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Advanced Fluid Mechanics

Flow with a Pressure Gradient

In Blasius’ solution for laminar flow over a flat plate, the pressure gradient was zero. A
much more common flow situation involved flow with a pressure gradient.

ov ov ov oP o%v
+v -

The pressure gradient plays a major role in flow separation, as can be seen with the aid
of the boundary-layer equation. If we make use of the boundary conditions at the wall
v, =v, =0, at y=0 equation becomes

which relates the curvature of the velocity profile at the surface to the pressure
2
X X

and >

. . . e 0
gradient. Figure illustrates the variation in v, across the boundary layer

for the case of a zero pressure gradient.
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Advanced Fluid Mechanics

When dP/dx=0, the second derivative of the velocity at the wall must also
be zero; hence the velocity profile is linear near the wall. Further out in the
boundary layer, the velocity gradient becomes smaller and gradually

approaches zero. The decrease in the velocity gradient means that the

2
X

2

second derivatives of the velocity must be negative. The derivative

is shown as being zero at the wall, negative within the boundary layer , and
approaching zero at the outer edge of the boundary layer. It is important to
note that the second derivative must approach zero from the negative side
as y —> o .for values of dP/dx# 0, the variation in vy and its derivatives

is shown in figure.
A negative pressure gradient is seen to produce a velocity variation
somewhat similar to that of the zero-pressure-gradient case. A positive

value of dP/dx, however requires a positive value of 6°v_ /8y’ at the wall.
Since this derivative must approaches zero from the negative side, at some
point within the boundary layer the second derivative must equal zero. A

zero second derivative, it will be recalled, is associated with an inflection
point. We may know turn our attention to the subject of low separation.
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In order for flow separation to occur, the velocity in the layer of fluid adjacent to
the wall must be zero or negative, as shown in figure below. This type of velocity
profile is seem to require a point of inflection. As the only type of boundary layer
flow that has an inflection point is flow with a positive pressure with gradient, it
may be concluded that a positive pressure gradient is necessary for separation. For
this reason a positive pressure gradient is called an adverse pressure gradient. Flow
can remain un-separated with an adverse pressure gradient, thus dP/dx>0 is a
necessary but not a sufficient condition for separation. In contrast a negative
pressure gradient, in the absence of sharp corners, can not cause flow separation.
Therefore a negative pressure gradient is called a favorable pressure gradient

1 > = = e HEaie
-
- 5 - > @i < Separated
i “: region
= s 5 <
¥ ; .
e |
R e e e e

Separation point /\

Sharif University of Technology

Chemical & Petroleum Engincering Department




Advanced Fluid Mechanics

(a)
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(a) Favorable
gradient:
ﬂf >0

x

— ()

No separation,
PI inside walil

(h) Zero

gradient:

dl _

dx ~ 0

dp

— =}

dx

No separation,
Pl at wal)

(c) Weak adverse
gradient:
dU

—<0

dx

dp

— )

dx

No separation,
Pl in the flow

{d) Critical adverse
gradient:

Zero slope

at the wall:

Separation

-

L~ Backtlow

(e) Excessive adverse
gradient:

Backflow
at the wall:

Scparated
flow region
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[a_pJ <0 , UwTwithx
ox ),
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BOUNDARY LAYER
THEORY
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Boundary Layer Theory

The solution to problems involving flow around immersed bodies will be considered.
The solution depends on the fact that the viscous effects are confined to the region
near solid surfaces. In fact one can always find predominance of all molecular
processes close enough to solid walls.

The region of flow is subdivided into two:

1)  Far from solid surfaces — viscous effects negligible.
Le. Potential Flow Theory (ideal flow, irrotational)

i1)  Near solid surface — viscous effects important.
1.e. Boundary Layer Theory.
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Boundary Laver Theory

Link with Potential Flow Theory

We have shown that near solid surfaces

(Viscous terms) ~ (Inertia terms)

w_ U

I? L

i 1
—~Re; 2
1.€ L L

/ may be identified as thickness of region where viscous effects are important.
All significant velocity changes will be concentrated in this region.
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Description of Boundary Laver over Flat Plate

For flow over a flat plate.
The locus of point where u=0.99U., has been measured.
The locus 8(X); defines the boundary layer thickness

It has been verified experimentally that

_ b 1
[i} = 5.5[U°°X} o Lt = 55
X v X

Provided Rex < 3.2*10°
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i) 0 increases with x and v decreases with U,
ii) All velocity change in b.1.

iii) Turbulent b.1. formed if plate long enough

Engineering Application

i) Flow near solid surface
a. Entrance region in pipes-pressure drop

b. Natural convection from vertical surfaces — heat transfer
c. Evaporation from ponds — mass transfer
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Order of Magnitude Analysis of N-S Equations for flow near a
solid boundary

Consider the 2-D Navier Stoke's equations for steady,

ou,  1oFP o’u,

u, v
ox; p ox;  Ox0x;

Define: L — a characteristic length in flow direction
& — boundary layer thickness. The characteristic length normal to the
boundary in which inertia and viscous forces have the same order of
magnitude.
U, — free stream velocity
pU?2 — characteristic pressure

Define: w="_ . x=—; P =
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Hence the dimensionless equations foe steady flow are:

g _ 0P 1 oy, Re = LU= . oLy
7 ox, dx, Re ox,ox, v S
Order l o
5T LT
- | | H 1+H
L o
5 L ST [ L
i=2 £ = = e
L 5 [J L &
P ~1
llll Nl ' [}
- X ~1 >:>8u}~1:>8u.2 1 . c 0B
ince 1 Ox, 0x, he e e
)
Xy ~ f
.0
uj§~l
4
t t 2 2
ie ,%~ ; ,%~é ; 6 .~1+[§}
; ox; L Ox ;0x
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In engineering applications we are interested in high Re= LU,
1%
o 2
Re= Intertia Forces [é} §<<L
Viscous Forces | 0
: : : 5
Hence 535' =0 ; u au}:—agf, + L2 Z,lzl
o0x, Ox; ox, Re Ox,

Fogeny O _[er] _[dr

ox, 0x, dx, |,
i.e. External pressure is imposed on boundary layer.
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u=0 ()

Now x can vary from zero to 1, and thus the maximum change in x is also of the order of unity. The
change in u can be from zero to unity, and writing the derivatives in finite -difference form

ou Bu_0O0)_,
ox~ Ax O(l)

Likewise we can readily show that the order of magnitude of the second derivative is
o%u
P o)
Examining the y direction, the extreme value of y is the very thin boundary-layer thickness 8. From the
ou
continuity equation with o = (1), we conclude that ? =(0(1). Since the extreme value of Ay is
X v
O(5), we require that v=0(3)
Then the derivatives of u with respect to y are
ou

ou _ 1 _
__0(5) o

1
o v
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Proceeding with similar arguments, we obtain

v 1 v %
y = O(g) ) a - 0(5) ) axz - 0(5)

Assuming the extreme change of time to be of the order of unity, we have

o _ o _
5 0 . 2 =00)

& does not exceed unity and assuming it to be O(1), we see that

oP
P o)

For the pressure term to be significant. By the same argument w.r.t. equation
of motion in the y-direction:

oF
S 0(5)
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Flow over Flat Plate

The Navier-Stokes equations for incompressible flow reduce to

S N ou ou ou  oF u u
— x-direction: —tu—+v—=-p—+v(S+—3)
§ ot ox oy ox ox~ 0oy
'S 1 11 3816 1 1/8°
=
= S ov ov 0Ov oF o'v 0%
‘E y-direction: —tu—+v—=—p—+V(=+—)
=
= 5§ 16 81 &5 1/
L
(>
=
> Continuity: ou + o =0
3 ox Oy

1 1

Quantities 1, 8, etc. result from an order-of-magnitude analysis.
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o ot
We have:
ou Ou oOu 1o  &u
R LB LA AL
ot Ox oy p Ox oy
iy =g
oy
1i1) a—u + a—v =0
ox Oy

These are known as Prandtl's boundary-layer equations.

Blasius solution

Advanced Fluid Mechanics

Vo
l/m
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tr g §
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7 t;:j 7 ST //{r 9
Similarity profiles in boundary-layer flow over a flat plate.
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The Stream Function (2 dimensional)

Consider points A and B in a flow field.
Join A and B along any path.
Draw AQ and BQ parallel to x and y axes.

Define oy as the flow rate/unit width into the volume ABQ from left to right across AB.
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Then Oy =u,0y —u,0x

And Oy is path independent. Hence ' a function of x and y alone (scalar function of position)

Taking Limit A—>B
dy =u,dy —u,dx

oy oy
= ——dy +——dx
oy i ox

oy oy
x = A > u
oy 7 ox

Hence: u

Properties of v

(1) Ifwe have
dy =0

[@} _u,
dx W =const. ux

Hence wy = constant is a streamline
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Flow over a flat plate: Analytic solution

Boundary Layer equations must be solved subject to B.C.'s.

ou ov

—+—=0

6x+6y

u&_u+v6_v:_i@ +v62u (1)
x dy  plox ], »P

B.C (i) At v=0  u =v=20
(i) At Vo0, U U,

Further assume flow in y direction is infinite.
Then from Bernoullis equation

u.u
p 7+ P = constant

u =u, = constant
BR
ox |,

Sharif University of Technology

Chemical & Petroleum Engincering Department

7]
)
® pu(
=
<
=
>
=
=
® pu(
=
p—
=
=
L
<
=
<
>
=
<

Hence equations simplify to:

%+?=0 (2)
Y
2
ug—quv%:va—Z 3)
x

Problem is to solve equations (2) & (3) subject to B.C.'s (1).

Use stream function to obtain a single equation

_oy L
oy Ox

Continuity is automatically satisfied.

u

Momentum Equation becomes:
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(ii) Consider (VOVy)  consider @ oy
Ox; Ox,

1 1

_ 6®8w+6®8w
Ox ox 0Oy Oy

Streamlines & Equipotential lines orthogonal
N.B. &y is the flowrate/unit depth between streamlines y and y+0oy

}: —uyy, +u, =0

ou, [ Ouy Oy v _
gy 0y Oxdy Qyox

(iii)

Continuity automatically satisfied by stream function
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2 2, 3
81//'81//_'_[_81//]81/; _y 81/3/ (4)
oy Ox0Oy ox || oy oy
If an analytic solution is possible, combination of variables suggested by open range in y.

Must have u':L:u'(x,y):u'(n)
U,

Now at different distances downstream the velocity at corresponding points in boundary
layer (constant y/8) must be equal. This suggests

Y
o —
7 o

The form of the downstream dependence is suggested by the equation of motion and
confirmed by experiment

U
VX

Hence n=y

Later a simpler method of obtaining the combined variable will be discussed.

Cou 1 [61//}
Now U = —_
U, Uyl 0y |,
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In general

v =y, y)=w(xn)

dw:[%—w} dx+[a—w} dn
x 1, on |,

v _[6_'#} on _[6_'#} N
oy |, Lonllov], L[on] Vw
.0 7% _of
u(n)_én{\/Uwvx}_én

Thus y cannot be written as a function of n alone.

H I A lone.
owever f [ wa} f(’]) alone

Thus equation (4) must be written with f as the dependent variable .
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Equation reduced to

2d°f  fdf

d773 d772
With boundary conditions
At =0 i:O At n—> w0 i—>1.O
dn dn
/=0

The general solution of this equation is not possible analytically.

Blasius solved the equation using a series expansion in 1.

oy 0w [ ay/} 0y 0’y
. +| - =V :
dy 0Oxdy ox || oy oy

If an analytic solution is possible, combination of variables suggested by open range in y must have:

u =J‘—w=u'(x,y) =u'()
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LI & . /Vw
Voo_¢l(§) ) Vw—¢2(y vx)

Where the term in parentheses is a nondimensional coordinate, is given by the symbol n

00

vV X

n=y

It is convenient to express the velocity components and their derivatives in terms of the
stream function y. A dimensionless stream function in the n coordinate system which

satisfies the continuity equation is f(77) = %ﬁ , and consequently
x o0

y =\vxV, f(n)

The velocity components are related to the stream function by

uza—‘/j and v:_a_l//
oy o
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O T ronle oy Y on
u= ay[ VXwa(U)]— vxV, on Oy

/V of :
=.JvxV, |=——=V.
u vxV, Vx on o

In a similar fashion we obtain

u v, .,
a_u:_anf” R B A S
Ox 2x oy VX oy’ vx
1 V.
ve S m@ =)
25
2fm+ff”:0
(H) at y=0: u=v=_0
2) at y-—>oo: u=V, , v=0
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Thus y cannot be written as a function of 1 alone.

However

f{ v }: f@)  alone.

UV x

Thus equation (4) must be written with f as the dependence variable (see handout)

Equation reduced to

2SS,

+

dn®  dn?
With boundary conditions
g _
@ n=0 dn

=0

@ n—>oo i—)l.O
dn
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The boundary-laver thickness 6

The boundary-layer thickness D is a arbitrarily defined as the location where the velocity
is 99 percent of free-stream value, i.e.,

X _0.99
;

0

Using this, we find from Table 12-3 that 77 5.0. Thus,

n=0 &;5.0
W
Or

5.0
Re

o)
X

X

Which expresses the boundary-layer thickness along a flat plate in steady incompressible
laminar flow of a viscous fluid.
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The general solution of this equation is not possible analytically.
Blasius solved the equation using a series expansion in 1.

f(n) =4, + An + %nz + %7]3 etc.

More recently numerical solutions have been carried out. Tables of £, ', f, f"
as a function of n are variable.

{Howard Proc. Royal Soc. Al64, 547(1938)}
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The boundary-layer thickness 6

The boundary-layer thickness & is arbitrarily defined as the location where the velocity is 99
percent of free-stream value, i.e.,

X _0.99
%

o0

Using this, we find from Table 12-3 that 77 = 5.0. Thus,

n=0o Vi;SO
VX
Or
5 50
x Re

Which expresses the boundary-layer thickness along a flat plate in steady incompressible
laminar flow of a viscous fluid.
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Use of exact analysis

L
Drag force/unit width = I T, dx
0
= ﬂal| _ ﬂal| on
ey Tan 0 oy
_ d’f U,
— dn2 =0 v.x

Ty L
Friction factor f = 17’42 = 2(0.33’2)\/7 =0.664 Re 2
Ap_uw Uy X

L
14 2
0.664 _| 1 u,dx
'[ u,.x A'D o

L
F
Drag force w o '[r 5 ax

1 1
%: 0.664 u?.L2.pyv?

[SSRROS]

Frictional drag force o Uy,

S
3=
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02 Q.L 0.6 0.8 1.0
u = v c__f_?_:
Vo dr7
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The function /(y) and its derivativesi 1.0 :
|
u
f e — f# o A
Yo, . |
PSSR g a / 1
[) 0 0.33206 A :
9 8
02 0.00664 0.06641 0.33199 0. rd 1
0.4 0.02656 0.13277 0.33147 )’ I
0.6 0.05974 0.19894 0.33008 }
0.8 0.10611 0 9 /{ ‘
7 ) 1.0 0 0 1
Q ra 0:6 / T
o pum 14 ‘ !
o 1.6 o 0.51676 PO '
1.8 0.5 0.57477 Ves XV I
x 20 0.65 0.62977 Re, = =~ |
= 22 07 0.68132 0.4 / +1.08x105 |
[>) 24 0 0.72899 : H
D 2.6 1 / 41.82x10 ;
23 i ! ©364x10° ||
3.0 \ 0.16136 / 5.46 x 105 —
LR e
3.2 1. 0.13913 0.2 s - i
34 I 0.90177 0.11788 f s 728 x10° |
g 3.6 1. 3 0.09809 : 7
o puy 38 2 0.08013 == e
= 0 ‘ 0 O
[ 4 24 006598 0.03032 3.0 40 50 564 60 7.0
4.4 3 0.97387 0.03897 10 20 -
e 46 288526 098269 0.02948 y 7=
48 308534 0.98779 0.02187 3
g 5.0 328320 0.99155 0.01591
[«P] 52 3.48i189  0.99425 0.01134
> 54 0.99616 0.00793
= 56 0.99748 0.00543
: 36 . . . .
= = e A Predicted and observed velocity profiles for tangential laminar flow along a flat plate.
S . 0.99937 5 The solid line represents the solution of equation:
6.4 0.99961
= 6.6 457931 099977
< 6.8 5.07928 099957 0003
7.0 5.27926 0.99992 .00022 2 2 3
7.2 547925 099996 0.00013 o v o v +] = 0 v 0 Vo L 0 v
7.4 5.6792 0.99998 0.00007 . 2 | 3
7.6 059999 0.00004 6)} ox 6y ox ay 6y
7.8 1.00000 0.00002
8.0 1.00000 0.00001
§2 1.00000 0.00001
8.4 1.00000 0.00000
5.6 1.00000 0.00000
88 1.00000 0.00000 Sharif University of Technology
-
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Integral Methods

Integral methods provide the engineer with a rapid and fairly accurate method of
estimating transfer rates in boundary layers.

The method is as follows:
(i)  Express the boundary layer equation in integral form.
(i) Guess a velocity distribution; this allows the integral equation to be solved for

the boundary layer thickness. The result is found to be insensitive to the
assumed velocity distribution.

Boundary layer equation

ou ou 1 (ou 0u
9u 0 = | -1 9% d
[u6x+v6y]y [ p(ax)w+v ldy

Advanced Fluid Mechanics

=V—+U—=V——U— (continuity)
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Using Bernoulli’s equation for the flow outside the boundary layer:

%,o.ui2 +P = const P = p,+pgy
1 oF _ du
plax ), 7 d

Substituting in equation (1)

(20 01 0w )y g, a0 0w
Ox oy dx Oy Oy

Integrating

ou - du ou
'[;I/Iady + u.v |0 = [;w Wdy +V5|0
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Boundary conditions

Substituting the boundary conditions in equation (3),

ou ou du T
2U—— Uy —— Uy —2]dy = -2
F . ox . ox . dx Ly P

Regrouping,

Advanced Fluid Mechanics

Eaix(uz —ua, )+ d;:o (u —uy).dy = —%)
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Which can be written:

This is von Karman’s Integral equation:

Putting 0 = u—[l - u—}dy

.0 uoo uoo
And 5= ':l — u}dy
o0 U

The integral equation may be written:

Advanced Fluid Mechanics

%[ui0]+ U,

dx yo,
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Solution for Flow over a flat plate

The Von Karman integral equation is:

2 9 B d

= u u u u T

= Ll -2yt u, Ee [1— —}.dy =2

E ox Sl U, dx U, yo,

&

=

= 7] i

o pmi i

E (x, 1)
> __v.dx

o L, ey

= _ 5(x) —»

=0 Fluid approaches with y | =

— uniform velocity v_ : x '

= —e _

S

> —

= =

< Boundary layer -
———-—-\
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Guess velocity profile

() & == (§J=af®)

Advanced Fluid Mechanics

At Hence
1/7:0 > 3 1 3
=0, U=—n-—
n T 0 2’7 2’7
u =1
=1,
g u'=0
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Evaluating the terms of equation (1):

(i) j ”[l—iﬁw/=jﬁ@—ﬁw
0o Uy u., 0

1l
h
T~
l\.)|ua
=
|
N’\N‘u
~
=
[a—
|
Sy
+

=
(98]
~
<&,
Q
=

7]
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=
<
>
=
<
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Advanced Fluid Mechanics

Substituting in equation (1):

uoo
dx

» d [395}:3%%

280 2 0
Sds =280 v
2 39 u,
%
§5=| 2XBO VX Ty 6y [V
39  u, U,

Also, from (4b):

1
2
3v u?

Ty _ 3vau,, 1 b,
Lpu?l 26 Fu, U, 4.6 (v.x)%
1
=0.646 Re .2

L

3 1

F 3 L L
L= ‘[To.dx =0.646 u2.L>.p.v?

These results should be compared with those of the exact solution.
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Note on boundary laver thickness

Boundary layer thickness

Thickness of the narrow region near a solid surface where the velocity is less
than some arbitrary fraction of the free stream velocity (usually 99%)

Then with i=u'=L=0.99
an Uy,

u., V.x

=5.5 o =55
V.X u,

From Howarth 7 = ¢

Displacement thickness

The distance, normal to the surface, by which the external flow is displaced as
a result of reduced flow in the boundary layer. i.e. the distance by which a
stream line is displaced.
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Consider the streamline AB from the point

x
Y on the OY axis. Y 74 :B
Mt e e W B S A e —_—
BC=0" is the displacement thickness. 4 /#,——/‘/‘ .
Y FEE T & G

{mass flow rate across AO} =
{mass flow rate across BX}

Y v " //F,,-:l
oW Ip.uw.@ =W [p.u.dy / | :

Where 0.W is the width of flow 0 X
considered.

7]
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>
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=
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=
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=
<
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Y Y 7
Hence '[p.uw.dy 2'[ p.u.dy + '[p.u.dy
LimY — o,u —> u,, ‘Etw.dy = .[:w.aﬁz = .[Z.dy +uw.5*
5* = f{l—i}dy = f': —i:‘ V_xdﬂ
U, dn |\ u,

From Howarth’s Table

[ —i}.dn =1.72 s =17 XXl
0 dn 3

Advanced Fluid Mechanics
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Advanced Fluid Mechanics

Momentum thickness

The distance in the free stream, normal to the surface, across which rate of
flow of momentum is equal to the rate of loss of momentum in the boundary
layer to the same downstream coordinate.

Since

(Mass flow rate across AO) = (Mass flow rate across BX)

Y Y
Rate of loss of momentum= | # J‘p au.dy — ‘[p a’ .dy
0

In the B.L. over [O, X] / unit width
Rate of flow of momentum / unit width

Across distance @ in free stream = p.uozo 0
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Furtheras ¥ — oo, u — u,

Hence pull = fpui L{I—L}dy
Uy, U,
Then 6 = IL{I_L}QB}: ’V-x '[mdf {l—df }dﬂ
u, u., u., d77 d;]

From Howrth’s Tables J. i {1 _ & }dﬂ = 0.66
0

dn dn

V.x i
8
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Heat transfer in laminar boundary lavers

Tl] = Too

Consider flow over a flat plate at zero
angle of incidence. A boundary layer will
be set up in the manner that has been
discussed. Consider now heat transfer

from a stream of temperature 7, to a wall

Fluid approaches
with velocity v,

having constant temperature 7, .

Assumptions:

(1)  the temperature difference 7, —7;, is mush greater than any temperature

change due to viscous dissipation. (Reasonable for gases and liquids of low
Viscosity)

Advanced Fluid Mechanics

(1))  Fluid properties invariant with temperature.

The energy equation reduces to:
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= oy Yo e

Compare the momentum equation

The equations are identical in form. This suggests an analogous treatment of heat
transfer. A quantity Oy , the thermal boundary layer thickness, is defined as that region
near the solid boundary where all the major temperature changes occur.

u

T-Ty)
0:—( w . 1 ':—
(TOO ~ TW) ; and using f "

The above equations become

Defining

7]
)
® pu(
=
<
=
>
=
=
® pu(
=
p—
=
=
L
<
=
<
>
=
<

’ ' 2 rr 2
uai+vaf =vaf ; u%+v%=ocﬁ

& oy ¥ T ax &y
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Advanced Fluid Mechanics

Consider now the special case of U =0a. The dimensionless groups 6 and f’ become
interchangeable in the equations. Hence the velocity and temperature profiles are
identical. Thus

=5,

The thermal boundary layer has the same thickness as the momentum boundary layer.
This result is of great importance in flow of gases since A = V.

If v > O, momentum transport occurs more readily. Hence the
momentum boundary layer is thicker d)d T
v (0 , momentum transport occurs less readily O (0

Thus the Prantle Number, given by Pr = Y isan important group.
o

_ Coefficent of momentum transport

Coefficient of thermal transport
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Integral Treatment of the Thermal Boundary Layer

d oT
Energy Equation (Integral form) I ju (T = )dy = aa—
0

y=0

Guess velocity and temperature profiles in boundary layers:

3
~ ~ 3 1
u (17)2 u = . = 5(?) - 5(%) (See momentum eqn.)

Assume temperature profile is similar:

3
gL =Tw _3(y |_1I[¥ . 0#0;
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oT
Now qx=—k——| =h(Ty-T,
oy y=0
h 06 3

k _ay:() B 25T

% J.uwﬁ(l—ﬁ)dyza(%
0

oy

o) o7
d

)

j since T, =T =(T,, =Ty X1 —-0)
y=0

i) For O >5T , - J. because (] —0) is zero for V) 5T

0

0
s} or 0
-
:I:I-l—
L 4
0 0 0

ii) For 0{07,

In either case integration gives:

g7
o

d ( 3u,07 _ 3a
de\ 200 207
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Advanced Fluid Mechanics

Assuming that 5—T =4
)
i(?auw Xzﬁ): 3a u
dx \ 20 200
pap 0 S LOEE s 05
dx u,

Momentum boundary layer analysis gave ¢§ =

5, 20

.sA  const .

n 2 since 8=0, x=0
uw

464 |22

u

©

1
A=2r = ay
5 \4.64%y
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