Conservation laws of Fluid motion and
boundary Conditions




Governing equations

* The fluid is treated as a continuum. For length scales of about
1um and larger, the molecular structure and motions may be
ignored. A fluid element traced in space will stay a cohering fluid
parcel with a conserved (constant) mass.

- The governing equations include the following conservation laws:
— Conservation of mass.

— Conservation of momentum: Newton’s second law - the change of
momentum equals the sum of forces on a fluid particle.

— Conservation of energy: First law of thermodynamics - rate of
change of energy equals the sum of rate of heat addition to and work
done on fluid particle.

— Conservation of an arbitrary scalar: Species concentration, ...



Lagrangian vs. Eulerian description

A fluid flow field can be thought Another view of fluid motion is
of as being comprised of a large the Eulerian description. In the
number of finite sized fluid Eulerian description of fluid
particles which have mass, motion, we consider how flow
momentum, internal energy, and properties change at a
other properties. Mathematical differential control volume that is
laws can then be written for each fixed in space and time (x,y,z,1),
fluid particle. This is the rather than following individual
Lagrangian description of fluid fluid particles.
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Governing equations can be derived using each
method and converted to the other form.
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* The behavior of the fluid is described in

terms of macroscopic properties:

Velocity u
Density p
Specific energy e
Pressure p
Temperature T
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+ Properties are averages of a sufficiently . ‘ ‘
large number of molecules. X

A differential control volume (fluid element)

Faces are labeled

can be thought of as the smallest volume for North, East, West,
which the continuum assumption is valid. South, Top and Bottom

Properties at faces are expressed as first
two terms of a Taylor series expansion,
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Mass balance (Eulerian Description)

- Rate of increase of mass in fluid element equals the net rate of
flow of mass into element.

- Rate of increase is: %(,)(wyaz) = %)dx@ﬁz
- The inflows (positive) and outflows (negative) are shown here:
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Continuity equation

- Summing all terms in the previous slide and dividing by the
volume oxoyoz results in:

dp , d(pu) , d(pv) , d(pw)_
o T ox dy o =0

* |n vector notation: dp v i
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Net flow of mass across boundaries
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Change in density Convective term

* For incompressible fluids p =const., and the equation becomes:
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Path B: Fluid particle and fixed control volume

- We can derive the relationship between the equations for a fluid
particle (Lagrangian) and a fluid element (Eulerian) as follows:
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Momentum equation in three dimensions

- We will first derive conservation equations for momentum and
energy for fluid particles (Lagrangian frame of reference). Next,
we will use the above relationships to transform those to an
Eulerian frame (for a fixed control volume).

- Newton’s second law: rate of change of momentum equals sum
of forces (F = m.a for solid bodies).

- Rate of increased momentum:
p_DI_ D(pu)
Dt Dt
« Forces on fluid particles are:

— Surface forces such as pressure and viscous forces.

— Body forces, which act on a volume, such as gravity, centrifugal,
Coriolis, and electromagnetic forces.




Viscous stresses

« Stresses are forces per area.
Unit is N/m? or Pa.

» Viscous stresses denoted by .

- Suffix notation t; is used to
indicate direction.

* Nine stress components.

— Ty Tyy» Tz, @re normal stresses.
E.g. 7, Is the stress in the z-
direction on a z-plane.

— Other stresses are shear
stresses. E.g. 1,, is the stress in

the y-direction on a z-plane.

» Forces aligned with the direction
of a coordinate axis are positive.
Opposite direction is negative.
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Forces in the x-direction
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Net force in the x-direction is the sum of all the force components in that direction.



Momentum equation

« Set the rate of change of x-momentum for a Lagrangian fluid
particle equal to:

— the sum of the forces due to surface stresses shown in the previous
slide, plus

— the body forces. These are usually lumped together into a source
term Sy
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«  Written for a differential Eulerian contol volume:
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Viscous stresses

A model for the viscous stresses T; is required.

«  We will express the viscous stresses as functions of the local
deformation rate (strain rate) tensor.
« There are two types of deformation:
— Linear deformation rates due to velocity gradients.

« Elongating stress components (stretching).
« Shearing stress components.

— Volumetric deformation rates due to expansion or compression.

« All gases and most fluids are isotropic: viscosity is a scalar.
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Viscous stress tensor

» Using an isotropic (first) dynamic viscosity u for the linear
deformations and a second viscosity A=-2/3 u for the volumetric

deformations results in:
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Note: V.u = 0 for incompressible fluids.
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Navier-Stokes equation — differential and
integral form
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Energy equation

First law of thermodynamics: rate of change of energy of a fluid
particle is equal to the rate of heat addition plus the rate of work
done.

The total energy E =i + 2 (u?+v2+w?) comprises the internal
(thermal) energy i and the kinetic (mechanical) energy -
(u2+v2+w?). Usually, the potential energy (gravitation) is treated
separately and included as a source term.

The rate of increase total energy, DE/Dt, results out of work done
by viscous stresses and the net heat conduction.

We will derive the transport equation for the total energy. Next,
we will subtract the kinetic energy equation to arrive at a
conservation equation for the internal energy.
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Work done by surfaces stresses in x-direction
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Work done (energy flux) is force times velocity. 6



Work done by surface stresses

« Add all and divide by oxoyoz to get the work done per unit volume
by the surface stresses:
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Energy flux due to heat conduction
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The heat flux vector q has three components, q,, q,, and q,. 18



Energy flux due to heat conduction

Summing all terms and dividing by dxoyoz gives the net rate of heat
transfer to the fluid particle per unit volume:

%4, %, %4, _ g

ox ay_az

Fourier’'s law of heat conduction relates the heat flux to the local
temperature gradient:

q=—-AVT
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otal enerqy equation

Setting the total derivative for the energy in a Lagrangian fluid
particle equal to the previously derived work and energy flux
terms, results in the following energy equation:

p%lf:—v-(pu)-l—v-(r-u)+V-(/1VT)+SE

Note that we also added a source term Sg that includes sources
(potential energy, sources due to heat production from chemical
reactions, etc.).
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Kinetic enerqy equation

- Separately, we can derive a conservation equation for the kinetic
energy of the fluid.

 In order to do this, we multiply the u-momentum equation by u,
the v-momentum equation by v, and the w-momentum equation
by w. We then add the results together.

 This results in the following equation for the kinetic energy:
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Internal energy equation

Subtract the kinetic energy equation from the energy equation.
Define a new source term for the internal energy as
S:=S,-u.S,. This results in:

%:—pv-u+v.(lVT)+<I>+Si
t

Here & is the viscous dissipation term. This term is always
positive and describes the conversion of mechanical energy to

heat. 2 2
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Summary of equations in differential form

Mass : %—'[;+V-(pu)=0

Momentum : aa’iu+V-(puu):—Vp+V-‘r+SM
. 9(p) o
Internal energy : y +V-(pa)=—pV-u+V-AVT)+ D+ S,

Equations of state: p=p(p,T) and i=i(p,T)
e.g. for perfect gas: p=pRT and i=C T
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(General transport equations

The system of equations is now closed, with seven equations for seven
variables: pressure, three velocity components, enthalpy, temperature,
and density.

There are significant commonalities between the various equations.
Using a general variable ¢, the conservative form of all fluid flow
equations can usefully be written in the following form:

[ o(pg)

+ V-(pgu) = V-(CVg) + S, ]

ot
Or, in words:
Rate of increase Ne:);atil(:: ;Ifow Rate of increase Rate of increase
of ¢ of fluid + .¢ = of ¢ due to + of ¢ due to
fluid element . .
element diffusion sources

(convection)
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Integral form

- The key step of the finite volume method is to integrate the differential
equation shown in the previous slide, and then to apply Gauss’
divergence theorem, which for a vector a states:

jV-adV = jn-adA
cv A

« This then leads to the following general conservation equation in integral
form:

a2 5 )
—| [ppdV | + [n-(ppu)dA = [n-(TV@)dA + [S,dv
ot 6% A A 0%
Rate of Net rate of _ Net rate of Net rate of
: decrease of ¢ due increase of ¢ due :
Increase + . = . . + creation
to convection to diffusion
of ¢ : : of ¢
K across boundaries across boundaries /

- This is the actual form of the conservation equations solved by finite
volume based CFD programs



Navier-Stokes equation — differential and
integral form
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Summary of equations in differential form

Mass : %—'(;+V-(pu)=0

Momentum : ag)u+V-(,0uu):—Vp+V-1,'+SM
t , A \
,u[(Vu+VuT)—§V-uI}
V.
Internal energy : 5 +V.-(pu)=—pV-u+V-(AUVT)+ D+ S,
4

Equations of state(e.g. for perfect gas): p=pRT and i=CT
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Summary of equations in differential form
(constant fluid properties)

Mass : V.-u=0

Ju

Momentum : p(—+V-(uu)j:—Vp +uUAua+S,,

ot

Internal energy: pc, (aa—T+V-(uT) j: AAT + P + S,
[

Species concentration: p (— +V-(uc,)
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