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oT
Now qx=—k——| =h(Ty-T,
oy y=0
h 06 3

k _ay:() B 25T

% J.uwﬁ(l—ﬁ)dyza(%
0

oy

o) o7
d

)

j since T, =T =(T,, =Ty X1 —-0)
y=0

i) For O >5T , - J. because (] —0) is zero for V) 5T

0

0
s} or 0
-
:I:I-l—
L 4
0 0 0

ii) For 0{07,

In either case integration gives:

g7
o

d ( 3u,07 _ 3a
de\ 200 207
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Assuming that 5—T =4
)
i(?auw Xzﬁ): 3a u
dx \ 20 200
pap 0 S LOEE s 05
dx u,

Momentum boundary layer analysis gave ¢§ =

5, 20

.sA  const .

n 2 since 8=0, x=0
uw

464 |22

u

©

1
A=2r = ay
5 \4.64%y
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/ /I
3.6
/
8 Heat transfer coefficient. 32 / /
o puy
§ 3 3 1 - /1]
o= h/ _ _ 2 3 1 Np, 0.7 —| /
2 k™ 200 20 Lo Pr o ] |
= 5 Amy,
" /)
&
1 7
= hx  3(1.025 Y u, )2 % e eV
= Ny, =—=—|——| = xPr —p
ik k 2 4.64 VX 1.2 /7
m /// //7 v
i A
= 1 N/ -
¥ Nu , =0.332 Re 2 Pr3 LT 155
> o A
=) y A 1000 —1
< Ny
> o 0z 04 06 08 10
o] 8ln)=(tim-ts)/1o-1g)
< Temperature distributions in the laminar boundary layer of a flat
plate (frictional heat neglected).
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Temperature distributions in the boundary layer along a flat
plate (tan ¢ = 9t/dy at the surface).
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.C_) 12—
= N
s 10
= .
=P £ T
2 Z8F

>
5= @ r he=0332 k Np, 3 /22
= e
p—
m —
= 4
=P B
(P
= 2+
x
L - "
< Variation of local heat transfer coefficient along flat plate in
Fig. (Ne: = 1 and k = 0.0145 Btu/hr ft F).
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Integral Methods in Convective Mass Transfer
oC oC o%C
Diffusion Equation: Aiy=4 =D, 2’4
ox oy oy

Integrate normal to the plate:
2
uaCA+v—aCA dy = DABaCzAdy
ox Oy oy

—(v CA) yv—= oC, +Cy il == oCy -Cy— L (From continuity)
oy oy oy ox

8CA 8u 8 GCA
+— Cc,)+C dy = D d
f[ o ( A) Aa_y f@y( AB ayjy

0 foc, 1"
fa(u Cy )dy + [VCA]?)Q =D yp —A]
0

| Oy

Now
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o) a
But [CA V]o = [CA V]oo =-C, ﬁdy (Continuity)

7]
)
® pu(
=
<
=
>
=
=
® pu(
=
p—
=
=
L
<
=
o
>
=
<
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>
® pum
=
o]
S
0 oC : oC
b [ Zuci-com=—-pa[S] v L
. y y=0 Y e
=
'S
= d| | oC
= | (€= Cun)|dy == Dys [—A}
Fc dx ay y:O
D
>
=
g Since Cy=Cyp for y)o,
=
<
Consider the soluble wall problem treated earlier.
2 2
Velocity profile: U= ﬂ (lj — l(l)
Y7, o) 2\0
pgh’ y
uxPE—S=ay for y(h

yli

Within concentration boundary limit:

CA‘y:O = CAO 3 CA‘y—)(X)
o%C, 0
8y2
y=0
o*C, G oC4| _,
y? " oy |,

Assuming the form of the concentration profile it is possible to calculate the rate of mass
transfer. As with all integral methods the result is relatively insensitive to the guess.
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Boundary conditions:

2
At 77:0 o CA:CAO ’ 6C2A:0
on
2
At np=1 ; Cy4=Cyy , 6CA257C2A:0
oy on

Then a=-2 , b=0 , ¢c=2 , d=-1

CA CAoo 3 4
=1-2n+2n°-n
CAO_CAoo
d 2D,5(C o - Cao
dx{[ aé‘cz(CAO_CAoo)ﬂ (1_277+27]3—774)d77] AB( ;O A )

[9D jpx D 5 (C,0-C
Etc. to give 5C=3# N, = 48(Ca0 o)
2a
0.855 W
a
Compare both results with exact similarity solution

NA:DAB(CAO_CAOO)

0.855 3\/9DAB X
[24

Advanced Fluid Mechanics
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Boundary Lavyer Theory- Conclusion

Tvypical Applications of Analvysis

7))

>
® pum

§ (a) Momentum Transfer:  Entrance region in pipes
—

&

=

oundary layer 5 = 5(x)
/B dary lay

E Uiiform =
= ;\;e“l R e When 25 = d

: —_—— ——— ’__-'4:::: -— .
- e Boundary layers co mbine
o D How defines entry region
g 5 Starting length ‘Jl

>

§ Laminar sublayer 1 T

> f — EB== -
= ——- L 3
< ———'} Turbuient h d

b } & u=uly)
X
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(b) Heat transfer: Natural convection

5

 pu( &) 6

=

= o™ S1y) 8y

S Tw LT

é-’ u=0 at y=0

.= Teo u—>0 as y—>w

=

3 u Passes through maximum
g et ()' ) T 1is a maximum at wall

g Heats adjacent fluid

o= Fluid becomes less dense and rises.
>

g

<
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(c) Mass Transfer: Evaporation from ponds

S 5
o p—
= y
&
o -
= X
=
o p—
=
= B g s
-
= Fluid >
o approaches — - / €4 _g
= with e “ cao
2] velocity > 5. (x)
£ : -
< v, Y L
EEP 1 N T N
Concentration caq
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Results of analysis

hx B k.x
1/ 1
kRexPr/3 cD 4p RexSc/3

1
§:0.332 Re 2 =

1
L = _ Pr3=_—-¢S83 (Chilton Colburn Analogy)

Expect this analogy to be accurate in developing flows.
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Dimensionless group in convective Heat and Mass transfer

_ Coefficient of momentum transport v

Pr
Coefficient of thermal transport o

Sc= Coefficient of momentum transport v

Coefficient of mass transport D,

For water Pr~10 Sc~1000
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Hence:
momentum transpor ) thermal transport ) mass transpor
6 ) oy ) Ou

{0 =20, =106, }

_ (aTj
Nu = hL _ Jay y=0 _ Temperature gradient at wall
k —(T,~Tyw)/L Reference temperature gradient

_(%j
kL dy y=0  _ Conc. gradient at wall

Sh = = =
D,g —(Cp,—Caw)/L Reference conc. gradient

At same Result;

kL
Nu=5h Sh=—2
. A { cDAB}
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FLOW AROUND
SPHERE

Presented by:
Prof. D.Rashtchian
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_ o Ouy
Now remember ~ @; = € . =0 for irrotational flow.
J

oD
Hence if we can find a function ® where “x =~ - then @, =0 and the flow is necessarily irrotational and (2) is
k
satisfied.
Substituting for Uy into the continuity equation
o __ o voro . V=2
x,  oxox, o R x,0x,
o’v o'd oD
ie.  Laplace's Equation axlz + ax; + 8x§ =0

Thus the determination of the velocity profile requires the solution of laplace's equation with appropriate b.c.'s

oD
U =———=
" ox,

(normal component of velocity).

0

(i) at stationary solid surfaces

00
(ii)  far from solid surface ). = (87)“’
(main stream velocity)

Nothing has been said about the no slip condition and this is generally not satistied by potential flows. The
pressure distribution is determined by Bernoulli's equation.
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> 7,

Sphere, radius a, situated at O.
The velocity potential ® satisfies Laplaces's equation V D=0
c.f. azq)/asz- =0 for Cartesian co-ordinates.

Flow is symmetrical about the x3-axis, no rotational component i.e. 0 / 0 ¢ =0, U ¢ = 0.
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i.e. any tracer-marked fluid approaching the sphere is displaced radially but remains in the
same plane w.r.t.Ox;.
In spherical co-ordinates, Laplace's Equation is (B.S.L. p740(B))

10 (,00 1 o (. .o
i 0=—\=90 1
72 ar{r 6r}+r2sin989{sm aa} (D

In addition the velocity components are
o0
W, 2==—=
! or
1 0@

80

o0
£ U, =-—
¢ ' Ox,

Boundary conditions:

(1) U~=0 at r=a

(i1) ——=U,=-U,cos80 at r—->w
or

(iii) —laﬁ:UQ:—Uosiné? at 7o w
r 00
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Boundary conditions suggest a solution of the form (Separation of Variables)

®=U,f(r)cosO (2)
10 {r2 @} =2, D o504 U, ) cos0
rror| o r
@(S%{Sm 9%} =-2U, %cosﬁ
Hence r2f"(r)+2rf'(r)=2/(r)=0 )

This is a second order, homogeneous O.D.E.

Using the substitution r=e' gives a linear equation

O+ f(®-2f=0 4)
Which has the solution
f=A4e™ +Be'
= A; + Br
P

Using the Boundary Conditions = A=a’/2:B=1

3
Hence (D:Uo{r +2a?}cos9 .. (5)
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Pressure difference around sphere

Applying Bernoulli's equation in free stream

u, ==U, cosd

P=F (ay
2

g U,
"2+ = constant = p7°+350

)

Hence

At the sphere surface

3
u, = oo =—U0{1—a—2}c0s0=0
ar r=a r
3
ug__l@ =_ﬂ r+a—2 sinﬁzéUosinﬁ
roo|,_, r 2r 2

Sharif University of Technology
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Hence

Pohy ={1—251'n20}
pU; /2 4

Diagram shows form of pressure distribution, compared with experiment.

Ideal Flow Around Spheres

For potential flow, dimensionless
pressure around sphere,

{ﬂ}ql-%sml 0)

pULI2

2
Y,

Note:

1
2

(i) Improves with Re

(P-P,)/

(i) No pressure loss as with real fluids

-3 e (iii) Pressure distribution symmetrical.
No drag force on sphere.

. .
—4
G 0 = 50 TR TR T (iv) No fractional force on sphere.
8, degrees
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Viscous flow around sphere

We study this particular subject as a link between potential flow theory and boundary layer theory.
Analytical
At very low Re, the creeping flow assumption may be made:

Viscous terms >> Inertia terms

2
‘Z—?»p% ie. Re << 1.0

A solution similar to the one for ideal flow is possible in terms of the stream function (introduced later).

Result of analysis, which is valid up to Re = 1.0, is that resultant force on sphere is due,

Advanced Fluid Mechanics
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(1) partly to fractional effects
(i) Partly to drag effects

Total Force, F, can be shown to be given by

F = 6maulUp Stoke's Law
(Known as drug coefficient)

Define: f = friction factor
= dimensionless force per unit area acting on sphere

B F _ bmapU,2 24
A, lpUs12] ma*(pU;) Re

Dimensional Analysis

Normalization of N-S equation gives:

!

Du,

7

!
1 2%,  oP

Di" Re ox, ox;  Ox,

[
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Solution of this P.D.E will certainly have Re as parameter.
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f=1(Re)

101 e s
s %
® pum M, | | L
= 3 N ‘ | ’
- 10 —_— =
= | ﬁ L L g 4}-*1;—-4——#*
o N 1 | | . (.
2 g 100 \ —
[¥]
‘:2 =T 7__7r"i—7 . | 77(ﬁ_*1_ T 24 2 [~ I i
5= F _d__l_ﬂ__t_’_f N \k— 1 s _( 28 0.5407] L1
E E 10 33 il up tolabclmt Re = 6‘ X }03 | ] | -
g= 2/ \\\{r _}‘l—*" - 1—
-l . 4 | (T ) S
D) Stokes' law asymptote f= £~
> 10 Re 11—k - —
o ﬁ I L\.____ |
S i L] Y
S T S e 2N | IS |5 T | —
% 0.1 J l_ 1 J [ il r L L
< 1052 Pyg2¥ gt 9 4 T 3 R Hqe2? S gpdf Vgpe® SgoSt Bggs

Reynolds number Re = Do.. p/p
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(a) Re <<1  (Stokes Regime) %
- Analytical solution possible. Re w102 m -z
- No flow separation

Stagnation point Separation point

(b) Re= 10 T
- A pair of vortex appears behind the cylinder. ) .}

Re=10

(c) Re~ 10> (Intermediate Region) Separation pap
- Von Karman Vortex Street. von

2 . Karma
- Vortices shed from alternate sides at regular T (% } vORER.
. e~=10-

intervals. street

Separation point

T
(d) Re~10 (hlgh Re) \Turbulent
wake

- Boundary layer develops on upstream face. ) - o QQ

A g o g Re=10*
- Breaks away at separation point. This is

associated with adverse pressure gradient on the
downstream face.

Separation point

Turbulent
wake

(e)

A_,_,__/___—-.',,
Re=10° ]

Advanced Fluid Mechanics

(e) Re ~ 10°
- Turbulence appears upstream of separation point

Separation point
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INVISCID FLUID
FLOW

Presented by:
Prof. D.Rashtchian

Advanced Fluid Mechanics

Sharif University of Technology

Chemical & Petroleum Engincering Department

Fluid rotation at a point

Where the counterclockwise sense is positive
Figure 1 Rotation of a fluid element.

From Figure (1) we see that:

xax " Vy x)At]/Ax } arctan {_[(vx y+by " Vx
At * At

1(0vy ov,
w,=—| —-
2\ oOx oy

= 11m % (arctan {[(vy

Ax,Ay,Az,At—0

.V)Af]/Ay}J
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The subscript z indicates that the rotation is about the z axis.
In the xz and yz planes the rotation at a point is given by

1(8vx ﬁvz)
®, =— -——
Y2\ 0z ox
o, =109y
2\ 0oy oz

The rotation at a point is related to the vector cross product of the velocity. As the
student may verify,

and

Advanced Fluid Mechanics

8vz av)’ avx aVz av)’ va
Vxv=l—“=-——le,+| = ——=le, | =———= e
oy 0oz 0z Ox ox oy
And thus
Vxv=2w
Sharif University of Technology
Chemical & Petroleum Engincering Department
_ Ouy _Ou,
1= _
ox, Ox,
_ Ou, Ou,
y =T ——/——
ox, Ox;
_ Ou, Ou,
3 = -
ox, 0Ox,
lLe. D=0, .¢€;

o 0 9
ox, Ox, Ox,
h U Uy

These quantities are the components of the vorticity vector. It is a measure of
the rotational character of the flow about the i-axis.
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o; #0 Paddle wheel at P will rotate. i.e. rotation flow.
®; =0 alli, i1rrotational flow.

Using our suffix notation:

ou.
@, =& 6uk_{6uk_ uj] (j=k)

ijk -
ox; (ox; ox
Where g = +1 if 1,J,k different and cyclic 1,2,3/2,3,1/3,1,2
ik = -1 if 1,3,k different but not cyclic 1,3,2/2,1,3/3,2,1
gjx= 0 if any of 1,J,k same
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The stream function

For a two-dimensional, incompressible flow, the continuity equation is

0
V= aAJr Yy _ 0
ox Oy
ov oF oF
y
Yy 2= S iy
Oy Ox o vy j@x 4
7y o DL
oy
0
As o =Dy , We may write
ox oy

0
Dy _Ofov] i(v +—a‘”):o
oy ox\ oy oy ¥ ox
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For this to be true in general

__ v
Yy T ox
v =y (x,y)
oy oy
dy =—dx +—d
i ox oy 4
Also,
a—w =-v and a—w =V,
ox 7 oy
And thus
dy =-v,dc+v.dy (5)

Consider a path in the xy plane such that y = constant. Along this path, dy =0, and
thus equation (5) becomes

12 _ Y

dx 1%

W =const . x

Sharif University of Technology
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The slope of the path ¥ = constant is seen to be the same as the slope of a
streamline as discussed previously. The function ¥ (x, y) thus represents the

streamlines. The following figure illustrates the streamlines and velocity
components for flow about an airfoil.

Y # = arctan (%) = arctan [‘awa"]

v ) Al
Y 19}
_
Uy
— e %
//C = v

Figure 2 Streamlines and the stream function.
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The differential equation which governs { is obtained by consideration of the fluid

rotation, @ , at a point. In a two-dimensional flow, o, [( . /6x) (avx /6y)] , and

thus if the velocity components vy and v, are expressed in terms of the stream

function i , we obtain, for an incompressible, steady flow,

oy Oy
20,20% 0¥
ox* oy
When the flow is irrotational equation becomes Laplace's Equation:
Oy &
V=" —ay'/z’ 0

Sharif University of Technology
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Irrotational flow, the velocity potential

In a two-dimensional irrotational flow Vxv=0, and thus év,/0y=0v,/¢x. the similarity
of this equation to the continuity equation suggests that the type of relation used to
obtain the stream function may be used again. Note, however, that the order of

differentiation is reversed from the continuity equation. If we let v\=0¢(x,y)/0x, we
observe that

v, _ 0% _ vy
oy 8x8y ox

—(%—v] 0
ox\oy

_0¢
oy

or

and for the general case
Yy

The velocity vector is given by

op, 0p, 0f

V=ve+we +v.e=—_6€ +—€ +—e,
n o oy &’

and thus, in vector notation,
v=V¢d
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Chemical & Petroleum Engincering Department




Advanced Fluid Mechanics

Closure

In this chapter we have examined potential flow. A short summary of the properties
of the stream function and the velocity potential is given below.

Stream function

1. A stream function y(X,y) exists for each and every two-dimensional steady,
incompressible flow, whether viscous or inviscid.

2. Lines for which y(x,y)=constant are streamlines.

3. in cartesian coordinates,

5 =Y v, =- ov
oy ox
and in general
7= 2
on

Where n is 90° counterclockwise from s.
4. The stream function identically satisfies the continuity equation.
5. for an irrotational, steady, incompressible flow,

Vi =0

Sharif University of Technology
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Velocity potential

1. The velocity potential exists if and only if the flow is irrotational.
No other restrictions are required.

2. Vg=v.

3. For steady, incompressible flow, V¢ = 0.

4. For steady, incompressible two dimensional flows, lines of constant
velocity potential are perpendicular to the streamlines.
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The differential equation defining ¢ is obtained from the continuity equation. Considering a
steady, incompressible flow, we have Vv =0, thus, using equation for v, we obtain:

V-Vg=V2¢=0
Which is again Laplace's equation; this time dependent variable is ¢. Clearly, v and ¢ must

be relatd. This relation may be illustrated by a consideration of isolines of ¥ and ¢. An
isoline of is of course a streamline. Along the isolines:

dv :aidx+aidy o ¥ =
ox 6)/ dx Y=cos . Vx
And d¢=%dx+%dy e
ox oy dx | 44— Yy
Accordingly
dl ___ 1 |
dx p=const dy/dx W=const.

And thus W and ¢ are orthogonal. The orthogonality of stream function and the velocity
potential is a useful property, particularly when graphical solutions to equations are
employed.
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¢ = constant

Y = constant

Figure 3 Streamlines and constant velocity
potential lines for steady, incompressible, irrota-
tional, inviscid flow about a cylinder.
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( Bernoulli's Equation )

u; =
'6xl.

Ju, 0%u, 1 op
1% -———+
0x ;0x; p Ox,

Navier-Stokes equation for steady flow: g

ou, Gu, 6u, 0 | ou, Gu/ qu/ 1 op
u,| ———|+tu;| —|=v -——|+V ————1tg,
ox; Ox; ox; ox;\| Ox; Ox ox,0x; p Ox;

{

0u ; o [ Ou,
1) p constant ==> By continuity o 8X = o 8x. =0
i J i J

ii)  Rewrite g, = i(g _/x_/)

ox,

. ou, Ou, A
Irrotation al flow = | —t——2L|=0 fori+j

ox; Ox,

i)

. ou, Ou; ..
Continuity = L——2L =0 fori=]

Ox; Ox

Hence for irrotational flow of a fluid of constant viscosity (or negligible viscosity)
and constant density:
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ou; 1ép 0
u,—L=——""+—gx;
Tox, pox; ox <gj / )
O |uu, +P_ gx, |=0
ox,| 2 p

Put  g=(0,0,-g) and P=p+pgx;

u.u,;

7 . :
Hence # + ; =const. ( Bernoulli's Equation )

For i)  p=constant and
ii)  irrotational flow

consider the quantity , &, ai(gi}
7 Oox;\ 0x
J k

0 (0D |_ 0 (oD) ¢ 8CI):O
ik Ox ; \ Ox _ij Ox; ) Ox; | Ox;

where @ is a scalar function of position.

&
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Inviscid Irrotational Flow about an Infinite Cylinder

In order to illustrate the use of the stream function, the inviscid, irrotational flow
pattern about a cylinder of infinite length will be obtained by solving previous
equations. The physical situation is illustrated in the figure below. A stationary
circular cylinder of radius a is situated in uniform, parallel flow in the x direction.
Making use of the cylindrical symmetry, we shall employ polar coordinates. In polar
coordinates we have:

2 2
oy 1oy 10y _
ot ror 1ot

Where the velocity components (v, and vp) are given by

_oy
or

_Loy

U = and Vyp=
Y 0

(D)
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Advanced Fluid Mechanics

1. The circle r=a must be a streamline. Science the velocity normal to a streamline is

zero, v,|_ =0 or 0¥/o6| _ =0

=

2. from symmetry, the line =0 must also be a streamline. Hence v9| geo =0 Or

o¥for],_, =0.

3. as r — oo the velocity must be finite.
4. the magnitude of the velocity as » — oo is v., a constant.

¥(r,0) = F(r)G(6)

F"(r) np F'(r) __ G"(6)
F@r)y  F(r) GO

G"(@)+1GO)=0 (2)
PPF"(r)+rF'(r)=AF@r)=0 (3)

Figure 4 Cylinder in a uniform flow.

G(60) = Asin(A0) + Bcos(A6)

Sharif University of Technology

Chemical & Petroleum Engincering Department
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Equation (2) is known as an Euler equation and has the solution F(#') = Cr* + Dr™*

The boundary conditions listed above will determine the constants. From boundary
condition (1) we have

G(0)= Asin(A0)+ Bcos(A0)

oY

5 = (Ca* + Da* )4 (Acos (46)— Bsin (16))=10

r=a

And thus D = -Ca**

Hence
22

Y(r,0)= (r‘ - C;—AJ(A’sin(/ie) + B’cos(/w))
Where A'= AC,B' = BC

Boundary condition (2) states that at (0=0) we have 0¥/dr = 0. As sin0=0, the only
way this requirement can be met is to have B’ =0 , yielding

A

W (r,0) = A'sin( ,w)(rl _a” J
"
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Finally, conditions 3 and 4 require that the limit (vr2 + v;): v2.As

22 24\? s \2
vr2+v§=A’2M(rﬂ—a—] +A’212sin210(r’1_1+ . ]

r2 rﬂ rﬂﬂl

22 \? 22 \?
vyl = A’zﬂz{(cosz ﬂé’)(r“ —;Tj + ( sin® 10 )(r’%'1 +—:ﬂ+lj }

The only value of & for which the velocity will be finite as » — oo is unity. Using A=1
requires A" =v,,, and the stream function becomes

2
¥(r,0)=v,rsin 9(1 - "2}

r

The velocity components v; and vy are:

20 r
v ——a—y/——v s1n91+£
o or ” r?

Vg ==2v,,sinf
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Utilization of potential flow

Potential flow has great utility in engineering for the prediction of pressure fields,
forces, and flow rates in the field of acrodynamics, for example , potential flow
solutions are used to predict force and momentum distributions on wings and other
bodies.
An illustration of the determination of the pressure distribution from a potential flow
solution may be obtained from the solution for the flow about a circular cylinder
presented in the previous section. From the Bernoulli equation:

P v?

—+ — = const .

p 2
We have deleted the potential energy term in accordance with the original
assumption of uniform velocity in the x direction. At a great distance from the

cylinder the pressure is P, and the velocity is v., so the above equation becomes:
2

2
P+ —p P _p
2 2

Where Py is designated the stagnation pressure (i.e., the pressure at which the velocity
is zero). In accordance with this equation the stagnation pressure is constant
throughout the field in an irrotational flow. The velocity at the surface of the body is
Vo= -2V,sinB, thus the surface pressure is

P=P,-2pv.sin’@
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I
&
-3 e
Inviscid flow
-4
0 30 60 90 120 150 180
f, degrees
Figure 5 Pressure distribution on a cylinder in Figure 6 Pressure distribution on a circular cylinder
an inviscid, incompressible, steady flow. at various Reynolds numbers.

Sharif University of Technology

Chemical & Petroleum Engincering Department




Advanced Fluid Mechanics

PROBLEMS
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v_1. v ..
Uu* k 1%

*
Ymax _1 In U +c
U* 4
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U k 7,
rO
Upax U _ 1 | Upnax -U
max* = 5 ( max* ]2 Tr dl"
U V18 U
0
Sharif University of Technology
Chemical & Petroleum Engincering Department
B-P LU?
hf — 1 2 4 f_
P d2g,

V7T = K#J@(gzﬂ/ i [(0'1:5144 )(150 )(32'2174 ﬂ/ -0
T+ %\/Z T-U_

T +(0.18)(2.61) = 2.5 = T = 2.04 2"
S

2
m = pﬁ(”j Jz 0.834 Ib/s
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In a countercurrent gas-liquid contactor the
maximum gas throughput is limited by
flooding. To investigate this, experiments
were carried out in a wetted wall column

Advanced Fluid Mechanics

Hence rectangular coordinates may be used.

2
U@_u:_g+&(6_p) é<<1.0
Yo,

oy ox R
@y=0->u=0

B.C. ou

@y=0—->r8.=4 ay

es(2]s
sl

Applying B.C.1=¢, =0

integrating

+C1y+e)
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)
o= -
= 4 9 A
g apparatus. Measurement of liquid holdup £ ~ |
9 and pressure gradient were recorded. Show % }3{; o
2 that the pressure gradient at flooding point is 2 s
ven by: y
= A\
E‘ /,,j y P
|
= dp 2pgH H Ly 1 -
= = where — <<1.0 A T bf :
> dx 3AgC 2A4 ] - = I Y]
= v -
2] - Fy-l-d'x
>
=
<
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Applying B.C.2 with force balance in gas:

(-7, 27 Rdx =[P,y gy — P, JrR?

-2
2\ dx

z-igc _Vaux _gcR(_d_p)
p dy  2p\ dx

1

C :ﬁ(_d_p)_ _g_l_&(a_P) 5
2p \ dx P\ Ox

Hence

2
vau = —g+&(£) y——y5 +£(—d—p
p \dx 2 2p \ dx

)
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Averaging over 0 :

B ] 2
V.L7=l —g+&(£) y——yé‘ dy +ﬂ(—
o p \dx )| 2 2p

Now RS2 >>8° =8 —)R&Z >> g—(—)[

2
Hence VL= g5—+ Ec [— d—p)R5

At flooding: u=>0

2
Hence g5— = & (dp)R5 = @ =2

3 4pldc dv 34g.
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In pumping a high viscosity oil through a pipe, excessive pressure drop may
prevent economic operation. It has been suggested that the pressure drop can be
reduced by introducing a continuous water film around the tube periphery. What
is the maximum factor by which the oil flow rate can be increased by a given
pressure gradient if the viscosity ratio of the fluids is given by:

7,
)
© pun
=
(o]
|
8 )
2 Hoil —500
,uwater
~
© pum
-
p—
e
= | R
> R
: T Qs
= - T
s 1‘ - T ) )
= ik a -
< 5 :
¥ x+&5x..

luoil >> :uwater = lul >> :u2
8 Force balance on element:
E )
= Tr {P|x—P|x+& }+rr27£r5x:0
<5
= 2r, (dp T, F
4= &)
© pum
= r X T,
p—
- di
= u
> 0,8 =Hi—
g g. =K dr
c; B.C. @r=aR=u=uy,
=

T or du T o’
Hence Lgc:u—:u=¢+€

R " dr 2R
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Hence u =u, + 8¢ [ — aR?]
2uR

In Water similarly with u|r:R =0

u =Twi[r2 —Rz]:> u, szi[asz —Rz]
2R 2R

Hence if V is the volumetric flow rate of oil;

V= aJr‘27zrudr
0

B ‘T_ nT,g, (asz —rZJ_l_ (Rz —aszJ dr
0 R H H
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3 3
e
da H Hy

Now 4, >> u, Hencea’ = %

I/max = _ﬂ-z-wgcR3':[ 1 ]:'
811,
Va:l = _ﬂ-z-wgcR
[ 4

Ratio = L =250
2u,
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Initial level of liquid

Let it be desired to find out how much
liquid clings to the inside surface of a
large vessel when it is drained. The local
film thickness is a function of both z and

t.
T <—— &(z, 1) = thickness of film
| |
.z A5
5(z,t)= = i
p.g.l

e e
e
i
o

o
o

Liquid level moving
1 downward with
speed s

Advanced Fluid Mechanics

«——— Wall of containing vessel
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Consider mass balance on element.

Input = Output + Accumulation

0
x+6x 17 pa[é‘x]

pu S| = pir,8

With constant density:

o5 li.8| . -7 |
ot Ax
Taking limit (Ax—0) gives: |- %0 _0 [7.6]
ot Ox
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Now: u, =
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