal and unstructured 
grid. 
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FVM: Basics 
 

• There are two types of popular data structures: cell-centered 
and vertex-centered.  

• In cell-centered form, variables are averaged values over the 
cell and can be considered as representative of some point 
inside the cell. (mesh cell=control volume) 

• In the vertex-centered form, the variables are attributed to the 
mesh points (vertices). The choice of the control volume can be 
very flexible. 
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FVM: Basics 
 

• Consider a general conservation law in its integral form 
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•  When applied to a control volume V , we get 
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• The first term in this formulation is calculated using an average 

value for U  inside JV . 

• The source term Q is also treated in the same way using a 

uniform value inside JV . 

 
 
 
 



Two dimensional FVM 
 

• Consider the 2D cell ABCD.  

 

• For this cell, with ji yx rr
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Evaluation of Fluxes 
 

• An important step in producing a successful FVM method is 
devising good approximations for fluxes crossing the boundary 
of a control volume. 

• This can be done in two major fashions: 
o Central schemes 
o Upwind schemes 

• Note that in each method either a cell-centered or vertex-
centered approach may be used. 

• Let us consider the flux F  which crosses a side AB . 
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Evaluation of Fluxes… 
 

• Central scheme and cell-centered: Here, there are three choices 
to make: 
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• Central scheme and vertex-centered: 
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Evaluation of Fluxes… 
 

• Upwind scheme and cell-centered: 
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• Upwind scheme and vertex-centered: 
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Non-uniform Grids 
 

• The effect of nun-uniformity in the mesh will decrease the order 
of accuracy of the method. 

 
• If we had an orthogonal grid with a  and b  being the distance of 

M from point ),( ji  and ),1( ji +  then we could write: 
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Computation of Gradients 
 

• In some applications it is required to approximate gradients of 
the dependent variables. This can be done as follows: 
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• On a structured grid, we get 
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• A similar equation can be written for the −y direction by 

interchanging x  and y : 
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Layout of Dependent Variables 
 

• A sensitive part of FVM design is to choose an appropriate form 
for the dependent variables.  

• The following choices are possible: 
o Methods without interpolation 

o Methods with interpolation 
 

• Methods without interpolation: 
o Partial staggering: variables located on cte=1ξ are connected to 

cte=2ξ  only through the pressure field. 
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Layout of Dependent Variables… 
 

o Staggered grid with contra-variant velocities and pressure field. (Kwak 

1986): computations become costly.  
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Layout of Dependent Variables… 
 

• Methods with interpolation: 
o Collocated grid: the pressure field at circle points is decoupled 

from triangle points showing checkerboard. 
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Layout of Dependent Variables… 
 

o Partial staggering of ICED-ALE technique. 
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Layout of Dependent Variables… 
 

o Elimination of half of the variables over a collocated grid. 
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Layout of Dependent Variables… 
 

o Fully staggered grid: The model works well when the grid lines 
are aligned with the Cartesian velocity components (the effect of 
interpolation is minimum). When the interpolated part of the flux 

becomes dominant, the system becomes ill-conditioned or even 
singular.       
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Unstructured Grids 
 

• For 2D FVM discretization, we first create a normal finite 
element triangulation. 

• Then a dual FEM mesh is created by defining a cell iC  for each 

vertex iS  where ni ...,,2,1= . 

• The procedure is as follows: 

o Every triangle having iS  as a vertex is subdivided in six sub-triangles 
by means of medians. 

o The cell iC  is the union of the sub-triangles having iS  as a vertex. 

The boundary of iC  is denoted by iC∂ . 
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Unstructured Grids… 
 

• The unit vector iyxi nnn ),(=
r

 is defined as the outward normal 

to iC∂ . 

• We split iC∂  into panels ijC∂  separating i  and j . 
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Unstructured Grids… 
 

• The flux integrals becomes: 
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• Where )(ik  denotes the set of indices of neighboring nodes of 

iS . 

• The flux function for a segment ijC∂  is given by: 
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3D Cases 
 
The concept used in 2D case can be easily extended to 3D cases as 
follows: 

 
o The computational domain Ω  is assumed to be discretized 

using standard FEM tetrahedrons.  
o A dual FVM mesh is derived from the construction of 

median plans. For every vertex iS we define a cell iC  

around it. 
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3D Cases… 
 

o Every tetrahedron is subdivided into 24 sub-tetrahedra by 
means of planes containing an edge and the middle of the 

opposite edge. Then, the cell iC  is the union of sub-

tetrahedra having iS  as a vertex. 

o In particular, the boundary iC∂  of iC  is the union of 

jiij CCC ∂∩∂=∂  that can be defined as the union of 

triangles such that 

 One vertex is the middle of the edge jiSS . 

 One vertex is the centroid of tetrahedral T  
having jiSS  as a side. 

 One vertex is the centroid of a triangular face of 
T  having jiSS  as a side. 

 
 
 
 



An interesting Observation 
 

• Let us consider the following 1D grid: 

 
• In 1D case, the cell average value becomes: 
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• Hence, the cell-average value and the value at the center differ 
by a term of second order. 
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Example: 1D linear Convection 

 

• Let us consider a scalar linear convection equation: 
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Example: 1D linear Convection… 

 

• Note that the fluxes are discontinuous at the cell boundaries. 

• We solve this problem by taking the average of the fluxes on 

either side of the boundary: (numerical fluxes f̂ ) 
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• We finally get: 
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• This formulation is equivalent to a 2nd-order centered difference 
scheme. 



Example: More on 1D Case… 

 

• Let us replace the piecewise constant approximation with a 
piecewise quadratic form as: 
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• Using the above approximation, we get 
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Example: More on 1D Case… 

 

• Recalling that uf = , we obtain: 
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• Substituting into the integral form, we get: 
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• This is a 4th-order approximation to the problem. 
 
 



Example: 1D Diffusion 

 

• Let us consider the diffusion equation as: 
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Example: 1D Diffusion 

 

• Using a piecewise constant approximation inside each cell, we 
get 
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• Substituting these into the integral form, we get: 
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• If we use a piecewise quadratic approximation as before 
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• The resulting scheme becomes exactly as before: 
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2D Diffusion on Structured Grids 

 

•   Consider the transient 2D heat conduction equation: 
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2D Diffusion on Structured Grids 
 

• Integrating this equation over the finite volume ABCD (with unit 
dept) gives: 

∫∫∫∫ 







∂
∂

+
∂
∂

=
∂
∂

ABCDABCD
dydx

y
T

x
Tdydx

t
T )1()1( 2

2

2

2

α  

• Applying the Green theorem, this becomes 
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• Which can be approximated as 
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2D Diffusion on Structured... 
 

• The derivatives in the above formulation must be approximated 
appropriately. For example:    
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• In these equations, we have: 
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