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Chapter 4

Learning Objectives

Explain the concept of random sampling

Explain the concept of a sampling distribution

Explain the general concept of estimating the parameters of a population or prob-
ability distribution

Know how to explain the precision with which a parameter is estimated

Construct and interpret confidence intervals on a single mean and on the differ-
ence in two means

Construct and interpret confidence intervals on a single variance or the ratio of
two variances

Construct and interpret confidence intervals on a single proportion and on the
difference in two proportions

Test hypotheses on a single mean and on the difference in two means

Test hypotheses on a single variance and on the ratio of two variances

Test hypotheses on a single proportion and on the difference in two proportions
Use the P-value approach for hypothesis testing

Understand how the analysis of variance (ANOVA) is used to test hypotheses
about the equality of more than two means

Understand how to fit and interpret linear regression models.
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4.1 Statistics and Sampling Distributions

* Statistical Iinference Is concerned with drawing
conclusions about populations (or processes) based
on sample data from that system

« Random sample — a sample that is selected so that the
observations are independent — a random sample has
the property that it has the same probability of
selection as any other sample.

» Statistic — any function of the observations in a
sample that doesn't contain unknown parameters

* The sample mean, the sample variance, and the
sample standard deviation are all statistics
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Sampling Distributions

e A statistic I1s a random variable, because a
different sample with produce a different
observed value of the statistic

o Every statistic has a probability distribution

* The probability distribution of a statistic Is
called a sampling distribution

Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
Copyright (c) 2009 John Wiley & Sons, Inc.



Sampling from a Normal Distribution

Suppose that x 1s a normally distributed random variable with mean g and variance o If

Xpa X oty x, 1s a random sample of size n {from this process, then the distribution of the
Samﬁlp maean vic N1l rT2 17 1¢ trnllawe dirertly froam t rocitlte an thea dictribhnitinn nf lino
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I

This property of the sample mean is not restricted exclusively to the case of sampling

from normal populations. Note that we may write

n

Y x;—nu

X—H) -
[ . }\.- n="
o o\n

From the central limit theorem we know that, regardless of the distribution of the population,
the distribution of X_, x; is approximately normal with mean ng and variance no~. Therefore,
regardless of the distribution of the population, the sampling distribution of the sample mean
is approximately

2
X~N y..g—

n
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An important sampling distribution defined in terms of the normal distribution is the chi-
square or ¥~ distribution. If x, x,, . ... x, are normally and independently distributed ran-
dom variables with mean zero and variance one, then the random variable
2 2 2
V=X 4 X5 4y
is distributed as chi-square with n degrees of freedom. The chi-square probability distribution
with n degrees of freedom is

£(3) = — (2o >0 (4.4)

= Y
2 B
2

Several chi-square distributions are shown in Fig. 4.2. The distribution is skewed with mean
{4 = n and variance 6~ = 2n2. A table of the percentage points of the chi-square distribution is
given in Appendix Table III.
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BFIGURE 4.2 Chi-square distribution for

selected values of n (number of degrees of freedom).
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Another useful sampling distribution is the ¢ distribution. If x is a standard normal ran-
dom variable and if y is a chi-square random variable with £ degrees of freedom, and if x and
v are independent, then the random variable

[ = "y (4.6)
J
is distributed as r with k degrees of freedom. The probability distribution of 7 is
~(k+1))2
o Tl(k+1)/2]( ¢
f(t) = [( ) ] —+1 —w< < W (4.7)
VkaU(k/2)\ k

and the mean and variance of f are ¢ =0 and o= ki(k — 2) for k > 2, respectively. The
degrees of freedom for 7 are the degrees of freedom associated with the chi-square random
variable in the denominator of equation (4.6). Several ¢ distributions are shown in Fig. 4.3.
Note that if k£ = oo, the 7 distribution reduces to the standard normal distribution. A table of
percentage points of the 7 distribution is given in Appendix Table I'V.

0.4
—_—k=5
—_—k=10
03 k = == (normal)
;}; 0.2+
0.1+
0 | |

BFIGURE 4.3 The tdistribution for

selected values of k (number of degrees of freedom).
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The last sampling distribution based on the normal process that we will consider is the
F distribution. If w and y are two independent chi-square random variables with u# and v
degrees of freedom, respectively, then the ratio

W/
Fﬂ. y = (4.9)

y/v
is distributed as F° with # numerator degrees of freedom and v denominator degrees of free-
dom. If x is an F random variable with # numerator and v denominator degrees of freedom,
then the distribution is

]

{2
}L(\) _ ) . .

D<x<oo (4.10)

Several F distributions are shown in Fig. 4.4. A table of percentage points of the F distribu-
tion 1s given in Appendix Table V.
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Sampling from a Bernoulli Distribution

Suppose that a random sample of n observations—say, xy, X», ..., x,—is taken from a
Bernoulli process with constant probability of success p. Then the sum of the sample obser-

vations

X=x +x, +--- 4+ X, (4.11)

has a binomial distribution with parameters n and p. Furthermore, since each x; is either O

or 1, the sample mean

I Z
T=—2Y x; (4.12)
i
i1s a discrete random variable with range space O, 1/n, 2/n, . . ., (n— 1)/n, 1}. The distribu-

tion of x can be obtained from the binomial since

[an]( n
Plr=al=Plrsant= 3 (1pta-py

k=0\ K

where [an] is the largest integer less than or equal to an. The mean and variance of x are

=

=P
and

p(1-p)
n

= 1o

o

respectively. This same result was given previously in Section 3.2.2, where the random vari-
able p (often called the sample fraction nonconforming) was introduced.
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Sampling from a Poisson Distribution

The Poisson distribution was introduced in Section 3.2.3. Consider a random sample of size
n from a Poisson distribution with parameter A—say, x;. x». .. ... x,. The distribution of the
sample sum

X=X b Xy b b X (4.13)

is also Poisson with parameter nA. More generally, the sum of 72 independent Poisson random
variables is distributed Poisson with parameter equal to the sum of the individual Poisson
parameters.

Now consider the distribution of the sample mean

1 "
X=—23ux (4.14)
=1
This is a discrete random variable that takes on the values {0, 1/n, 2/n, . . .}, and with proba-

bility distribution found from

[an] ,—nA k
P{x<a}=P{x=<an}= 3 < nA)

(4.15)
k=0 k!

where [an] is the largest integer less than or equal to an. The mean and variance of x are

py = A
and
5 A
ci==
n
respectively.
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4.2 Point Estimation of Process Parameters

 Distributions are described by their parameters

o Parameters are generally unknown and must be
estimated

 Point estimator — a statistic that a single
numerical value that Is the estimate of the
parameter

o Examples, page 110 & 111

Chapter 4 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 14
Copyright (c) 2009 John Wiley & Sons, Inc.



Properties of Point Estimators

1. The point estimator should be unbiased. That is, the expected value of the point esti-
mator should be the parameter being estimated.

2. The point estimator should have minimum variance. Any point estimaltor is a random
variable. Thus, a minimum variance point estimator should have a variance that is
smaller than the variance of any other point estimator of that parameter.

i — 2 . . - .

The sample mean and variance x and s~ are unbiased estimators of the population mean and
. 2 . .

variance U and 0~ respectively. That is,

E(x)=u and E(s )
ne

where the operator E is simp

Iy the expected value o
process of finding the mean of a random variable. (See the supplemental material for this
chapter for more ml‘ormatlon about mathematical expectation.)

The sample standard deviation s is not an unbiased estimator of the population standard

deviation . It can be shown that
1/2 .-
, 2 / I(n/2
E(s) = ( ] L ) o
n—1 l—'[(n — l)_l,.f’Z]
=40 (4.17)

erator, a shorthand way of writing the

Appendix Table VI gives values of ¢, for sample sizes 2 < n <25. We can obtain an unbiased
estimate of the standard deviation from

n )
o=— (4.18)
€4
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In many applications of statistics to quality-engineering problems, it is convenient to estimate
the standard deviation by the range method. Let x;, x,, . .., x,, be a random sample of n obser-
vations from a normal distribution with mean gt and variance ¢~. The range of the sample is

R = max(.x;)— min(x, )

= Xmax ~ Ymin

(4.19)

That is, the range R is simply the difference between the largest and smallest sample obser-
vations. The random variable W = R/ 0 is called the relative range. The distribution of W has
been well studied. The mean of Wis a constant > that depends on the size of the sample. That
is, E(W) = d,. Therefore, an unbiased estimator of the standard deviation 0 of a normal dis-
tribution 1s

G=— (4.20)

Values of d, for sample sizes 2 < n < 25 are given in Appendix Table VI.
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Using the range to estimate ¢ dates from the earliest days of statistical quality control,
and 1t was popular because it is very simple to calculate. With modern calculators and com-
puters, this isn’t a major consideration today. Generally, the “quadratic estimator™ based on s
is preferable. However, if the sample size n is relatively small, the range method actually
works very well. The relative efficiency of the range method compared to s is shown here for
various sample sizes:

Sample Size n Relative Efficiency
2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

For moderate values of n—say, n =2 10—the range loses efficiency rapidly, as it ignores all of
the information in the sample between the extremes. However, for small sample sizes—say,
n < 6—it works very well and is entirely satisfactory. We will use the range method to esti-
mate the standard deviation for certain types of control charts in Chapter 6. The supplemen-
tal text material contains more information about using the range to estimate variability.
Also see Woodall and Montgomery (2000-01).
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4.3 Statistical Inference for a Single Sample

o Statistical inference = decision making

* Hypothesis testing
— Null hypothesis, H,
— Alternative hypothesis, H,

e Confidence intervals
* These two techniques are closely related
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To test a hypothesis, we take a random sample from the population under study, com-
pute an appropriate test statistic, and then either reject or fail to reject the null hypothesis Hy,.
The set of values of the test statistic leading (o rejection of Hy is called the critical region or
rejection region for the test.

Two kinds of errors may be committed when testing hypotheses. If the null hypothesis
1s rejected when it is true, then a type I error has occurred. If the null hypothesis is not
rejected when it 1s false, then a type II error has been made. The probabilities of these two
types of errors are denoted as

o = P{type I error} = P{reject Hy| H, is true}
B = P{type II error} = P{fail to reject Hy|Hy is false}
Sometimes it is more convenient to work with the power of a statistical test, where
Power = | — 8 = P{reject Hy|H, is false}

Thus, the power is the probability of correctly rejecting Hy. In guality control work, o is
sometimes called the producer’s risk, because it denotes the probability that a good lot will
be rejected, or the probability that a process producing acceptable values of a particular qual-
ity characteristic will be rejected as performing unsatisfactorily. In addition. 3 is sometimes
called the consumer’s risk, because it denotes the probability of accepting a lot of poor qual-
ity, or allowing a process that is operating in an unsatisfactory manner relative to some qual-
ity characteristic to continue in operation.
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The general procedure in hypothesis testing is to specify a value of the probability of
type I error ¢, and then to design a test procedure so that a small value of the probability of
type II error B3 is obtained. Thus, we can directly control or choose the o risk. The 3 risk is
generally a function of sample size and is controlled indirectly. The larger is the sample
size(s) used in the test, the smaller is the 3 risk.
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4.3.1 Inference on the Mean of a Population, Variance Known

Hypothesis Testing. Suppose that x is a random variable with unknown mean ( and
known variance 0. We wish to test the hypothesis that the mean is equal to a standard
value—say, ly. The hypothesis may be formally stated as

Hy: p=pq
Hy: o u# g

The procedure for testing this hypothesis is to take a random sample of n observations on the
random variable x, compute the test statistic

(4.22)

X — Ly
Zy="to
0= T (4.23)

and reject Hy it |Zo| > Z, /2 where Z,,; is the upper o/ 2 percentage point of the standard nor-
mal distribution. This procedure is sometimes called the one-sample Z-fest.

Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery. 21
Copyright (c) 2009 John Wiley & Sons, Inc.



We may give an intuitive justification of this test procedure. From the central limit theo-
rem, we know that the sample mean x is distributed approximately N(u, o~ /n). Now if
Hy: 1= Uy 1s true, then the test statistic Z, i1s distributed approximately N(0, 1 ); consequently,
we would expect 100(1 — @)% of the values of Z; to fall between —Zy, and Z,,>. A sample
producing a valuc of Z outside of these limits would be unusual if the null hypothesis were true
and is evidence that Hy: 4 = U, should be rejected. Note that ¢ is the probability of type I error
for the test, and the intervals (Zg,,, ) and (—co, —Z,,») form the critical region for the test.
The standard normal distribution is called the reference distribution for the Z-test.

In some situations we may wish to reject H, only if the true mean is larger than .
Thus, the one-sided alternative hypothesis i1s H: it > Uy, and we would reject Hy: U = Uy
only if Zy > Z,. If rejection is desired only when p < g, then the alternative hypothesis is
Hy: 1 < Uy, and we reject H, only if Zy < — Z,,.
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~ EXAMPLE 4.1

The response time of a distributed computer system is an
important quality characteristic. The system manager wants to
know whether the mean response time to a specific type of

command exceeds 75 millisec. From previous experience, he
knows that the standard deviation of response time is 8 mil-
lisec. Use a type I error of ¢ = 0.05.

SOLUTION

The appropriate hypotheses are
Hy: u=75
Hy: u>75

The command is executed 25 times and the response time for
each trial is recorded. We assume that these observations can
be considered as a random sample of the response times. The
sample average response time is X = 79.25 millisec. The value
of the test statistic is

. /

CX-uy  7925-75

S | B =2.66
o/n  8/425

Because we specified a type I error of or = 0.05 and the test
is one-sided, then from Appendix Table II we find
Zo = Zo0s5 = 1.645. Therefore, we reject Hy: p =75 and con-
clude that the mean response time exceeds 75 millisec.

Zy

Test of mu=75 vs> 75
The assumed standard deviation= 8

One-Sample Z

Minitab

/ output

95% Lower
N Mean SE Mean Bound Z P
25  79.25 1.60 76.62 2.66 0.004
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Confidence Intervals. An interval estimate of a parameter is the interval between
two statistics that includes the true value of the parameter with some probability. For example,
to construct an interval estimator of the mean g, we must find two statistics L and U such that

PIL<u<Uj=1-o (4.24)
The resulting interval
L<u<sU
is called a 100(1 — )% confidence interval (CI) for the unknown mean y. L and U are

1
called the lower and upper confidence limits, respectively, and 1 — ¢ 1s called the confidence
coefficient. Sometimes the half-interval width U —u or g4 — L is called the accuracy of
the confidence interval. The interpretation of a CI is that if a large number of such intervals
are constructed, each resulting from a random sample. then 100(1 — &) % of these intervals
will contain the true value of u. Thus, confidence intervals have a frequency interpretation.
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The CI (4.24) might be more properly called a two-sided confidence interval, as it spec-
ifies both a lower and an upper bound on f. Sometimes in quality-control applications, a one-
sided confidence bound might be more appropriate. A one-sided lower 100(1 — o) % confi-

dence bound on ( would be given by

L<u
where L, the lower confidence bound, is chosen so that
P{L<u}=1-«
A one-sided upper 100(1 — @)% confidence bound on y would be
usU
where U, the upper confidence bound, is chosen so that
PlusUl=1-a
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Confidence Interval on the Mean with Variance Known. Consider the random
variable x, with unknown mean p and known variance o’ Suppose a random sample of n
observations 1s taken—say, x,, Xo, ... .. v,—and x is computed. Then the 100(1 — o¢) % two-
sided Cl on U is

vy g =y
X — ZO:,"Q = < U <X+ Za}.-’z

; 4.29
A1 N1 ( )

where Z,, is the percentage point of the N(0, 1) distribution such that P{z = Z,»} = o/2.

<X+Z 9 4.30
= “n (4.30) Upper and
lower
/ confidence
bounds
_ O
ity (4.31)
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- EXAMPLE 4.2

.

Reconsider the computer response time scenario from
Example 4.1. Since x = 79.25 millisec, we know that a rea-
sonable point estimate of the mean response time is

SOLUTION

il =x=7925 millisec. Find a 95% two-sided confidence
interval.

From equation 4.29 we can compute

_ (9] _ 0)
—Zm‘(';-_i:ﬂ(_:X‘FZ 1T =
"\ “I*\/n

8
7925 -1 96—<u£79.25+ 1.96 ——

Vas V25

76.114 < 1 < 82.386

Another way to express this result is that our estimate of mean
response time 18 79.25 millisec + 3.136 millisec with 95%
confidence.

S/

Chapter 4

In the original Example 4.1, the alternative hypothesis was

A Tn thoos citiiatinng cnam

nna_cida n a analvate nrafartn calenlata
ONRC-51GEG. 1N IESE sHUAtiens, some an awe

H.-I.l.-‘,' [l B l.}l.\.rl.\.rl. LU v Ll

a one-sided confidence bound. The Minitab output for
Example 4.1 on p. 114 provider a 95% lower confidence bound
on i, which is computed tfrom equation 4.31 as 76.62.

Notice that the CI from Minitab does not include the value
p=75 Furthermore, in Example 4.1 the hypothesis
Hy: w="75 was rejected at = 0.05. This is not a coinci-
dence. In general, the test of significance for a parameter at
level of significance o will lead to rejection of Hy if, and only
if, the parameter value specific in /1 is not included in the
100(1 = ) % confidence interval.
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4.3.2 P-VValues

The traditional way to report the results of a hypothesis test is to state that the null hypoth-
esis was or was not rejected at a specified o-value or level of significance. This is often
called fixed significance level testing. For example, in the previous computer response
time problem, we can say that Hy: g = 75 was rejected at the 0.05 level of significance.
This statement of conclusions is often inadequate, because it gives the analyst no idea
about whether the computed value of the test statistic was just barely in the rejection
region or very far into this region. Furthermore, stating the results this way imposes the
predetined level of significance on other users of the information. This approach may be
unsatisfactory, as some decision makers might be uncomfortable with the risks implied by
o = 0.05.

To avoid these difficulties the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H, is true. Thus, a
P-value conveys much information about the weight of evidence against H. and so a deci-
sion maker can draw a conclusion at any specified level of significance. We now give a for-
mal definition of a P-value.
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The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H,,.

For the normal distribution tests discussed above, it is relatively easy to compute the
P-value. If Z; 1s the computed value of the test statistic, then the P-value 1s
2[1 - C'D(iZOi)] for a two-tailed test: Hy: u=ny, Hp u#u,
P=q1- ‘D(Zo) for an upper-tailed test:  Hy: u=u, H;: u>pu,
CI)(ZO) for a lower-tailed test: ~ Hy: u=puy Hp: u<py

Here, @(Z) is the standard normal cumulative distribution function defined in Chapter 3. To
illustrate this, consider the computer response time problem in Example 4.1. The computed
value of the test statistic 1s Zy = 2.66 and since the alternative hypothesis is one-tailed, the
P-value is

P=1-®(2.66)=0.0039

Thus, Hy: g =75 would be rejected at any level of significance ¢ =2 P = 0.0039. For exam-
ple, Hy would be rejected if o = 0.01, but it would not be rejected if o = 0.001.
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4.3.3 Inference on the Mean of a Normal
Distribution, Variance Unknown

Hypothesis Testing. Suppose that x is a normal random variable with unknown

R ) ] | - 7‘) TX T - 1 M =1 ] T - T | 1 4
mean i and unknown variance 0~. We wish to test the hypothesis that the mean equals a stan-
dard value u: that is,

Hy: p= g

4.32
Hy: pn#ug (4.32)

Note that this problem is similar to that of Section 4.3.1, except that now the variance is
unknown. Because the variance is unknown, we must make the additional assumption that the
random variable is normally distributed. The normality assumption is needed to formally
develop the statistical test, but moderate departures from normality will not seriously affect
the results.

As 07 is unknown, it may be estimated by 57 If we replace ¢ in equation 4.23 by s, we
have the test statistic

f —
ty="—+L (4.33)
S/*\,-’ n
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The reference distribution for this test statistic is the 7 distribution with n — 1 degrees
of freedom. For a fixed significance level test, the null hypothesis Hy: 1t = Uy will be rejected
if \(r())| > to)2.n—1, Where 74,5 ,_1 denotes the upper ¢¢/2 percentage point of the 7 distribu-
tion with n — 1 degrees of freedom. The critical regions for the one-sided alternative
hypotheses are as follows: if H: i, > U, reject Hy if 15 >1,,_ ., and if H: [y < U,
reject Hy if 1ty <—ty,_1. One could also compute the P-value for a 7-test. Most computer
software packages report the P-value along with the computed value of 7,.

Checking the normality assumption — we will see how to do this in
Example 4.3
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Rubber can be added to asphalt to reduce road noise when the
material is used as pavement. Table 4.1 shows the stabilized
viscosity (cP) of 15 specimens of asphalt paving material. To
be suitable for the intended pavement application, the mean
stabilized viscosity should be equal to 3200. Test this
hypothesis using o = 0.05. Based on experience we are will-
ing to initially assume that stabilized viscosity is normally
distributed.

m TABLE 4.1

Stabilized Viscosity of Rubberized Asphalt

SOLUTION

The appropriate hypotheses are
Hy: 1 =3200
H: u #3200

The sample mean and sample standard deviation are

115 48,161
¥=—3Yx =——=3210.73
155 15
| 152
15 (.E'xf}
1 X - izllﬁ
o=\ =t 12
v 15-1
(48.161)

154,825,783 —

- 5 11761
14

Chapter 4

Specimen Stabilized Viscosity
1 3193
2 3124
3 3153
4 3145
5 3093
6 34606
7 3355
8 2979
9 3182

10 3227
11 3256
12 3332
13 3204
14 3282
15 3170

and the test statistic is

T—py _ 3210.73-3200 _
= = "_“_)
117.61/4/15

Copyright (c) 2009 John Wiley & Sons, Inc.
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Since the calculated value of the test statistic does not exceed
To.005. 14 = 2.145 o1 =I5, 14 = —2.145, we cannot reject the
null hypothesis. Therefore, there is no strong evidence to
conclude that the mean stabilized viscosity is different from
3200 cP.

The assumption of normality for the f-test can be checked
by constructing a normal probability plot of the stabilized vis-
cosity data. Figure 4.5 shows the normal probability plot.
Because the observations lie along the straight line, there is no
problem with the normality assumption.

Chapter 4

Percent
o1 o
O (=]
TT T 1T T T 1

—
=}
I

| | | |
2950 3050 3150 3250 3350 3450
Stabilized viscosity

BFIGURE 4.5 Normal probability plot of
the stabilized viscosity data.

Test of mu=3200 vs mu not =3200

Variable N Mean
Example 4.3 15 3210.7
Variable 95.0% CI
Example 4.3 (3145.6, 3275.9)

One-Sample T: Example 4.3

StDev SE Mean
117.6 30.4

T P
0.35 0.729

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Confidence Interval on the Mean of a Normal Distribution with Variance
Unknown. Suppose that x is a normal random variable with unknown mean u and
unknown variance o~. From a random sample of 7 observations the sample mean X and sam-
ple variance s” are computed. Then a 100(1 — )% two-sided CI on the true mean is

x—1 <X +10m (4.34)

Y Ay
| —— < . [
a2, n—1 =1 /2.
! An : n

where 742, denotes the percentage point of the 7 distribution with 7 — 1 degrees of free-
dom such that P{t,_, = fy» ,_1} = /2. The corresponding upper and lower 100(1 — )%
confidence bounds are

)
HSX+1,, 11— (4.35)
’ AR
and
_ s
X — fa.n—l — < u (436)
~ 1
respectively.
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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- EXAMPLE 4.4

Reconsider the stabilized viscosity data from Example 4.3. Find

a 95% confidence interval on the mean stabilized viscosity.

Using equation 4.34, we can find the 95% CI on the mean sta-

hilizad vicancity oo fallare:
ULILZCU VISLUSILY dd TULIVW DS,

X roc;..,n—l j; Susx+ rocf2,n—l f
117.61 117.61

3210.73-2.145

Su<3210.73+4+2.145
g5 - Jis

314559 < n <3275.87

The manufacturer may only be concerned about stabilized
wricnncittr valitag that ara tan lavr and rancamizantly mav ha
\‘lb'vU.‘)ll,y VAalues Widl dlc www Uy dliudl 'leleLil.lCllLly 111(,1_)’ ue
interested in a one-sided confidence bound. The 95% lower
confidence bound on mean stabilized viscosity is found from

equation 4.36, using s 14 = 1.761 as

117.61

<
g5 h

3210.73-1.761

or
Another way to express this result is that our estimate of the
mean stabilized viscosity is 3210.73 + 65.14 cP with 95% 315725 1
confidence. This confidence interval was reported by Minitab
\in the box on page 118.
/
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4.3.4 Inference on the Variance of a Normal Distribution

Hypothesis Testing. We now review hypothesis testing on the variance of a normal
distribution. Whereas tests on means are relatively insensitive to the normality assumption.
test procedures for variances are not.

Suppose we wish to test the hypothesis that the variance of a normal distribution equals

a constant—say, o.. The hypotheses are
. 2 _ 2
Hy: o” =0 (4.37)
H: o’+#0; -

The test statistic for this hypothesis is

n—1)s>
— % (4.38)
Oy

2ra

X

where s” is the sample variance computed from a random sample of n observations. For a
fixed significance level test., the null hypothesis is rejected if )(% > xgx;z_”_] or if
Y3 < AT _onn_1 Where 2,5, and % 3_,/»,._, are the upper o/2 and lower 1 — (a/2) per-
centage points of the chi-square distribution with 7 — 1 degrees of freedom. If a one-sided
alternative is specified—say, H: o’ < 0. then we would reject if x% < x%_a_”_]. For the
other one-sided alternative H: o’ > O'%. reject if X% > )(g[_n_,.
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Confidence Interval on the Variance of a Normal Distribution. Suppose that
x is a normal random variable with unknown mean t and unknown variance ¢~>. Let the sam-
ple variance 57 be computed from a random sample of n observations. Then a 100(1 — &) %
two-sided CI on the variance is

2 2
n—1)s ) n—1)s
(27)50' S(,_,—) (4.39)
X(I;QJ‘J—] ZI—(I;Q.H—]
where %2/, denotes the percentage point of the chi-square distribution such that
P{)(,I |2 xé,z a—1r=042. A CI or the standard deviation can be found by taking the square

root throughout in equation (4.39).

2
n—1)s
o’ < (27) (4.40)
Z]—O.’.n—l
Upper and
>>_ lower
confidence
bounds
(n—1)s )
5 <o (4.41)
Aon—1
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4.3.5 Inference on a Population Proportion

Hypothesis Testing. Suppose we wish to test the hypothesis that the proportion p of
a population equals a standard value—say, p,y. The test we will describe 1s based on the nor-
mal approximation to the binomial. If a random sample of n items is taken from the popula-
tion and x items in the sample belong to the class associated with p, then to test
Ho: p=pg

Hi: p#p, (4.42)

we use the statistic

(XHOS) =10 5 v <,
. .\/npo(l - P())
0 (x—0.5)—np, if x> np,
\/HP() (1= po) A

For a fixed significance level test. the null hypothesis Hy: p = pg is rejected if |[Zp| > Z4,>. The
one-sided alternative hypotheses are treated similarly. A P-value approach also can be used.
Since this is a Z-test, the P-values are calculated just as in the Z-test for the mean.
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- EXAMPLE 4.5

A foundry produces steel forgings used in automobile manu-
facturing. We wish to test the hypothesis that the fraction
conforming or fallout from this process s 10%. In a random

sample of 250 forgings, 41 were found to be nonconforming.
What are your conclusions using o = 0.05?

SOLUTION

To test
Hy: p=0.1
Hi: p=#0.1

we calculate the test statistic

_(x=05)-np, _ (41-0.5)-(250)(0.1)

= =3.27
' V”POU‘PU) |250(0.1)(1-0.1)

/

Chapter 4

Using a=0.05 we find Zyps=1.96, and therefore
Hy: p=0.1is rejected (the P-value here is = 0.00108).
That is, the process fraction nonconforming or fallout is not
equal to 10%.
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Confidence Intervals on a Population Proportion. 1t is frequently necessary to
construct 100(1 — a)% CIs on a population proportion p. This parameter frequently corre-
sponds to a lot or process fraction nonconforming. Now p is only one of the parameters of a
binomial distribution, and we usually assume that the other binomial parameter n is known. If
a random sample of n observations from the population has been taken, and x “nonconforming”
observations have been found in this sample, then the unbiased point estimator of p is p = x/n.

There are several approaches to constructing the CI on p. If n is large and p = 0.1 (say),
then the normal approximation to the binomial can be used, resulting in the 100(1 — )%
confidence interval:

(4.44)

Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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- EXAMPLE 4.6 I

was not approved is

L]

In a random sample of 80 home mortgage applications  Assuming that the normal approximation to the binomial is
processed by an automated decision system, 15 of the applica-  appropriate, find a 95% confidence interval on the fraction of
tions were not approved. The point estimate of the fraction that ~ nonconforming mortgage applications in the process.

N

=—=0.1875
d 80
SOLUTIO N
The desired confidence interval is found from equation4.44 as which reduces to
0IST508129) 0.1020 < p<0.2730
0,1875—1,96J —————2<p
0.1875(0.8125
SO+1875+1,96‘] ( )
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4.3.6 Type Il Error and Sample Size

( S/n S+/n
0] O
A
Under H, Under H,
/ BFIGURE 4.6
= 7 The distribution of Z,
0
—Z, 0 Z, s Vnlo under H, and H,.
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- FXAMPLE 4.7

The mean contents of coffee cans filled on a particular pro-
duction line are being studied. Standards specify that the mean
contents must be 16.0 0z, and from past experience it is known
that the standard deviation of the can contents s 0.1 oz. The
hypotheses are

Hy: u=16.0
Hy: 1#16.0

A random sample of nine cans is to be used, and the type I error
probability 1s specified as & = 0.05. Therefore, the test statistic is

7 = X —16.0
)=
0.1/9
and H 1< rejected if 17| > 7, - = 1.06. Find the nrohahility
0 J =0 (.025 I J

of type II error and the power of the test, if the true mean con-
tents are t; = 16.1 oz.

SOLUTION

Since we are given that § =yt — tp = 16.1 = 16.0 = 0.1, we
have

ﬁ:(D(ZaQ _(S'\;’E)_q)(_laz 3 (S*\f{;)
\" o) s o)
ZCD(I 96 — (0’1)(3))41)( 1.96 — (0 l)(’%n

\ o1 ) \ 0.1 )
=®(-1.04) - D(-4.96)
=0.1492

Chapter 4

That is, the probability that we will incorrectly fail to reject
Hy 1f the true mean contents are 16.1 oz 1s 0.1492,
Equivalently, we can say that the power of the testis | = f§ =
1 - 0.1492 = 0.8508.
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BMFIGURE 4.7 Operating-characteristic curves for the two-sided normal test with o = 0.05.
(Reproduced with permission from C. L. Ferris, E. E. Grubbs, and C. L. Weaver, “Operating Characteristic Curves
for the Common Statistical Tests of Significance.” Annals of Mathematical Statistics. June 1946.)
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Minitab can perform sample size and power calculations. From
Example 4.7:

Power and Sample Size

l1-Sample Z Test

Testing mean=null (versus not=null)
Calculating power for mean = null +difference
Alpha=0.05 Sigma=20.1

Sample
Difference Size Power
0.1 9 0.8508

From Example 4.3:

Power and Sample Size
l1-Sample t Test

Testing mean =null (versus not =null)
Calculating power for mean=null +difference
Alpha=0.05 Sigma=117.61

Sample
Difference Size Power
50 15 0.3354
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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l-Sample t Test

Testing mean =null (versus not=null)
Calculating power for mean=null +difference

Alpha=0.05 Sigma=117.61

Sample Target Actual

Difference Size Power Power
50 46 0.8000 0.8055

l1-Sample t Test

Testing mean =null (versus not=null)
Calculating power for mean=null +difference

Alpha=0.05 Sigma=117.61

Sample
Difference Size Power
100 15 0.8644

Copyright (c) 2009 John Wiley & Sons, Inc.
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4.4 Statistical Inference for Two Samples

Population 1 Population 2

RN

//| N\ //|

Sample 1 Sample 2

FIGURE 4.8 Two independent populations

Comparing means, comparing variances, comparing proportions
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4.4.1 Inference on the Difference in Means, Variances Known
. _Assumptions

1. X171, X12. .. .. X1, 18 a random sample from population 1.

2. X271, X232, . . ., X3,, 15 a random sample from population 2.
3. The two populations represented by x; and x, are independent.

4. Both populations are normal, or if they are not normal. the conditions of the
central limit theorem apply.

A logical point estimator of fI; — U- is the difference in sample means x; — x>. Based
on the properties of expected values. we have

E(x) — %)= E(x) = E(xy) =y — Mo
and the variance of x; — x5 is

2 2
V(E - ®) =V(E) V()= T+ 02
1 2

Based on the assumptions and the preceding results., we may state the following.

The quantity
Xy — X5 — —
z=1 "2 (’u‘ﬂ’%) (4.47)
S L 02
I 715
has an N(0. 1) distribution.
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Testing Hypotheses on u; — u>, Variances Known

Null hypothesis:  Ho: iy — > = Ay

_x1—x -4y
Null hypothesis: Zy=—F—— (4.48)
o7 o3
—Ar
n 15

Fixed Significance Level

Alternative Hypotheses Rejection Criterion P-value
Hl:lul—‘u2¢AD Zo<—Za/20rZO:5 of2 P=Z|:l—(d)|ZD|):
H|:ﬂ|—u2>ﬁn lo> 2y P=l—(D(Z(])
Hyiipy - 1y < Ay Zy< Zg P=®(Z,)
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~ [EXAMPLE 4.8

A product developer is interested in reducing the drying time
of a primer paint. Two formulations of the paint are tested: for-
mulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time.
From experience, it is known that the standard deviation of
drying time is eight minutes, and this inherent variability
should be unaffected by the addition of the new ingredient.

Ten specimens are painted with formulation 1, and another
10 specimens are painted with formulation 2: the 20 speci-
mens are painted in random order. The two sample average
drying times are x| = [21 min and x, = 112 min, respectively.
What conclusions can the product developer draw about the
effectiveness of the new ingredient, using o = 0.057

SOLUTION

The hypotheses of interest here are

Hy: =ty =0
Hy: uy—-u, 0

Now since x; = 121 min and x, = 112 min, the test statistic is

20:—?22_”22 =252
(8) +(8)
10 10

Because the test statistic Zy = 2.52 > Z; 05 = 1.645, we reject
Hoy: 1y = 1p atthe o = 0.05 level and conclude that adding the

N\ 4

Chapter 4

or equivalently,

Hy: g =ty
Hy:owy 1

new ingredient to the paint significantly reduces the drying
time. Alternatively, we can find the P-value for this test as

P-value = 1 — ©(2.52) = 0.0059

Therefore, Hy: iy = [, would be rejected at any signifi-
cance level & = 0.0059.
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- - Oy _ O, O,
""I - .\‘2 - ZO’_" III—I‘" S l.f] - IUQ S .YI - .\‘2 + Zofaj III—I + 2

oo o

2
2

(4.49)

This is a two-sided Cl. The one-sided confidence
bounds would be found by using only one of the
limits in Equation (4.49) with a/2 replaced by a.

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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4.4.2 Inference on the Difference in Means of
Two Normal Distributions, VVariances Unknown

Hypotheses Tests for the Difference in Means. We now consider tests of hypothe-
ses on the difference in means U, — U» of two normal distributions where the variances O‘% and
03 are unknown. A f-statistic will be used to test these hypotheses. As noted above, the normal-
ity assumption is required to develop the test procedure, but moderate departures from normality
do not adversely affect the procedure. Two different situations must be treated. In the first case,
we assume that the variances of the two normal distributions are unknown but equal; that is,
O'% = O'% = 0~. In the sccond, we assume that (T% and O'% arc unknown and not nccessarily cqual.

Case I: O'f = O'f = o~ Suppose we have two independent normal populations with

unknown means [, and U,, and unknown but equal variances, O'% = O'% = 0. We wish to test

Hy: =ty =4

(4.50)
Hy: =1 #4
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The pooled estimator of o”. denoted by Sf;. is defined by

y  (m = 1)s7 +(ny = 1)s3

5, =
n+n,—2

2

(4.51)

The Two-Sample Pooled t-Test'

Alternative
Hypotheses

Null hypothesis:  Hy: t; — 1, = A,
X =% -4,

| . 1
S, |—+—
N on

Test statistic: 1y

Fixed Significance Level
Rejection Criterion

(4.53)

P-Value

Hy:py — 1 # Ay

Hl: Ly —‘u.z > AO
Hy: g — iy < 4

ID > rw’2,m+n2 - 2 or
Iy < = lopnen, — 2
I't[.'! > roc._n]-i-ng -2

Iy < —top+n, — 2

P = Sum of the probability
above 7, and below £

P = Probability above f,
I’ = Probability below 7

Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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~ [EXAMPLE 4.9 B

Two catalysts are being analyzed to determine how they affect
the mean yield of a chemical process. Specifically, catalyst 1 is
currently in use, but catalyst 2 is acceptable. Since catalyst 2 is
cheaper. it should be adopted. providing it does not change the
process vield. An experiment is run in the pilot plant and results
in the data shown in Table 4.2. Is there any difference between
the mean yields? Use o = 0.05 and assume equal variances.

SOLUTION

The hypotheses are

H:
H]:

Hy = U,
Ly # Us

m= TABLE 4.2
Catalyst Yield Data, Example 4.9

Observation Number Catalyst 1 Catalyst 2

1 91.50 89.19
2 04.18 90.95
3 02.18 90.46
4 95.39 93.21
5 91.79 97.19
6 89.07 97.04
7 94.72 91.07
S 89.21 92.75

X =92.255 X = 92.733

s, = 2.39 55 = 2.08

From Table 4.2 we have x; —92.255, 5, —2.39, n; — 8,
x> =92.733, 5, = 2.98, and n, = 8. Therefore,
and
X —X 92.255—-92.733
7 = “.lxz — = —=—=-035
| |
270 [—+ — 2.70 —

[—+
\ ny V8

Because 12514 = —2.145, and —2.145 < — 0.35 < 2.145, the
null hypothesis cannot be rejected. That is, at the 0.05 level of
significance, we do not have strong evidence to conclude that

s

catalyst 2 results in a mean yield that differs from the mean
vield when catalyst 1 is used.

Figure 4.9 shows comparative box plots for the yield
data for the two types of catalysts. These comparative box
plots indicate that there is no obvious difference in the median

P

s p

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.

B (n| — l)sf" +(n2 — l)sg

n+n, —2

=47.30=2.70

of the two samples, although the second sample has a slightly
larger sample dispersion or variance. There are no exact rules
for comparing two samples with box plots; their primary value
is in the visual impression they provide as a tool for explain-
ing the results of a hypothesis test, as well as in verification of
assumptions.

Figure 4.10 presents a Minitab normal probability plot
of the two samples of yield data. Note that both samples plot
approximately along straight lines, and the straight lines for
each sample have similar slopes. (Recall that the slope of the
line is proportional to the standard deviation.) Therefore, we
conclude that the normality and equal variances assumptions
are reasonable.
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Case 2: 6, # 6;. In some situations, we cannot reasonably assume that the
1 2

unknown variances o7 and 03 are equal. There is not an exact f-statistic available for testing

Hy: Wy — Uy, = Ay in this case. However. if Hy: i, — i, = Ag is true, then the statistic

(4.54)

Therefore. if 07 # 03. the hypotheses on differences in the means of two normal distributions
are tested as in the equal variances case, except that 7 is used as the test statistic and
ny + n, — 2 is replaced by v in determining the degrees of freedom for the test.

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Confidence Intervals — Case 1:

Xp— Xy — ro:[?. n]+112—25p |' + N
2
(4.56)

B I

\I n

11

— — |
SH —Hy SX =X g peny-25p, T
\ N

Case 2:
(2 2 22
- = 2 272 — — !S] 52
=X —logp vt =SS tlyp,, —+—  (437)
T\ o N om

Chapter 4
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~ ExAMPLE 4.10

An article in the journal Hazardous Waste and Hazardous
Materials (Vol. 6, 1989) reported the results of an analysis of
the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would indicate that the
hydration mechanism in the cement is blocked and would
allow water to attack various locations in the cement structure.
Ten samples of standard cement had an average weight percent

calcium of x; = 90.0, with a sample standard deviation of
§1=>5.0, and 15 samples of the lead-doped cement had an
average weight percent calcium of x, = 87.0, with a sample
standard deviation of s> = 4.0. Is there evidence to support a
claim that doping the cement with lead changes the mean
weight of calcium in the cement?

SOLUTION

We will assume that weight percent calcium is normally dis-
tributed and find a 95% confidence interval on the difference
in means, y, — U,, for the two types of cement. Furthermore,
we will assume that both normal populations have the same
standard deviation.

The pooled estimate of the common standard deviation is
found using equation 4.51 as follows:

[ N2 1o
k”’l - l}bl -+ k”’z - l}b

A

> 0
P ny +n, —2 10+15-2

Therefore, the pooled standard deviation estimate 1s
Sp = V19.52 = 4.4. The 95% CI is found using equation 4.56:

)
1 |
X =Xy —1lo025235p | —+—
T\ mpon
1 2

! 1 1
o [ 1
SH —Hy S X =X +f0.025,235p\;*n o
1 M

- J

Chapter 4

or upon substituting the values and using

t0.025.23 = 2.069,

sample

90.0 —87.0 — 2.069(4.4) % + 1% < Uy — 1y

<90.0-87.0+2.069(4.4) % + ILS

which reduces to
—0.72= ) — 1, £6.72

Note that the 95% CI includes zero: therefore, at this level of
confidence we cannot conclude that there is a difference in the
means. Put another way, there is no evidence that doping the
cement with lead affected the mean weight percent of cal-
cium; therefore, we cannot claim that the presence ol lead

o L a1 e e B L L N E . i S [N ass
dIIeCts Uis aspect Ol e nydraton mnecnanisin at ine Yo %ve
level of confidence.
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Two-Sample t-test and Cl: Catalyst 1, Catalyst 2

Two-sample T for Catalyst 1 vs Catalyst 2
N Mean  StDev SE Mean

Catalyst 1 8 92.26 2.39 0.84
Catalyst 2 8 92.73 2.98 1.1
Difference=mu Catalyst 1-mu Catalyst 2

Estimate for difference: —-0.48

95% CI for difference: —(3.39, 2.44)

t-test of difference=0 (vs not=): T-value=-0.35
P-Value=0.729 DF =14
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Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample
Difference Size Power
2 8 0.2816

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Sigma = 2.7

Sample Actual

Difference Size Target Power Power

2 27 0.7500 0.7615
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Paired Data:
™~ .

B — =i

~ CAAMPLE 4.11 WLl ]

Two different types of machines are used to measure the tensile
strength of synthetic fiber. We wish to determine whether or not
the two machines vield the same average tensile strength val-
ues. Eight specimens of fiber are randomly selected, and one
strength measurement is made using each machine on each
specimen. The coded data are shown in Table 4.3.

The data in this experiment have been paired to prevent the
difference between [iber specimens (which could be substan-
tial) from affecting the test on the difference between
machines. The test procedure consists of obtaining the differ-
ences of the pair of observations on each of the n specimens—
say, di=xy;—Xopj=1,2,0 00, n—and then testing the
hypothesis that the mean of the difference i, is zero. Note that
testing Hy: t; = 0 is equivalent to testing Hy: 1y = K-: further-
more, the test on Uy is simply the one-sample 7-test discussed
in Section 4.3.3. The test statistic is

d
fy=—F1
Sg/~NR
where
1
d=—734d
n j=l1
and
2
rl
P -1
_ 5 j=
Z(df *d) _E’df -
2 _ j=l _ =l n
Sq4 = =
n—1 n—1

and Hy: py = 0 is rejected if |1y > 142 4-1-

Chapter 4

In our example we find that

S 1
d=—73 dj =—(=11)=-1.38
4 j=l 8
2
n
; (2%} .
Sap VR s L)
;o n -
52 =471 = 8 —7.13
n—1 7
Therefore, the test statistic is
d -1.3
to d L38 _ 146

sy /An 2.67/48
Choosing & = 0.05 results in 7q 0257 = 2.365, and we conclude
that there is no strong evidence to indicate that the two

machines differ in their mean tensile strength measurements
(the P-value is P = 0.18).

m TABLE 4.3
Paired Tensile Strength Data for Example 4.11

Specimen Machine 1 Machine 2 Difference

1 74 78 —4
2 76 79 -3
3 74 75 —1

4 69 66 3
5 58 63 -5
6 71 70 1
7 66 66 0
8 65 67 -2
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4.4.3 Inference on the VVariances of Two Normal Distributions

Hypothesis Testing. Consider testing the hypothesis that the variances of two inde-
pendent normal distributions are equal. If random samples of sizes n; and n, are taken from
populations 1 and 2, respectively, then the test statistic for

"
H(:,: O'f:()'
H: oy #0

H-
b b B3 b

is simply the ratio of the two sample variances,

— o

F, = (4.58)

[

S

We would reject Hy if Fo > Fojon,— 1,1 O i Fo < Fi_(a72).0,—1.0,—1- Where Fea oy 0 10,1
and F'|_(4/2)0,—1.0,—1 denote the upper ¢//2 and lower 1 — (¢¢/2) percentage points of the F
distribution with n; — 1 and n, — 1 degrees of freedom, respectively. The following display
summarizes the test procedures for the one-sided alternative hypotheses.
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Testing Hypotheses on o7 =02 from Normal Distributions

Null hypothesis: Hy: O‘% = O'%

Alternative Hypotheses Test Statistics Rejection Criterion
§2
HIZO'%<O'% Fb:—% F0>Fa,n2—l,n1—l
S
2
)
= F,>F
2 0 o —1.,—1
Hl: O—% > O'% 52 ' ?
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The two-sided Cl is:

2 2
St o, _ 5
| | | /
—QPi—a}-“E.ug—l.n]—] = 2 < TFa_.fZ.ng—]..fn—l (4.59)
52 0y 5

where Fy 5, 1S the percentage point of the F distribution with # and v degrees of freedom such
that P{F,, = Fgj2.uy} = €/ 2. The corresponding upper and lower confidence bounds are

2 2
O, _ 5 _
pv =7 Fogny—1my-1 (4.60)
2 2
and
2 2
A .0
—Qﬁ—ﬂ.ﬂz—],lil—l =—7 (4.61)
5 0>
. 2
respectively.
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4.4.4 Inference on Two Proportions

Large-Sample Test for Hy: p, = p>. Suppose that the two independent random sam-
ples of sizes n; and rn, are taken from two populations, and let x; and x> represent the num-
ber of observations that belong to the class of interest in samples 1 and 2. respectively.
Furthermore, suppose that the normal approximation to the binomial is applied to each pop-
ulation. so that the estimators of the population proportions p, = x;/n, and p-> = x>/ n- and
have approximate normal distributions. We are interested in testing the hypotheses

Hy: pr=pr2
Hy: p #+ps

The statistic

f)l _162 —([)] _Pg)
m=p)  r(1=p2) (4.62)
s 7>
is distributed approximately as standard normal and is the basis ol a test for Hg: p = po.

Specifically, if the null hypothesis Hg: 21 = p», is true, then using the fact that gy = p, = p, the
random variable

PL— P

fri=rfees)

is distributed approximately N(O, 1). An estimator of the common parameter p is

= X+ X
ny + 1y
The test statistic Tor Hg: p | = p> is then
P, — Po
Zy = P — P2
; 1 1
Jp(l — p)[——i——)
72 115
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Testing Hypothesis on Two Population Proportions

Null hypothesis:  Hy: p; = p»

Z, = PP

T (4.63)
e
ny Ny

Test statistic:

Fixed Significance Level

Alternative Hypotheses Rejection Criterion P-value
Hl:pl #pz Z()>Za’12 OI'ZO‘(—ZmQ P=2[l —(b(‘Z()‘)]
Hy:py>p; Zy> Zy P=1-®(Z)
Hy:pi<ps 2o < Ly P=>(Z,)
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Py =Py =L, <p—p
& \ o n, (4.64)
I ~
R pill=py)  poll= Py
<p—-pr+7Z, 2 ( ) ( )
Fl Iy
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4.5 What if There Are More Than Two Populations?
The Analysis of VVariance

Example: Does changing the hardwood concentration in the pulp affect
the mean tensile strength of paper?

Tensiie Strength of Paper (psi)
I EEEEE—————————————————————————————————————————————————.

Observations
Hardwood
Concentration (%) 1 2 3 - 5 6 Totals Averages
5 7 8 15 L1 9 10 60 10.00
10 12 17 13 I8 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96
.
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30

Tensile strength (psi)
—
(8]
|
|

10 —
L
5 — —
0 | | | |
5 10 15 20
Hardwood concentration (%)
(a)
p+r ,u+rq p+r3 p+r¢
Hy Hp Hs Hy
(h)

BFIGURE 4.11 (a)Box plots of hardwood concentration data. (b)
Display of the model in equation 4.65 for the completely randomized single-factor
experiment.
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he Analysis of Variance (ANOVA)

We may describe the observations in Table 4.5 by the linear statistical model

i=1.2.....a

.\."zj = ‘U + Tf + EU {J -1 N (465)

where y;; is a random variable denoting the (ij)th observation, t is a parameter common to all
treatments called the overall mean, 7, is a parameter associated with the ith treatment called

the ith trearment effect, and €;; is a random error component. Note that the model could have
been written as

i=1,2,...,a
\‘U = au'f +€U J: 1.2.__,.”.

m TABLE 4.5
Typical Data for a Single-Factor Experiment

Treatment Observations Totals  Averages
1 Vi Y12 Vin Vi- Vi
2 V2 Y22 Yan V2 V2.
a Yai Ya2 e Yan Ya- Ya-
y y

Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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We are interested in testing the equality of the @ treatment means U, -, . . . . U, Using
) . :
L

amiatian (A AAY wa find that thic 1 aamtivalant tn f:a.f"l‘;i\n:; tha hvurnnthagac
\.JLIHE-I.LI.\JII TTTUU )y ¥ 1111W LIl LLILOD 1O \.f\.il.ll‘l(.l.l\.flll.- Ly l-\.f-)l.-lll‘g-_. [ S LW IIJIJULII\.JD\.J)
H: t;#0 for at least one (4.68)

Thus, if the null hypothesis is true, each observation consists of the overall mean U plus a
realization of the random error component €;. This is equivalent to saying that all N obser-
vations are taken from a normal distribution with mean f and variance o”. Therefore, if
the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA is based on the following partitioning of the total sum of
squares (which measures the total variability in the sample data):

The sum of squares identity is

n 7 a 5 a n ~
Y (vi-¥%) =nX@i-3) +X X (y-%) (4.69)
i=lj=I i=1 i=1j=I
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where

and

Chapter 4

‘S‘ST = ‘S“S‘Trculmcnls + SSE

a n )
i

WHESY Z(\U — T) = total sum of squares

e -— — = ~ o
D Treatments — }ILL_ i ‘l.) = recatment sum ol squarces

i=1
n 2
SSp=> Y (_‘s‘,_-j ) J,-,) = error sum of squares
i=1j=1

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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The expected value of the treatment sum of squarces 1s

\ a
E(SSTrearments) - ((1 —1 )O" +n 2 Ii.z

=1

The error mean square

88
MSp=—"E_
a(n—1)
is an unbiased estimator of 0.
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The sums of squares computing formulas for the analysis of variance with equal
sample sizes in each treatment are

a n 2
SSr=3 T yi-2 4.73)
i=1 j=1 N
and
G 22
Yi. V.
SSTmaMmts = ig{?l— W (4.74)

The error sum of squares is obtained by subtraction as

SSE = SST — SSTreatments (475)
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m TABLE 4.6

The Analysis of Variance for a Single-Factor Experiment
. ___________________________________________________________________________________________________________________|]

Source of Degrees of

Variation Sum of Squares Freedom Mean Square Fy

Treatments *S1ST|'C.;II|11cnlx a— 1 MSTrculmcnlx M'ST""-“‘["W-"[-"‘
MSg

Error SSg a(n—1) MSg

Total MYs an — 1

The ANOVA test statistic is:

E. = “S1STI‘L31][IIICHIS.;I(G B l) — “WSTI‘culmcnls
! SSg /|a(n—1)] MSg

If Fy is greater than the critical value F, , 4 4.1y then the null hypothesis of
equal treatment means is rejected. A P-value approach can also be used.
The P-value would be the probability above F, in the F, ; ;. distribution.
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~ EXAMPLE 4.12

Consider the paper tensile strength experiment described in
Section 4.5.1. Use the analysis of variance to test the hypothe-

sis that ditferent hardwood concentrations do not affect the
mean tensile strength of the paper.

SOLUTION

The hypotheses are

We will use & = 0.01. The sums ol squares for the ANOVA are
computed from equations 4.73, 4.74, and 4.75 as follows:

SSr— ¥ 3422
T = Vi T
dat N

4 .2
_ Vi Y.
S STreatments - z -
i=1 R N

= (7)” +(8)% +---+(20)> =2

Hy: 7; #0 for at least one i

= 382.79

6

We usually do not perform these calculations by hand. The
ANOVA from Minitab is presented in Table 4.7. Since
Foo1320=4.94, we reject Hy and conclude that hardwood
concentration in the pulp significantly affects the strength of
the paper. Note that the computer output reports a P-value for
the test statistic £ = 19.61 in Table 4.7 of zero. This is a trun-

Chapter 4

_(60)* +(94)* +(102)* +(127)*  (383)*
24

SSE = SST - SSTrearments
=512.96 —-382.79 =130.17

cated value; the actual P-value is P = 3.59 x 10~°. However,
since the P-value is considerably smaller than o = 0.01, we
have strong evidence to conclude that H; is not true. Note that
Minitab also provides some summary information about each
level of hardwood concentration, including the confidence
interval on each mean.
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m TABLE 4.7

Minitab Analysis of Variance Output for the Paper Tensile Strength Experiment
__________________________________________________________________________________________________________________________|

One-Way Analysis of Variance

Analysis of Variance

Source DF SS MS F P
Factor 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51

Total 23 512.96

Individual 95% Cls For Mean
Based on Pooled StDev

Level N Mean StDev —+ + + +
5 6 10.000 2.828 (—*—)
10 6 15.667 2.805 (_:E:_)
15 6 17.000 1.789 (__$__)
20 6 21.167 2.639 (—*—)
— -+ + +
Pooled StDev = 2.551 10.0 15.0 20.0 25.0
I
/

Chapter 4

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
Copyright (c) 2009 John Wiley & Sons, Inc.

77



Graphical comparison of individual means

6/~ = 1.04
1 2 3 4
L L L L ]
0 5 10 15 20 25 30

mcCirrlIDE A 49 Lo 1 1 VR R T O
mIiIGaTUvinne .14 Letlsle SUClgll daveldz2es HTOHL HIC HalUw ol COTICCIIU dLIUN €A L=

ment in relation to a normal distribution with standard deviation VMSg/n = V6.51/6 = 1.04

20% hardwood produces higher mean strength than the
others; 5% hardwood produces lower strength; 10% and
15% hardwood don’t differ but give lower strength than 20%.
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4.5.3 Checking Assumptions: Residual Analysis

= TABLE 4.8

Residuals for the Hardwood Experiment

Hardwood Concentration Residuals
5% -3.00 —2.00 5.00 1.00 —1.00 0.00
10% -3.67 1.33 -2.67 2.33 +3.33 —0.67
15% —3.00 1.00 2.00 0.00 —1.00 1.00
20% -2.17 3.83 0.83 1.83 -3.17 —1.17

eij = Yi — S\/ij = Yij — Y;
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Normal probability plot

0.1 | I | I
-3.7-1.70.3 2.3 43 6.3

Cumulative percent

Residuals

BFIGURE 4.13
Normal probability plot of
residuals from the hardwood
concentration experiment.

Residual Plots:

' Percent
|5 910 415 120 hardwood

y
)

Lo N R e
T

Residual value

|
K]
T
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| [

BFIGURE 4.14 Plotof

residuals versus factor levels.

[
g *
© - |
= 4 Average
g 010 15' lO = tensile
o [ ] strength
o 2 -
[a'
L ] L ]
_4_

BFIGURE 4.15 Plotof

residuals verus v,
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4.6 Linear Regression Models

As an example of a linear regression model, suppose that we wish to develop an empir-
ical model relating the viscosity of a polymer to the temperature and the catalyst feed rate. A
model that might describe this relationship is

v=PB+ Bix; + Pox; + € (4.76)

where y represents the viscosity, x; represents the temperature, and x, represents the cata-
lyst feed rate. This is a multiple linear regression model with two independent variables.
We often call the independent variables predictor variables or regressors. The term /in-
ear is used because Equation 4.76 is a linear function of the unknown parameter 3¢, 31, and
f3>. The model describes a plane in the two-dimensional x,. x». space. The parameter f3,
defines the intercept of the plane. We sometimes call B, and 3, partial regression coeffi-
cients because B, measures the expected change in y per unit change in x; when x, is held
constant and 3, measures the expected change in y per unit change in x, when x, is held
constant.
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In general, the response variable y may be related to k regressor variables. The
model

v=PBo+Bixi +Poxa+ -+ Bxe + € (4.77)

is called a multiple linear regression model with k regressor variables. The parameters
B,.j=0.,1...., k, are called the regression coefficients. This model describes a hyper plane
in the k-dimensional space of the regressor variables {.1;,-}. The parameter f3; represents the
expected change in response y per unit change in x; when all the remaining independent vari-
ables x; (i # j) are held constant.

Models that are not linear in the regressors can still be fit using linear
regression techniques, so long as they are linear in the parameters.

Important cases include models with interaction terms and polynomials.
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We may write the model equation [equation (4.77)] in terms of the observations in

Table 4.9 as

Chapter 4

vi=PBo t Brxi t Boxio bt Brxig €
k

:B()+ Eﬁf},’u—{—gl; i=1.2.....n

J=1

= TABLE 4.9

Data for Multiple Linear Regression

y xl xz ] xk
¥ X1 X2 Xk
¥2 X721 X22 e X2k
Va Xul X2 o Xk
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The method of least squares:

i=1

k 2
L= 25, = 2 (_\‘; ~Bo - ;ﬁjr«fﬁ)

(4.83)

The function L is to be minimized with respect to 3o, B, ... . Br. The least squares estimators,

say Bo. B ... . Br. must satisfy

('}L n n k "
= _2 .\;{' - ﬁ() - Z ﬁ;"rf‘f = 0 (484&)
aﬁ() Bo. Br. . ... Bi i=1 =1
and
L .
— =-2> Bo— >, Bjx; j=1,2,..., k (4.84b)
dﬁ,i Bo-Bis - - - Bx J=1
Simplifying Equation 4.84 we obtain
nPBo+B: 2, xin P v A B D v = DV Least
=1 =1 =1 =1 squares
S : < normal
ﬁo 2 X1 + ﬁ 2 X+ ﬁz 2 XifXpp + -+ ﬁk 2*;|-"U< = 2-\'51_\.‘; _
= =t equations
Bo 2 X + By E VX + Ba 2 X Xip 0+ Py E X = XikVi (4.85)
i=1 i=1 i=1 i=1
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[t is simpler to solve the normal equations if they are expressed in matrix notation. We
now give a matrix development of the normal equations that parallels the development of

equation (4.85). The model in terms of the observations, equation (4.82) may be written in
matrix notation as

y=XB+e¢
where
Vi L X X2 e Xig Bo €
2 I xop Xan o A Bi &>
y = . X = B=1|". | and g=
L Vn L 1 Xpl A2 e o Apk _6;'( - L En

In general. y is an (1 X 1) vector of the observations, X is an (n X p) matrix of the lev-
els of the independent variables, B is a (p X 1) vector of the regression coefficients, and € is
an (n x 1) vector of random errors.

X'XB =Xy (4.87)
Equation (4.87) is the matrix form of the least squares normal equations. It is identical to

equation (4.85). To solve the normal equations. multiply both sides of equation (4.87) by the
inverse of X'X. Thus, the least squares estimator of B is

B=(X'X)"'Xy (4.88)
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The fitted regression model is

= XB (4.89)

t

The difference between the actual observation y; and the corresponding fitted value y; is the
residual, say ¢; = y; — v;. The (n x 1) vector of residuals is denoted by

e=y—y (4.90)
¢ . —v'v — R'Y'v (4 Q1)
LJkJJ‘L ." v‘ H i% J \_I'nj l}

Equation (4.91) is called the error or residual sum of squares, and it has n — p degrees of
freedom associated with it. It can be shown that

E(SSp) =0~ (n — p)

so an unbiased estimator of o2 is given by

) SSL -
o~ = (4.92)
Chapter 4 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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. EXAMPLE 4.13

Sixteen observations on the operating cost of a branch office of
a finance company (v) and two predictor variables—number
of new loan applications (x;) and number of loans outstanding

model

y= ,BEJ + '8[.\] + ﬁ}\‘: + £

o these data

(x5)—are shown in Table 4.10. Fit a multiple linear regression

The X'X matrix is

and the X'y vector is

Chapter 4

T

SOLUTION
I'he X matrix and y veclor are
1 80 8
1 93 9
1100 10
1 82 12
| a0 11
1 99 B
1 81 8
; 1 9 10
=11 wu n
I 93 11
1 a7 13
1 95 11
I 10 8
1 45 12
1 86 9
L1 87 12

X'X =

2256

2340
2426
2293
2330
2308
2250
2409
2364
2379
2440
2364
2404
2317
2309
2328

| |
80 93 ... 87
8 9 12
| 1
Xy=|8 93
8 9

= TABLE 4.10

Consumers Finance Data for Example 4,13

New Number of Loans
Applications Outstanding
Ohservation {xy) (x2) Cost
1 80 8 2156
2 93 9 2340
3 100 10 2420
4 82 12 2203
5 a0 I 2330
6 99 8 2368
7 81 8 2150
8 96 10 2400
9 94 12 23064
10 93 I 2379
11 97 13 2440
12 95 11 2364
13 100 8 2404
14 83 12 2317
15 86 9 2309
16 87 12 2328
808 16 1458 164 : :
93 0 ) The least squares estimate of 8 is
. = 1458 133500 14946
C 164 14946 1726
87 12
2256
1 37577
2340
i . =| 3429550
12 2338 385,562
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14.176004 —0.129746
B=|-0.129746 1.429184 x 107
—0.223453  —4,763947 x 10

1566.07777

= 7.62129

8.58485
99 - .
_|_
> 95 —
z 90~ . —
3 80 + -
a /0 |
3 50| > .
2 30~ . - -
5 10 =
Z 5 -

+
1 L1 | | | | | []
-21.50 -13.68-5.85 1.97 9.79 17.6125.43
Residual

BFIGURE 4.16 Normal probability
plot of residuals, Example 4.13.

—0.223453 37,577
—4.763947 % 107 || 3.429,550
2222381 x 1072 385,562

25.43 |- + 4
17.61 - .
9.79 - i + .

1.97 | -

Residual

-5.85 N

-13.68 N

-21.50 | | I | iFT N
2244 2273 2302 2331 2359 2388 2417

Predicted cost

BFIGURE 4.17 Plotof residuals versus
predicted cost, Example 4.13.
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The least squares fit, with the regression coefficients reported
to two decimal places, is

V = 1366.08 + 7.62x, + 8.58x,
The first three columns of Table 4.11 present the actual

observations y;, the predicted or fitted values ¥; and the
residuals. Figure 4.16 is a normal probability plot of the

25.43 M + -
|

17.61 - :

4+

9.79 - + + i

s =+

E
g 1.97 = —
+

_5.85 - :

~13.68 - -

-21.50 1 | | T th

80.0 83.3 86.7 90.0 93.2 96.7 100.0

X1, new application

BFIGURE 4.18 Plot of residuals versus x,
(new applications), Example 4.13.

\ _
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residuals. Plots of the residuals versus the predicted values ¥;
and versus the two variables x| and x, are shown in Figures 4.17,
4.18, and 4.19, respectively. Just as in ANOVA, residual plot-
ting is an integral part of regression model building. These
plots indicate that variance of the observed cost tends to
increase with the magnitude of cost. Figure 4.18 suggests that
the variability in cost may be increasing as the number of new
applications increases.

25.43 | I+

+

17.61 -
979  + + .
+

1.97 = -

Residual
_'_
++

-5.85 [~ .

-13.68 [~ . 7

—21.50 I | | o+
800 833 9.67 105011.3312.1713.00

X>, cutstanding loan

BFIGURE 4.19 Plot of residuals versus x,
(outstanding loan), Example 4.13.
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m TABLE 4.11

Predicted Values, Residuals, and Other Diagnostics from Example 4.13
|

Observation Predicted Residual Studentized
i Vi Value y; e; h;; Residual D, R-Student
1 2256 2244.5 11.5 0.350 0.87 0.137 0.87
2 2340 2352.1 —12.1 0.102 -0.78 0.023 —0.77
3 2426 2414.1 11.9 0.177 0.80 0.046 0.79
4 2293 22940 -1.0 0251 -0.07 0.001 —0.07
5 2330 2346.4 -16.4 0.077 -1.05 0.030 -1.05
6 2368 23893 -21.3 0.265 -1.52 0.277 —1.61
7 2250 2252.1 —2.1 0.319 -0.15 0.004 —0.15
8 2409 2383.6 254 0.098 1.64 0.097 1.76
9 2364 2385.5 21.5 0.142 1.42 0.111 1.48
10 2379 2369.3 9.7 0.080 0.62 0.011 0.60
11 2440 24169 23.1 0.278 1.66 0.354 1.80
12 2364 2384.5 -20.5 0.096 -1.32 0.062 —1.36
13 2404 2396.9 7.1 0.289 0.52 0.036 0.50
14 2317 2316.9 0.1 0.185 0.01 0.000 <0.01
15 2309 2298.8 10.2 0.134 0.67 0.023 0.66
16 2328 2332.1 —4.1 0.150 -0.28 0.005 —0.27
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m TABLE 4.12

Minitab OQutput for the Consumer Finance Regression Model, Example 4.13
I EEEEEEEEE——————————————

Regression Analysis: Cost versus New Applications, Outstanding Loans

The regression equation 1s
Cost = 1566 + 7.62 New Applications + 8.58 Outstanding Loans

Predictor Coef SE Coef T p
Constant 1566.08 6l1.59 25.43 0.000
New Applications 7.6213 0.6184 12.32 0.000
Outstanding Loans 8.585 2.439 3.52 0.004
S = 16.3586 R—Sq = 92.7% R—Sqg (adj) = 91.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 44157 22079 82.50 0.000
Residual Error 13 3479 268

Total 15 47636

Source DF Seq SS

New Applications 1 40841

Outstanding Loans 1 3316
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Test for Significance of Regression. The test for significance of regression is a
test to determine whether a linear relationship exists between the response variable y and a
subset of the regressor variables xq, x», ... . x;. The appropriate hypotheses are

Hy:By=Pr=-=B=0

H:B; # 0  for at lcast onc j (4.95)

The test procedure is to calculate the test statistic

- SSlk  MSg
CSSH(n—k—=1) MSg

0 (4.97)

and to reject Hy if Fy exceeds Fy ;,,_x_1- Alternatively, we could use the P-value approach to
hypothesis testing and, thus, reject Hy if the P-value for the statistic Fy is less than ¢. The test
is usually summarized in an analysis of variance table such as Table 4.13.
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The regression sum of squares is

SSg=B'X'y — (4.98)
n
and the error sum of squares is
SSp=y'y - B'X'y (4.99)
and the total sum of squares is
on N2
(2]
SSp=y'y -~ L2 (4.100)
n

These computations are almost always performed with regression software. For
instance, Table 4.12 shows some of the output from Minitab for the consumer finance
regression model in Example 4.13. The lower portion in this display is the analysis of vari-
ance for the model. The test of significance of regression in this example involves the
hypotheses

Ho: Bi=pB2=0
Hy: B; # 0 for at least one j

The P-value in Table 4.13 for the F statistic [equation (4.97)] is very small, so we would con-
clude that at least one of the two variables—new applications (x;) and outstanding loans (x,)—
has a nonzero regression coefficient.
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Table 4.13 also reports the coefficient to multiple determination R*, where

R2 =25k g 5% 4.101)
SST SST

The statistic R is a measure of the amount of reduction in the variability of y obtained by
using the regressor variables x;, x,. ..., x; in the model. However, a large value of R does not
necessarily imply that the regression model is a good one. Adding a variable to the model will
always increase R2, regardless of whether the additional variable is statistically significant or
not. Thus, it is possible for models that have large values of R* to yield poor predictions of
new observations or estimates of the mean response.

Because R* always increases as we add terms to the model, some regression model
builders prefer to use an adjusted R” statistic defined as

, SSr/(n— —1 .
Rﬁdizl—M: 1—(” )(I—R“) (4.102)
: SS/(n—1) n—p

. 2 . s . . .
In general, the adjusted R~ statistic will not always increase as variables are added to the
model. In fact, if unnecessary terms are added, the value of R;4; will often decrease.
- . ) . 2
For example, consider the consumer finance regression model. The adjusted R~ for the

model is shown in Table 4.12. It is computed as

n—1
Ridi =1- (” )(1 —-R?)
. il —Jf'}'

15
=1- (1—3)(1 - 0.92697) =0.915735

which is very close to the ordinary R2. When R? and Ridi differ dramatically, there 1s a good

chance that nonsignificant terms have been included in the model.
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Tests on Individual Regression Coefficients and Groups of Coefficients. We
are frequently interested in testing hypotheses on the individual regression coefficients. Such
tests would he useful in determining the value of each regressor variable in the regression
model. For example, the model might be more effective with the inclusion of additional vari-
ables or perhaps with the deletion of one or more of the variables already in the model.

Adding a variable to the regression model always causes the sum of squares for regres-
sion to increase and the error sum of squares to decrease. We must decide whether the increase
in the regression sum of squares is sufficient to warrant using the additional variable in the model.
['urthermore, adding an unimportant variable to the model can actually increase the mean
square error, thereby decreasing the usefulness of the model.

The hypotheses Tor lesting the significance ol any individual regression coellicient,
say f3;, are

H(): ﬁj =0
Hi:B; #0

If Hy: B; = 0 is not rejected. then this indicates that x; can be deleted from the model. The test
statistic for this hypothesis is

=5

J

fo=—" ——— (4.103)

V6iC,
where Cj; is the diagonal element of (X'X)™" corresponding to [i The null hypothesis
H():ﬁj =0 is rejected if |7y > #/2,,_1_1. Note that this is really a partial or marginal test
because the regression coefficient B_; depends on all the other regressor variables x; (i # j) that
are in the model. o
The denominator of equation (4.103), V6 ECL,-. is often called the standard error of
the regression coetficient ;. That is,

se(f;) = \/0'2—(” (4.104)
Therefore, an equivalent way to write the test statistic in equation (4.103) is
B
5(?([3_,-)

fo (4.105)

See Table 4.12 (slide
91) for the t-tests on
the individual
regressors in the
consumer finance
model — both variables
are significant
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We may also directly examine the contribution to the regression sum of squares for a
particular variable, say .;, given that other variables x; (i # j) are included in the model. The
procedure for doing this is the general regression significance test or, as it is often called, the
extra sum of squares method. This procedure can also be used to investigate the contribu-
tion of a subset of the regressor variables to the model. Consider the regression model with &
regressor variables:

y=Xp +&
where y is (n x 1), X is (nxXp).Bis (px 1), €is (n x1), and p =k + 1. We would like
to determine if the subset of regressor variables xi, x,, ..., x,.(r < k) contribute signifi-

cantly to the regression model. Let the vector of regression coefficients be partitioned as

follows:
8-

where B is (r x 1) and B~ is [ (p — r) X 1]. We wish to test the hypotheses

H()I ﬁ] =
The model may be written as
y=XB+e=X,B,+X,B,+¢ (4.107)

where X, represents the columns of X associated with B, and X, represents the columns of
X associated with B,.
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For the full model (including both B, and B,), we know that ﬁ = (X'X) " 'X"y. Also,

the regression such of squares for all variables including the intercept is
SSr(B) = B'Xy ( p degrees of freedom)

and

y'y - BX'y
IWSH =
n—p

SSk(P) is called the regression sum of squares due to B. To find the contribution of the terms
in 3, to the regression, we fit the model assuming the null hypothems H,: B, =0 to be true.

10N ﬂ. |f17\ W1 th R, = 0

y=X.B,+¢
The least squares estimator of B, is B, = (X5X,) X, y. and
SSk(B-) = B5X%y (p — r degrees of freedom)
The regression sum of squares due to B, given that B, is already in the model is

SSr(B11B:) = SS(B) — SSr(B>)

(4.108)

(4.109)

4.110)

This sum of squares has r degrees of freedom. It is the “extra sum of squares” due to B,. Note
that SSz(Bi|B-) is the increase in the regression sum of squares due to including the variables

X1y X2, .. ., X, 1n the model.
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Now, SSz(B1B,) is independent of MSy, and the null hypothesis 8, = 0 may be tested
by the statistic
B Ssr(BiIB2) | v

Fo= 4.111
’ MSy; @D

It Fy > Fy ,,p we reject Hy, concluding that at least one of the parameters in B, is not zero,
and, consequently, at least one of the variables x, x,, ... .. v, in X, contributes significantly
to the regression model. Some authors call the test in equation (4.111) a partial F-test.

The partial F-lestis very useful. We can use it (0 measure the contribution ol x; as il it
were the last variable added to the model by computing

SSk(Bi|Bos Bis -+ Bi—t: Byr1: -+ Be)

This is the increase in the regression sum of squares due to adding x; to a model that already
includes xy, ..., Xj_y, Xj41, . . . . Xz Note that the partial F-test on a single variable x; is equiv-
alent to the #-test in equation (4.103). However, the partial F-test is a more general procedure
in that we can measure the effect of sets of variables.
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~ EXAMPLE 4.14

Consider the consumer finance data in Example 4.13. Evaluate
the contribution of x, (outstanding loans) to the model.

SOL UTION

The hypotheses we wish to test are
Hy: B>=0
H|I ﬁz # 0

This will require the extra sum of squares due to 3, or

535‘.*?(ﬁ2|ﬁ|- Bo) = SSe(Bo. B1. B2) — SSr(Bo. B1)
= Ssg(Bi- ﬁz|ﬁo) - S*S'R(ﬁQIﬁ())

Now from Table 4.12, where we tested for significance of
regression. we have

SSR(BI'BQIﬁ()) = 44.] 571

which was called the model sum of squares in the table. This

<1Im nf Qanares l"l'fIQ two APUI'PPQ ﬁF frppdnrn
Suiil U SHLGI WS aas Lvy HLw S | 11

Vs L8 S wianl LY

The reduced model is

._\:ﬂ I > BRI
¥ O T IR T

The least squares fit for this model is

§ = 16523

wn

S

\CJ

+ 7.6397x,

and the regression sum of squares for this model (with one
degree of freedom) is

SSR(ﬁ| IB()) = 40.8408

Note that SSg(B11B0) is shown at the bottom of the Minitab
output in Table 4.12 under the heading “Seq $5.” Therefore,

SSr(BalBo. B1) = 44.157.1 — 40.840.8
=3316.3

with 2 — 1 =1 degree of freedom. This is the increase in the
regression sum of squares that results from adding x» to model
already containing x, and it is shown at the bottom of the
Minitab output in Table 4.12. To test Hy: B> = 0, from the test
statistic we obtain

Fo SSR(ﬁzlﬁ(?- Bi)/1

0

3316.3/1 _
=————=12.3926
MS; 267.604

Note that MSg from the full model (Table 4.12) 1s used in the
denominator of Fy. Now, because Fjgsq.13 = 4.67, we would
reject H: B, = 0 and conciude that x, (outstanding ioans) con-
tributes significantly to the model.

Because this partial F-test involves only a single regressor,
it is equivalent to the #-test because the square of a 1 random
variable with v degrees of freedom is an F random variable
with 1 and v degrees of freedom. To see this, note from Table
4.12 that the t-statistic for Hy: B, = 0 resulted in 75 = 3.5203

and that 7§ = (3.5203)% = 12.3925 = F,,.

- _
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Confidence Intervals on the Individual Regression Coefficients. Because the
least squares estimator ﬁ is a linear combination of the observatlons it follows that [3 1s normally
distributed with mean vector B and covariance matrix 0 (X'X)"". Then each of the statistics

Bi— B
V6°C;,
1S d15t11buted as t with H —p degrees of freedom, where Cj; is the (jj)th element of the

(X' X) matrix, and 67 is the estimate of the error variance, obtamed from equation (4.92).
Therefore, a 100(1 — ) percent CI for the regression coefficient 8, j =0, 1, ..., k, is

j=0.1,... .k (4.112)

Bj - rfxfz.n—p\/azc,{j < ﬁ;‘ < Bj + fafz_,,_;;\/ﬁzcb: (41 13)

Note that this CI could also be written as

~

18_,:'_ fijz.u p ﬁj <18,:—B,:+rfxf’?n ;J 18
because se(ﬁ_i—) =V ('5'2(1,_-’,-.
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~ EXAMPLE 4.15

Construct a 95% confidence interval for the parameter 3; in Example 4.13.

SOLUTION
The estimate of B is ﬁ, = 7.62129, and because 6~ = 267.604 and Cpp = 1.429184 x 1072, we find that

B - fo.ozs,ls\/f}TCn <P < 31 + I0.025,13\/'52011

7.62129 — 2.16'\V/ (267.604)(1.429184 x 107°) < 3,

< 7.62129 + 2‘16\/(267‘604)(1‘429184 x 1077)
7.62129 — 2.16(0.6184) < 3; < 7.62129 + 2.16(0.6184)

and the 95% confidence interval on 3 is

6.2855 < 3, < 8.9570

. _
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Confidence Interval on the Mean Response. We may also obtain a confidence inter-

val on the mean response at a particular point, say, X1, Xgzs - - » - Yok We first define the vector
-1 -
Xo1
X0 = | Aoz
_ Aok

The mean response at this point is
MHyix, = Bo + Bixor + BaXoa + - + BeXowr = Xo B
The estimated mean response at this point is
vixg) = Kf)ﬁ (4.114)

This estimator is unbiased because E[V(x) ] = E(x( B) = x(B = l,x,. and the variance of
v(xp) is

~ 2y -1 —1
VI:_V(X[))] =0 K() ()& X) X{) (4115)
Therefore, a 100(1 — o¢) percent CI on the mean response at the point xg;, Xp. . . . .. Xok 18
- '~ 2 —1 a2 —1 :
_‘;‘(X())— Tajrg_”_p’\/g XE)(X!X) X0 S;i_ﬂ_m C_:_‘!.‘(K()) ‘|‘f.ij2_”_l,n\/0 XE:.(XIX) X0 (41 16)
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Minitab will calculate the CI in equation (4.116) for points of interest. For example,
suppose that for the consumer finance regression model we are interested in finding an esti-
mate of the mean cost and the associated 95% CT at two points: (1) New Applications = 85
and Outstanding Loans =10, and (2) New Applications =95 and Outstanding
Loans = 12. Minitab reports the point estimates and the 95% CI calculated from equation
(4.116) in Table 4.14.

When there are 85 new applications and 10 outstanding loans. the point estimate of cost
is 2299.74, and the 95% Cl is (2287.63, 2311.84), and when there are 95 new applications and
12 outstanding loans, the point estimate of cost is 2293.12, and the 95% CI is (2379.37,
2406.87). Notice that the lengths of the two confidence intervals are different. The length of
the CI on the mean response depend on not only the level of confidence that is specified and
the estimate of =, but on the location of the point of interest. As the distance of the point
from the center of the region of the predictor variables increases, the length of the confidence
interval increases. Because the second point is further from the center of the region of the pre-
dictors, the second CI is longer than the first.
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= TABLE 4.14
Minitab Qutput
_______________________________________________________________________________________________________________________________________________|

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI
1 2299.74 5.60 (2287.63, 2311.84)  (2262.38, 2337.09)
2 2393.12 6.36 (2379.37, 2406.87)  (2355.20, 2431.04)

Values of Predictors for New Observations

New New Outstanding
Obs Applications Loans
1 85.0 10.0
2 95.0 12.0
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A regression model can be used to predict future observations on the response v cor-

responding to particular values of the regressor variables, say xgp, Xg2, ..., Xop- 1T
Xo = [ 1, Xo1, X00s - - - s - Yox |, then a point estimate for the future observation v at the point

X01s X025 - - - » Xgr 18 computed from equation (4.114):

,'{"(X()) = KE)B

A 100(1 — o) percent prediction interval (PI) for this future observation is

V(xg) = fajz_n—p\/a'z(l +x6(X'X)'xy) < Yo
< $(xp) + ffxf2.u—pva-2(l +x6(X'X) " 'xg)  (4.117)

In predicting new observations and in estimating the mean response at a given point
X01s XO2s oen s ) Yor- WE€ must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the origi-
nal data will no longer fit well outside of that region.

The Minitab output in Table 4.14 shows the 95% prediction intervals on cost for the
consumer finance regression model at the two points considered previously: (1) New
Applications = 85 and Outstanding Loans = 10, and (2) New Applications =95 and
Outstanding Loans = 12. The predicted value of the future observation is exactly equal to the
estimate of the mean at the point of interest. Notice that the prediction intervals are longer that
the corresponding confidence intervals. You should be able to see why this happens from
examining equations (4.116) and (4.117). The prediction intervals also get longer as the point
where the prediction is made moves further away from the center of the predictor variable
region.
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Other Diagnostic Tools

o Standardized and Studentized residuals
e R-student — an outlier diagnostic
e The PRESS statistic

e R? for prediction based on PRESS — a measure
of how well the model will predict new data

* Measure of leverage — hat diagonals
e Cook’s distance — a measure of influence

Chapter 4 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 106
Copyright (c) 2009 John Wiley & Sons, Inc.



Important Terms and Concepts

Alternative hypothesis

Analysis of variance (ANOVA)

Binomial distribution

Checking assumptions for statistical inference procedures

Chi-square distribution

Confidence interval

Confidence intervals on means, known variance(s)

Confidence intervals on means, unknown variance(s)

Confidence intervals on proportions

Confidence intervals on the variance of a normal
distribution

Confidence intervals on the variances of two normal
distributions

Critical region for a test statistic

F-distribution

Hypothesis testing

Least square estimator

Linear statistical model

Minimum variance estimator

Null hypothesis

P-value

P-value approach

Parameters of a distribution

Chapter 4

Point estimator

Poisson distribution

Pooled estimator

Power of a statistical test

Random sample

Regression model

Residual analysis

Sampling distribution

Scaled residuals

Statistic

t-distribution

Test statistic

Tests of hypotheses on means, known variance(s)

Tests of hypotheses on means, unknown variance(s)

Tests of hypotheses on proportions

Tests of hypotheses on the variance of a normal
distribution

Tests of hypotheses on the variances of two normal
distributions

Type I error

Type II error

Unbiased estimator
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Chapter 4

earning Objectives

Explain the concept of random sampling
Explain the concept of a sampling distribution

Explain the general concept of estimating the parameters of a population or prob-
ability distribution

Kt lhovtir 4t avinlain tha meaaicioem it ; oo
FANPLWALUSNBLY ALY C..’\l)l(.ll L e FLCLIDL JAL vwilll wWilll 1l < I:J
Construct and interpret confidence intervals on a single mean and on the differ-
ence in two means

Construct and interpret confidence intervals on a single variance or the ratio of
two variances

Construct and interpret confidence intervals on a single proportion and on the
difference in two proportions

Test hypotheses on a single mean and on the difference in two means

Test hypotheses on a single variance and on the ratio of two variances

Test hypotheses on a single proportion and on the difference in two proportions
Use the P-value approach for hypothesis testing

Understand how the analysis of variance (ANOVA) is used to test hypotheses
about the equality of more than two means

Understand how to fit and interpret linear regression models.
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