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Learning Objectives

Understand the statistical basis of attributes control charts
Know how to design attributes control charts
Know how to set up and use the p chart for fraction nonconforming

= W o =

Know how to set up and use the np control chart for the number of noncon-
forming items

tn

Know how to set up and use the ¢ control chart for defects
Know how to set up and use the u control chart for defects per unit
Use attributes control charts with variable sample size

@ 3 >

Understand the advantages and disadvantages of attributes versus variables con-
trol charts

9. Understand the rational subgroup concept for attributes control charts
10. Determine the average run length for attributes control charts
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7.2 The Control Chart for Fraction Nonconforming

The fraction nonconforming is defined as the ratio of the number of nonconforming items in
a population to the total number of items in that population The items may have several qual-
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form to standard on one or more of these characteristics, it is classified as nonconforming.

The statistical principles underlying the control chart for fraction nonconforming are
based on the binomial distribution. Suppose the production process is operating in a stable
manner, such that the probability that any unit will not conform to specifications is p, and that
successive units produced are independent. Then each unit produced is a realization of a
Bernoulli random variable with parameter p. If a random sample of 7 units of product is
selected, and if D is the number of units of product that are nonconforming, then DD has a bino-
mial distribution with parameters n and p; that is,

n _
P{D:x}:( ]px(l—p)nx x=0,1,....n (7.1)
X

From Section 3.2.2 we know that the mean and variance of the random variable D are np and
np(l — p), respectively.

The sample fraction nonconforming is defined as the ratio of the number of non-
conforming units in the sample D to the sample size 7 that is,

b

n

p= (7.2)
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As noted in Section 3.2.2, the distribution of the random variable p can be obtained from the
binomial. Furthermore, the mean and variance of p are
Up= P (7.3)

and

O'?} _ M (7.4)
| n

respectively. We will now see how this theory can be applied to the development of a control chart
for fraction nonconforming. Because the chart monitors the process fraction nonconforming p, it
is also called the p chart.

7.2.1 Development and Operation of the Control Chart

In Chapter 5, we discussed the general statistical principles on which the Shewhart control chart
is based. If w is a statistic that measures a quality characteristic, and if the mean of w is i, and
the variance of w is 0. then the general model for the Shewhart control chart is as follows:

UCL=u,+ Lo,
Center line = u,, (7.5)
LCL=u, -Lo,

where L is the distance of the control limits from the center line, in multiples of the standard
deviation of w. It is customary to choose L = 3.
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Fraction Nonconforming Control Chart: Standard Given

UCL=p+31ﬂfp)

n
Center line = p (7.6)
1—
LeL = p-32=P)
n
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When the process fraction nonconforming p is not known, then it must be estimated from
observed data. The usual procedure is to select m preliminary samples, each of size n. As a gen-
eral rule, m should be at least 20 or 25. Then if there are D; nonconforming units in sample i, we
compute the fraction nonconforming in the /th sample as
p; =—- i=1,2,....m

n

and the average of these individual sample fractions nonconforming is

Fiy m R
Z D, 2 P
ﬁ: i=1 — =1 (77)

mn m

The statistic p estimates the unknown fraction nonconforming p. The center line and control lim-
its of the control chart for fraction nonconforming are computed as follows:

Fraction Nonconforming Control Chart: No Standard Given

UCL=p+3 IM
n

Center line = p (7.8)

p(1-p)

LCL=p-3

‘This control chart is also often called the p-chart.



tXAMPLE Y&l Construction and Operation of a Fraction Nonconforming Control Chart

Frozen orange juice concentrate is packed in 6-02 cardboard

from Lcll‘ddel‘d &-[Obk clf'ld attachmg a lTlthll bottom pdm.l.
By inspection of a can, we may determine whether, when
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around the bottom joint. Such a nonconforming can has an
lmnrnﬁpr seal on either the side seam or the bottom nfmpl

LA AR LR S

Sct up a control chart to improve the fraction of noncon-
forming cans produced by this machine.

To establish the control chart, 30 samples of n = 50 cans each
were selected at half-hour intervals over a three-shift period in
which the machine was in continuous operation. The data are
shown in Table 7.1.

We construct a phase I control chart using this preliminary
data to determine if the process was in control when these data
were collected. Since the 30 samples contain E Di= 347
nonconforming cans, we find from equation (7.7),

Therefore,

m - V n
D,
p= 2 34T
mn  (30)(50) and
Using p as an estimate of the true process fraction nonconform- LCL — ,f_’ -p) —0.2313-0.1780 — 0.0524
ing, we can now calculate the upper and lower control limits as
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s TABLE 7.1
Data for Trial Control Limits, Example 7.1, Sample Size n = 50

Number of Number of
Sample Nonconforming Sample Fraction Sample Nonconforming Sample Fraction
Number Cans, D; Nonconforming, p; Number Cans, D; Nonconforming, p;
1 12 0.24 17 10 0.20
2 15 0.30 18 5 0.10
3 8 0.16 19 13 0.26
4 10 0.20 20 11 0.22
5 4 0.08 21 20 0.40
6 7 0.14 22 18 0.36
7 16 0.32 23 24 0.48
8 9 0.18 24 15 0.30
9 14 0.28 25 9 0.18
10 10 0.20 26 12 0.24
11 5 0.10 27 7 0.14
12 6 0.12 28 13 0.26
13 17 0.34 29 9 0.18
14 12 0.24 30 [§ 0.12
15 22 0.44 347 p=02313
16 8 0.16
The control chart with center line at p = 0.2313 and the those from samples 15 and 23, plot above the upper control
above upper and lower control limits is shown in Fig. 7.1. limit, so the process is not in control. These points must be
The sample fraction nonconforming from each preliminary investigated to see whether an assignable cause can be
sample is plotted on this chart. We note that two points, determined.
0.55
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Chapter 7 Sample number

BFIGURE 7.1 Initial phase I fraction nonconforming control chart
for the data in Table 7.1.
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Chapter 7

Analysis of the data from sample 15 indicates that a new
batch of cardboard stock was put into production during that
half-hour period. The introduction of new batches of raw
malerial sometimes causes irregular production  perfor-
mance, and it is reasonable to believe that this has occurred

here. Furthermore, during the hall-hour period in which

3
(28)(50

0.2150

sample 23 was obtained, a relatively inexperienced operator
had been temporarily assigned to the machine, and this could
account for the high fraction nonconforming obtained from
that sample. Consequently, samples 15 and 23 are climi-
nated, and the new center line and revised control limits are

calculated as

=0.2150
)

2
+3 ‘U.JSO{_D.?SSU) 0.3893
-3

- e
pll—-p .2150(0.785
LeL=p-3JPU=P) o150 }%g?”} = 0.0407
H h

The revised cenler line and control limits are shown on the

control chart in Fig. 7.2, Note that we have not dropped sam-
ples 15 and 23 from the chart, but they have been excluded

from the control limit calculations, and we have noted this

directly on the control chart. This annotation of the control
chart 1o indicate unusual points, process adjustments, or the
type of investigation made at a particular point in time forms a

Note also that the fraction nonconforming from sample
21 now exceeds the upper control limit. However, analysis of
the data does not produce any reasonable or logical assigna-
ble cause for this, and we decide to retain the point.
Therefore, we conciude that the new controi iimits in Fig.
7.2 can be used for future samples. Thus, we have concluded
the control limit estimation phase (phase I) ol control chart

useful record for future process analysis and should become a usage.
standard practice in control chart usage.

0.55 - New

operator
0.50 - New
P material
0.45 . ®
Revised UCL =

0.40 0.3893

0.35

0.30
0.25 A

Sample fraction nonconforming, /5

0.20 - |
0.15 -
0.10

0.05 - Revised LCL = 0.0407
0.00

A

2 4 6 8 1012 14 16 18 20 22 24 2% 28 30

Sample number

v
Cantrol limit estimation

B FIGURE 7.2 Revised control limits for the data in Table 7.1.
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Chapter 7

Sometimes examination of contral chart data reveals infor-
mation that affects other points that are not necessarily outside
the control limits. For example. if we had found that the tem-
porary operalor working when sample 23 was oblained was
actually working during the entire two-hour period in which
samples 21-24 were obtained. then we should discard all four
samples, even il only sample 21 exceeded the control limits, on
the grounds that this inexperienced operator probably had
some adverse influence on the fraction nonconforming during
the entire period.

Before we conclude that the process is in control at this
level. we could examine the remaining 28 samples for runs

and other nonrandom patlerns. The largest run 1s one ol

length 5 above the center line, and there are no obvious pat-
terns present in the data. There is no strong evidence of any-
thing other than a random pattern of variation aboul the cen-
ter line.

We conclude that the process is in control at the level p =
0.2150 and that the revised control limits should be adopted for
monitoring current  production. However, we note that
although the process is in control, the fraction nonconforming
is much too high. That is. the process is operating in a stable
manner, and no unusual operator-controllable problems are
present. It is unlikely that the process quality can be improved
by action at the workforce level. The nonconforming cans pro-
duced are management controllable because an intervention
by management in the process will be required o improve

= TABLE 7.2

Orange Juice Concentrate Can Data in Samples of Size n = 50
—

performance. Plant management agrees with this observation
and directs that. in addition to implementing the control chart
program. the engineering staff should analyze the process in an
elfort o improve the process yield. This study indicates that
several adjustments can be made on the machine that should
improve ils performance,

During the next three shifts following the machine adjust-
ments and the introduction of the control chart, an additional
24 samples of n = 50 observations cach are collected. These
data are shown in Table 7.2, and the sample fractions noncon-
forming are plotted on the control chart in Fig. 7.3.

From an examination of Fig. 7.3, our immediate impres-
sion is that the process is now operating at a new quality
level that is substantially better than the center line level
of p=02150. One point, that from sample 41, is below
the lower control limit. No assignable cause for this out-of-
control signal can be determined. The only logical reasons
for this ostensible change in process performance are the
machine adjustments made by the engineering stafl and.
possibly, the operators themselves. It is not unusual to find
that process performance improves following the introduc-
tion of formal statistical process-control procedures. often
because the operalors are more aware of process quality and
becuuse the control chart provides a continuing visuul dis-
play of process performance.

We may formally test the hypothesis that the process frac-
tion nonconforming in this current three-shift period differs

Number of

Sample Nonconforming Sample Fraction
Number Cans, I, Nonconforming, ,6,—

31 9 0.18

32 & 0.12

33 12 0.24

34 5 0.10

35 6 0.12

36 4 .08

37 6 0.12

38 3 0.06

39 7 0.14

40 6 0.12

41 2 0.04

42 4 0.08

43 3 0.06

Number of

Sample Nonconforming Sample Fraction
Number Cans, I); Nonconforming, p;

44 6 0.12

45 5 0.10

46 4 0.08

47 8 16

48 5 0.10

449 6 0.12

50 7 0.14

51 5 0.10

52 6 0.12

53 3 0.06

54 5 0.10

133 p=0.1108
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BFIGURE 7.3 Continuation of the fraction nonconforming control chart,
Example 7.1.

from the process fraction nonconforming in the preliminary where

data. using the procedure given in Section 4.3.4. The hypothe- 5 +nad

Ly s

ses are p= 1 1Py
fy =+ Ha

Ho: pi=m
In our example, we have
Hy: p>ps
(1400)(0.2150) + (1200)(0.1108)

p= = 0.1669
1400 + 1200

where p, is the process fraction nonconforming from the pre-
liminary data and p, is the process fraction nonconforming in
the current period. We may estimate py by py = p = (1.2150, and and

paby
. 0.2150-0.1108 1 — 710
. 3
e lElf), o \’(01(}(}‘)}[083 1]( 1700]
27 50)24) 1200
Comparing this to the upper 0.05 point of the standard nor-
The {approximale) lest statistic for the above hypothesis is, mal distribution, we find that Zg = 7.10 > Zygs = 1.645.
from equation (4.63), Consequently, we reject Hy, and conclude that there has been a
significant decrease in the process fallout

Zy= P pa Based on the apparently successful process adjustiments, it
. R 1 seems logical to revise the control limits again, using only the
p{l— )[I E] most recent samples (numbers 31-534). This results in the new

control chart parameters:

Center line=p=0.1108

UCL = p+1J ouus”J ©. “08]0359' = 02440
1— .
Chapter 7 LCL=j-3 ‘”{ P) ~0.1108— "s’ (©. “08) 0-8892) _ _0.0224-0



Figure 7.4 shows the control chart with these new parameters.
Note that since the calculated lower control limit is less than
zero, we have set LCL = 0. Therefore, the new control chart
will have anly an upper control limit. From inspection ol Fig.
7.4, we sce that all the points would fall inside the revised
upper control limit; therefore, we conclude that the process is
in control at this new level.

The continued operation ol this control chart for the next
five shifts is shown in Fig. 7.5. Data for the process during this
period are shown in Table 7.3. The control chart does not indi-
cate lack of control. Despite the improvement in yield follow-
ing the engineering changes in the process and the introduction
of the control chart, the process fallout of p = 0.1108 is still too

high. Further analysis and action will be required (o improve
the vield. These management interventions may be further
adjustments to the machine. Statistically designed experiments
(see Part 1V} are an appropriate way 10 determine which
machine adjustments arc critical to further process improve-
ment, and the appropriate magnitude and direction of these
adjustments. The control chart should be continued during the
period in which the adjustments are made. By marking the time
scale of the control chart when a process change is made.

the control ¢chart becomes a logbook in which the timing ol

process interventions and their subsequent effect on process
performance are easily seen. This loghook aspect of control
chart usage is extremely important.

0.35

oh M

0.55 -
| New aperatar
0.50 ) material
0.45 - Revised UCL =
~oan N.2R]03 -
AU = i

New @® = Points not included in control

limit calculations

Machine adjustments

UCL = 0.2440

0.20 - :
0.16 -
0.10 -

0.05 = Revised LCL = 0.0407

Sample fraction nonconforming, p

O.OOII'III'II!"I Ll

CL=0.1108

AR
IV\

2 4 6 8 10121416 18202224 26283032 3436384042 44 46 48505254

Sample number

A ]

v v
Control limit estimation New control limits calculaled
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chart, Example 7.1.
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BFIGURE 7.5 Completed fraction nonconforming control chart, Example 7.1.
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= TABLE 7.3

New Data for the Fraction Nonconforming Control Chart in Fig. 7.5, n = 50
I

Number of Number of
Sample Nonconforming Sample Fraction Sample Nonconforming Sample Fraction
Number Cans, D; Nonconforming, p; Number Cans, D; Nonconforming, p;
55 8 0.16 75 5 0.10
56 7 0.14 76 8 0.16
57 5 0.10 77 11 0.22
58 6 0.12 78 9 0.18
59 - 0.08 79 7 0.14
60 5 0.10 80 3 0.06
61 2 0.04 81 5 0.10
62 3 0.06 82 2 0.04
63 - 0.08 83 1 0.02
64 7 0.14 84 - 0.08
65 6 0.12 85 5 0.10
00 S 0.10 80 3 0.06
67 5 0.10 87 7 0.14
08 3 0.06 88 0 0.12
69 7 0.14 89 - 0.08
70 9 0.18 90 - 0.08
71 6 0.12 91 6 0.12
72 10 0.20 92 8 0.16
73 - 0.08 93 5 0.10
74 3 0.06 94 6 0.12

Chapter 7 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 14
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Design of the Fraction Nonconforming Chart

e Three parameters must be specified
1. The sample size
2. The frequency of sampling
3. The width of the control limits

« Common to base chart on 100% inspection of all
process output over time

« Rational subgroups may also play role in
determining sampling frequency

Chapter 7 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
Copyright (c) 2009 John Wiley & Sons, Inc.

15



Interpretation of Points on the Control Chart for Fraction Nonconforming.
Example 7.1 illustrated how points that plot beyond the control limits are treated, both in
establishing the control chart and during its routine operation. Care must be exercised in
interpreting points that plot below the lower control limit. These points often do not rep-
resent a real improvement in process quality. Frequently, they are caused by errors in the
inspection process resulting from inadequately trained or inexperienced inspectors or
from improperly calibrated test and inspection equipment. We have also seen cases in
which inspectors deliberately passed nonconforming units or reported fictitious data. The
analyst must keep these warnings in mind when looking for assignable causes if points
plot below the lower control limits. Not all downward shifts in p are attributable to
improved quality.

Chapter 7 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 16
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The np Control Chart. 1ltis also possible to base a control chart on the number non-
conforming rather than the fraction nonconforming. This is often called an number noncon-
forming (np) control chart. The parameters of this chart are as follows.

The np Control Chart

I'g | — 1 L iﬂh( — n\l
LS re ] ._J'*\, re ".J. f_I)!
Center line =np (7.13)

LCL = np—34np(1-p)

If a standard value for p is unavailable, then p can be used to estimate p. Many nonstatisti-
cally trained personnel find the np chart easier to interpret than the usual fraction noncon-
forming control chart.

Chapter 7 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 17
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7.2.2 Variabie Sampie Size

In some applications of the control chart for fraction nonconforming, the sample is a 100%
inspection of process output over some period of time. Since different numbers of units could
be produced in each period, the control chart would then have a variable sample size. There
are three approaches to constructing and operating a control chart with a variable sample size.

Varmble- Wuﬁh Co.ntrol Limits. The first and perhaps the most simple approach is
1

At diial gamin thao

ard an tha ¢cneriFic gamnla
CO Uil Uil SpPeCinic Saiiipic

ower control limits are

ch individual sample that are bas
size. That is, if the ith Sample is of size n;, then the upper and
p * 3V p(l = p)/n;. Note that the width of the control limits is inversely proportional to the
square root of the sample size.

To illustrate this approach, consider the data in Table 7.4. These data came from the pur-
chasing group of a large aerospace company. This group issues purchase orders to the com-
pany’s supplicrs. The sample sizes in Table 7.4 are the total number of purchase orders issued
each week. Obviously, this is not constant. A nonconforming unit is a purchase order with an
error. Among the most common errors are specifying incorrect part numbers, wrong delivery
dates, and wrong supplier information. Any of these mistakes can result in a purchase order
change, which takes time and resources and may result in delayed delivery of material.

For the 25 samples, we calculate

25
2 Dr'
p=5—-= % =0.096
2 )
i=1 I

Consequently, the center line 1s at 0.096, and the control limits are

(0.096)(0.904)

n;

UCL=p+ 3(3';3 =0.096+3

and

(0.096)(0.904)

n;

LCL=p- 3(3'1,_-] =0.096-3
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= TABLE 7.4

Purchase Order Data for a Control Chart for Fraction Nonconforming with Variable Sample Size
. ______________________________________________________________________________________________________________________________________________________________________________|

Standard Deviation

Number of Sample Fraction J L.
Sample Sample Nonconforming Nonconforming, 6 =/ (0.096)(0.904) Control Limits
Number, i Size, n; Units, D, p: = D;/n; PN n; LCL UCL
1 100 12 0.120 0.029 0.009 0.183
2 80 8 0.100 0.033 0 0.195
3 80 6 0.075 0.033 0 0.195
4 100 9 0.090 0.029 0.009 0.183
5 110 10 0.091 0.028 0.012 0.180
6 110 12 0.109 0.028 0.012 0.180
7 100 11 0.110 0.029 0.009 0.183
8 100 16 0.160 0.029 0.009 0.1823
9 90 10 0.110 0.031 0.003 0.189
10 90 6 0.067 0.031 0.003 0.189
11 110 20 0.182 0.028 0.012 0.180
12 120 15 0.125 0.027 0.015 0.177
13 120 9 0.075 0.027 0.015 0.177
14 120 8 0.067 0.027 0.015 0.177
15 110 0 0.055 0.028 0.012 0.180
16 80 8 0.100 0.033 0 0.195
17 80 10 0.125 0.033 0 0.195
18 30 7 0.088 0.033 0 0.195
19 90 5 0.056 0.031 0.003 0.189
20 100 8 0.080 0.029 0.009 0.183
21 100 5 0.050 0.029 0.009 0.183
22 100 8 0.080 0.029 0.009 0.183
23 100 10 0.100 0.029 0.009 0.1823
24 90 6 0.067 0.031 0.003 0.189
25 90 9 0.100 0.031 0.003 0.189
2450 234 2.383

|
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BFIGURE 7.6 Control chart for fraction B FIGURE 7.7 Control chart for fraction noncon-
nonconforming with variable sample size. forming with variable sample size using Minitab.
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Average sample size approach

Chapter 7

— i=

n=

Therefore, the approximate control limits are

UCL=p+3 M = 0.096 + 3\/(0'0%(;;0'904) —0.185
n

and

LCL=p- PIL=P) _ 0963 ‘j (0.096)(0.904) _ 07
n

938

The resulting control chart is shown in Fig. 7.8. Note that p for sample 11 plots close to the
approximate upper control limit, yet it appears to be in control. However, when compared to

0.25

020 " oL =0.185

Exact UCL for
0.15 -~ sample

AN AL
N RVAYYY

LCL = 0.007
L S S S S S A BFIGURE 7.8 Control chart for

2 4 6 8 10 12 14 16 18 20 22 24 fraction nonconforming based on average
Sample number sample size.

Sample fraction nonconforming, p
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The Standardized Control Chart. The third approach to dealing with variable
sample size is to use a standardized control chart, where the points are plotted in standard
deviation units. Such a control chart has the center line at zero, and upper and lower control
limits of +3 and -3, respectively. The variable plotted on the chart is

(7.14)

where p (or p if no standard is given) is the process fraction nonconforming in the in-control
state. The standardized control chart for the purchase order data in Table 7.4 is shown in Fig.
7.9. The calculations associated with this control chart are shown in Table 7.5. Tests for runs
and pattern-recognition methods could safely be applied to this chart, because the relative
changes from one point to another are all expressed in terms of the same units of measurement.

The standardized control chart is no more difficult to construct or maintain than either
of the other two procedures discussed in this section. In fact, many quality control software
packages either automatically execute this as a standard feature or can be programmed to plot
a standardized control chart. For example, the version of Fig. 7.9 shown in Fig. 7.10 was cre-
ated using Minitab. Conceptually, however, it may be more difficult for operating personnel
to understand and interpret, because reference to the actual process fraction defective has
been “lost.”” However, if there is large variation in sample size, then runs and pattern-recog-
nition methods can only be safely applied to the standardized control chart. In such a case, it
might be advisable to maintain a control chart with individual control limits for each sample
(as in Fig. 7.6) for the operating personnel, while simultaneously maintaining a standardized
control chart for engineering use.

The standardized control chart is also recommended when the length of the production

Chapter 7 run is short, as in many job-shop settings. Control charts for short production runs are dis- 22

cussed in Chapter 9.
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m TABLE 7.5

Calculations for the Standardized Control Chart in Fig. 7.9, p = 0.096

Sample
Number of Fraction Standard Deviation pi—pP
Noncon- Noncon-
Sample Sample forming forming, ;= ;; (0.096)(0.904) I,.'f (0'096)(_0'904)
Number, i Size, n; Units, D; pi = Di/n; PN ;i \ i
1 100 12 0.120 0.029 0.83
2 80 8 0.100 0.033 0.12
3 80 6 0.075 0.033 —0.64
4 100 9 0.090 0.029 -0.21
5 110 10 0.091 0.028 —0.18
6 110 12 0.109 0.028 0.46
7 100 11 0.110 0.029 0.48
3 100 16 0.160 0.029 2.21
9 90 10 0.110 0.031 0.45
10 90 6 0.067 0.031 —0.94
11 110 20 0.182 0.028 3.07
12 120 15 0.125 0.027 1.07
13 120 9 0.075 0.027 -0.78
14 120 8 0.067 0.027 —1.07
15 110 6 0.055 0.028 —1.46
16 30 8 0.100 0.033 0.12
17 80 10 0.125 0.033 0.88
18 80 7 0.088 0.033 —-0.24
19 90 5 0.056 0.031 —1.29
20 100 8 0.080 0.029 —0.55
21 100 5 0.050 0.029 —1.59
22 100 8 0.080 0.029 0.55
23 100 10 0.100 0.029 0.14
24 90 6 0.067 0.031 -0.94
25 90 9 0.100 0.031 0.13
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7.2.4 The Operating-Characteristic Function and Average
Run Length Calculations

The operating-characteristic (or OC) function of the fraction nonconforming control chart
is a graphical display of the probability of incorrectly accepting the hypothesis of statisti-
cal control (i.e., a type Il or B-error) against the process fraction nonconforming. The OC
curve provides a measure of the sensitivity of the control chart—that is, its ability to detect
a shift in the process fraction nonconforming from the nominal value p to some other value
p. The probability of type II error for the fraction nonconforming control chart may be com-
puted from

f = P{p<UCL|p}- P{jp=LCL|p| i)

P{D < nUCL|p} - P{D = nLCL|p}

Since D is a binomial random variable with parameters n and p, the B-error defined in equa-
tion (7.15) can be obtained from the cumulative binomial distribution. Note that when the

LCL is negative, the second term on the right-hand side of equation (7.15) should be
dropped.
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m TABLE 7.6

Calculations® for Constructing the OC Curve for a Control Chart for Fraction Nonconforming
with # = 50, LCL = 0.0303, and UCL = 0.3697

p P(D < 18|p) PID < 1|p) B =P{D < 18|p}-P{D < 1|p)
0.01 1.0000 0.9106 0.0894
0.03 1.0000 0.5553 0.4447
0.05 1.0000 0.2794 0.7206
0.10 1.0000 0.0338 0.9662
0.20 0.9975 0.0002 0.9973
0.25 0.9713 0.0000 0.9713
0.30 0.8594 0.0000 0.8594
0.35 0.6216 0.0000 0.6216
0.40 0.3356 0.0000 0.3356
0.45 0.1273 0.0000 0.1273
0.50 0.0325 0.0000 0.0325
0.55 0.0053 0.0000 0.0053

“The probabilities in this table were found by evaluating the cumulative binomial distribution. For small p (p < 0.1,
say) the Poisson approximation could be used, and for larger values of p the normal approximation could be used.
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We may also calculate average run lengths (ARLSs) for the fraction nonconforming con-
trol chart. Recall from Chapter 5 that for uncorrelated process data the ARL for any Shewhart
control chart can be written as

I

ARL = : :
P(sample point plots out of control)

Thus, if the process is in control, ARL is

]
ARL() - —
04
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Chapter 7

and if it is out of control, then

ARLl :ﬁ

These probabilities (a, ) can be calculated directly from the hinomial distribution or read
[rom an OC curve.

To illustrate, consider the control chart for fraction nonconforming used in the OC
curve calculations in Table 7.6. This chart has parameters 7 = 50, UCL = 0.3697, LCL =
0.0303. and the center line is p = 0.20. From Table 7.6 (or the OC curve in Fig. 7.11) we find
that if the process is in control with p = p, the probability of a point plotting in control is
0.9973. Thus, in this case & = | — § = 0.0027, and the value of ARL,, is

Therefore, if the process is really in control, we will experience a false out-of-control signal
about every 370 samples. (This will be approximately true, in general, for any Shewhart
control chart with three-sigma limits.) This in-control ARL is generally considered to be
satisfactorily large. Now suppose that the process shifts out of control to p = 0.3. Table 7.6
indicates that if p = 0.3, then 8 = 0.8594. Therefore, the value of ARL is

1 1

ARL, = - =7
1-f  1-0.8594

and it will take about seven samples, on the average, to detect this shift with a point outside
of the control limits. If this is unsatisfactory, then action must be taken to reduce the out-of-
control ARL;. Incrcasing the sample size would result in a smaller value of 8 and a shorter
out-of-control ARL . Another approach would be to reduce the interval beftween samples.
That is, if we are currently sampling every hour, it will take about seven hours, on the aver-
age, to detect the shift. If we take the sample every half hour, it will require only three and a
half hours, on the average, to detect the shift. Another approach is to use a control chart that
is more responsive (o small shilts, such as the cumulative sum charts in Chapter 9.
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7.3 Control Charts for Nonconformities (Defects)

Chapter 7

A nonconforming item is a unit of product that does not satisfy one or more of the specifica-
tions for that product. Each specific point at which a specification is not satisfied results in a
defect or nonconformity. Consequently, a nonconforming item will contain at least one non-

onfcnmlty However, deCI‘ldl[‘lE on their nature and severity, it is quite possible for a unit to
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the personal computer should be classified as nonconforming, since the flaws would be wery
noticeable to the customer and might affect the sale of the unit. There are many practical sit-
uations in which we prefer to work directly with the number of defects or nonconformaities
rather than the fraction nonconforming. These include the number of defective welds in 100 m
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gic device, the number of errors on a document, and so forth.

Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 30
Copyright (c) 2009 John Wiley & Sons, Inc.



[t is possible to develop control charts for either the total number of nonconformities
in a unit or the average number of nonconformities per unit. These control charts usually
assume that the occurrence of nonconformities in samples of constant size is well modeled by
the Poisson distribution. Essentially, this requires that the number of opportunities or poten-
tial locations for nonconformities be infinitely large and that the probability of occurrence of
a nonconformity at any location be small and constant. Furthermore, the inspection unit must
be the same for each sample. That is, each inspection unit must always represent an identical
area of opportunity for the occurrence of nonconformities. In addition, we can count non-
conformities of several different types on one unit, as long as the above conditions are satis-
fied for each class of nonconformity.

In most practical situations, these conditions will not be satisfied exactly. The number
of opportunities for the occurrence of nonconformities may be finite, or the probability of
occurrence of nonconformities may not be constant. As long as these departures from the
assumptions are not severe, the Poisson model will usually work reasonably well. There are
cases. however, in which the Poisson model is completely inappropriate. These situations
are discussed in more detail at the end of Section 7.3.1.
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7.3.1 Procedures with Constant Sample Size

Consider the occurrence of nonconformities in an inspection unit of product. In most cases,
the inspection unit will be a single unit of product, although this is not necessarily always so.
The inspection unit is simply an entity for which it is convenient to keep records. It could be
a group of 5 units of product, 10 units of product, and so on. Suppose that defects or non-
conformities occur in this inspection unit according to the Poisson distribution; that is,

-C X
e C

p(x)= x=0,1,2,...

x!

where x is the number of nonconformities and ¢ > 0 is the parameter of the Poisson distribu-
tion. From Section 3.2.3 we recall that both the mean and variance of the Poisson distribution
are the parameter c. Therefore, a control chart for nonconformities, or ¢ chart with three-
sigma limits would be defined as follows.”

Control Chart for Nonconformities: Standard Given
UCL =c +34/c
Center line =c¢ (7.16)
LCL=c-3+c
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Control Chart for Nonconformities: No Standard Given

UCL =z +3+fc
Center line =¢ (7.17)
LCL=c-34C

When no standard is given, the control limits in equation (7.17) should be regarded as frial
control limits, and the preliminary samples examined for lack of control in the usual phase I
analysis. The control chart for nonconformities is also sometimes called the ¢ chart.
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EXAMPLE 7.3

Table 7.7 presents the number ol nonconformities observed in
26 successive samples of 100 printed circuit boards. Note that,

= TABLE 7.7

for reasons of convenience, the inspection unit is defined as
100 boards. Set up a ¢ chart for these data.

Data on the Number of Nonconformities in Samples of 100 Printed Circuit Boards

Number of Number of
Sample Number Nonconformities Sample Number Nonconformities
| 21 14 19
2 24 15 10
3 16 16 17
4 12 17 13
5 15 18 22
6 5 19 18
7 28 20 39
B 20 21 30
9 31 22 24
10 25 23 16
11 20 24 19
12 24 25 17
13 16 26 15

SOLUTION

Since the 26 samples contain 516 total nonconformitics, we
estimate ¢ by

516
26

=19.85

Therefore, the trial control limits are given by

UCL =c¢ +3v/c =19.85 +34/19.85=33.22
Center line = = 19.85

1Ol =7 —34/2 =19.85—34/10.85 = 6.48

The control chart is shown in Fig. 7.12. The number of
observed nonconformities from the preliminary samples is
plotted on this chart. Two points plot outside the control
limits, samples 6 and 20. Investigation of sample 6 revealed
that a new inspector had examined the boards in this sam-
ple and that he did not recognize several of the types of
nonconformities that could have been present. Furthermore,
the unusually large number of nonconformities in sample
20 resulted from a temperature control problem in the wave
soldering machine, which was subsequently repaired.

ilital-Iiiiine YY RIS iR vy

Therefore, il seems reasonable o exclude these (wo
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BFIGURE 7.12 Control chart for nonconformities for
Example 7.3.

= TABLE 7.8

samples and revise the trial control limits. The estimate of ¢
18 now computed as

T = 472 =19.67
24

and the revised control limits are

UCL=¢ +7 xE:l9 67 4+34/19.67 =32.97
Center line =¢ =19.67
LCL =7 —3JZ =19.67—-319.67 = 6.36

These become the standard values against which production in
the next period can be compared.

Twenty new samples, each consisting of one inspection unit
(i.e.. 100 boards), are subsequently collected. The number of
nonconformities in each sample is noted and recorded in Table
7.8. These points are plotted on the control chart in Fig. 7.13.
No lack of control is indicated; however, the number ol non-
conformities per board is still unacceptably high. Further
action is necessary (o improve the process.

Additional Data for the Control Chart for Nonconformities, Example 7.3
.|

Number of Number of
Sample Number Nonconformities Sample Number Nonconformities
27 16 37 18
28 18 38 21
29 12 39 16
30 15 40 22
31 24 41 19
32 21 42 12
33 28 43 14
34 20 44 9
35 25 45 16
36 19 46 21
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Further Analysis of Nonconformities. Defect or nonconformity data are always
more informative than fraction nonconforming, because there will usually be several ditfer-
ent rypes of nonconformities. By analyzing the nonconformities by type, we can often gain
considerable insight into their cause. This can be of considerable assistance in developing the
out-of-control-action plans (OCAPs) that must accompany control charts.

For example, in the printed circuit board process, there are sixteen different types of
defects. Defect data for 500 boards are plotted on a Pareto chart in Fig. 7.14. Note that over
60% of the total number of defects is due to two defect types: solder insufficiency and solder
cold joints. This points to further problems with the wave soldering process. If these problems
can be isolated and eliminated, there will be a dramatic increase in process yield. Notice that
the nonconformities follow the Pareto distribution; that is, most of the defects are attributable
to a few (in this case, two) defect types.

This process manufactures several different types of printed circuit boards.
Therefore, it may be helpful to examine the occurrence of defect type by type of printed
circuit board (part number). Table 7.9 presents this information. Note that all 40 solder
insufficiencies and all 20 solder cold joints occurred on the same part number, 0001285.
This implies that this particular type of board is very susceptible to problems in wave sol-
dering, and special attention must be directed toward improving this step of the process
for this part number.
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Cum. Cum.

Freq. freq. Percent  percent
Defect code
Sold |nSUffICI€! hhkdkhkhkhkdh kbbb bbb kbbb h bbb bbb horddddd 40 40 4082 4082
Sold.cold joint f e 20 60 2041 61.23
Sold. opens/dewe Rk 7 67 7.14 68.37
Comp. improper 1 o 6 73 6.12 74.49
Sold. splatter/w ok 5 78 5.10 79.59
Tst. mark ec mark o 3 81 3.06 82.65
Tst. mark white m ok 3 84 3.06 85.71
Raw cd shroud re R 3 87 3.06 88.78
Comp. extra part o 2 89 2.04 90.82
Comp. damaged HE 2 91 2.04 92.86
Comp. missing *E 2 93 2.04 94.90
Wire incorrect s * 1 94 1.02 95.92
Stamping oper id * 1 95 1.02 96.94
Stamping missing * 1 96 1.02 97.96
Sold. short * 1 97 1.02 98.98
Raw cd damaged * 1 98 1.02 100.00

1 10 20 30 40

Number of defects

BFIGURE 7.14 Pareto analysis of nonconformities for the printed circuit board process.
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Another useful technique for further analysis of nonconformities 1s the cause-and-
effect diagram discussed in Chapter 5. The cause-and-effect diagram is used to illustrate the
various sources of nonconformities in products and their interrelationships. It 1s useful in
focusing the attention of operators, manufacturing engineers, and managers on quality prob-
lems. Developing a good causc-and-cifect diagram usually advances the level of technologi-
cal understanding of the process.

Raw Solder Inspection
card process
\ Short circuit Flux \ Splatter \Measurement
Chyrir A TN P lamiin s P
SHroud l.rIIdIII SJTEU 1 L LUVET A
Mc-lstl;re content \ Temperature Wave pump nspector
@ &
VLS .
~S /S f:% Defects in
@Q > printed
~Z  Missing from reel Wrong component circuit board
4
7/\\?_ Wrong part Crimp Missing component
kol
& /:unctic-nal failure Alignment
Compaonents Cempopent
insertion
BFIGURE 7.15 Cause-and-effect diagram.
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Choice of Sample Size: The u Chart. Example 7.3 illustrates a control chart for
nonconformities with the sample size exactly equal to one inspection unit. The inspection unit
is chosen for operational or data-collection simplicity. However, there is no reason why the
sample size must be restricted to one inspection unit. In fact, we would often prefer to
use several inspection units in the sample, thereby increasing the area of opportunity for the
occurrence of nonconformities. The sample size should be chosen according to statistical con-
siderations, such as specifying a sample size large enough to ensure a positive lower control
limit or to obtain a particular probability of detecting a process shift. Alternatively, economic
factors could enter into sample-size determination.

Suppose we decide to base the control chart on a sample size of n inspection units.
Note that n does not have to be an integer. To illustrate this, suppose that in Example 7.3
we were to specify a subgroup size of n = 2.5 inspection units. Then the sample size
becomes (2.5)(100) = 250 boards. There are two general approaches to constructing the
revised chart once a new sample size has been selected. One approach is simply to redefine
a new inspection unit that is equal to n times the old inspection unit. In this case, the cen-
ter line on the new control chart is nc and the control limits are located at nc £ 3V nc,
where ¢ is the observed mean number of nonconformities in the original inspection unit.
Suppose that in Example 7.3, after revising the trial control limits, we decided to use a sam-
ple size of n = 2.5 inspection units. Then the center line would have been located at nc =
(2.5)(19.67) = 49.18 and the control limits would have been 49.18 £ 3\V49.18 or LCL =
28.14 and UCL = 70.22.
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The second approach involves setting up a control chart based on the average
numbcr of nonconformitics per inspection unit. If we find x fofal nonconformitics in a
sample ol n inspection units, then the average number ol nonconformities per inspec-
tion unit is

/T
= 7.18
II ( ' )
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Note that x is a Poisson random variable: consequently, the parameters of the control chart for
the average number of nonconformities per unit are as follows,

Control Chart for Average Number of

Nonconformities per Unit

UCL:LT+3\{E
n

Center line =u

LCL:M—3\]E
n

(7.19)

where u represents the observed average number of nonconformities per unit in a pre-
liminary set of data. Control limits found from equation (7.19) would be regarded as trial

control limits. This per-unit chart often is called the control chart for nonconformities,
or u chart.
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| EXAMPLE 7.4

A supply chain engineering group monitors shipments of
materials through the company distribution network. Errors on
either the delivered material or the accompanying documenta-
tion are tracked on a weekly basis. Fifty randomly selected

SOLUTION

shipments are examined and the errors recorded. Data for
twenty weeks are shown in Table 7.10. Set up a u control chart
to monitor this process.

From the data in Table 7.10, we estimate the number of errors
(nonconformities) per unit (shipment) to be:

§

u;

7= izﬂz 0.0740
20 20

Therefore, the parameters of the control chart are

Since the LCL < 0, we would set LCL = O for the u chart. The
control chart is shown in Fig. 7.16. The preliminary data do not
exhibit lack of statistical control; therefore, the trial control
limits given here would be adopted for phase II monitoring of
future operations. Once again, note that, although the process
is in control, the average number of errors per shipment is
high. Action should be taken to improve the supply chain sys-
tem.

UCL=u+3 I"E =0.0740 +3 | 0070 _ 0.1894
\'n \ 50
Center line =u =1.93
I 10.0740
LCL=u-3 |'£:0‘0740—3 .' =-0.0414
\'n \
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m TABLE 7.10
Data on Number of Shipping Errors in a Supply Chain Network
-

Average Number of

Sample Sample Total Number of Errors Errors (Nonconformities)
Number (week), i Size, » (Nonconformities), x; per Unit, #; = x;/n
1 50 2 0.04
2 50 3 0.06
3 50 8 0.16
4 50 1 0.02
5 50 1 0.02
6 50 4 0.08
7 50 1 0.02
8 50 4 0.08
9 50 5 0.10
10 S50 | 0.02
11 50 8 0.16
12 50 2 0.04
13 50 4 0.08
14 50 3 0.06
15 50 4 0.08
16 50 1 0.02
17 50 8 0.16
18 50 3 0.06
19 50 7 0.14
20 50 4 0.08

74 1.48
0.2

UCL =0.1894

Errors (nonconformities)/unit, u
=}
=

LCL=0
(o}

o
o

I PP W B WP B VR Y
WAL

|
0 10
Sample number

BFIGURE 7.16 The control chart for nonconformi-
ties per unit from Minitab for Example 7.4.
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As we noted in Section 3.2 4, the geometric distribution can also be useful as a model for
count or “event” data. Kaminski et al. (1992) have proposed control charts for counts based on
the geometric distribution. The probability model that they use for the geometric distribution is

p(x)y=p(l=p)y~“forx=a,a+1,a+2,...

where a is the known minimum possible number of events. Suppose that the data from the
process is available as a subgroup of size n, say xq, x5, .. ... x,. These observations are inde-
pendently and identically distributed observations from a geometric distribution when the
process is stable (in control). The two statistics that can be used to form a control chart are
the total number of events

T=x+x+...+1x,
and the average number of events

X1+ X +...+X,

X =
n
[t turns out that the sum of independently and identically distributed geometric random vari-
ables is a negative binomial random variable. This would be useful information in construct-
ing OC curves or calculating ARLs for the control charts for T or x.
The mean and variance of the total number of events T are

(1 —p )
Ur=n +a
p

n(l—p)

!)2 45

and

07 =



and the mean and variance of the average number of events are

and

[l —p
p

My = +a

np

Consequently, the control charts can be constructed in the usual manner for Shewhart charts.

Kaminski et al. (1992) refer to the control chart for the total number of events as a *‘g chart™
and the control chart for the average number of events as an “/ chart.” The center lines and
control limits for each chart are shown in the following display.

g and h Control Charts, Standards Given

Upper control limit (UCL)

Center line (CL)

Lower control limit (LCL)

Total number of events chart, Average number of events
g chart chart, i chart

n(l_p+a)+L1/@ +a+L1/

r 4

n(l_p+a)—L1/L;p) ,/
p P




While we have assumed that a is known, in most situations the parameter p will likely be
unknown. The estimator for p is

|
p==
x—a+1

where x is the average of all of the count data. Suppose that there are m subgroups available,

each of size n, and let the total number of events in each subgroup be #,, 1,

age number of events per subgroup is

Therefore,

and

Chapter 7

7 h+h+-oo+1,

m

| -p (T T
=|l——al|l—a+1
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The center line and control limits for the g chart and the /2 chart based on an estimate of p are

shown below.

Total number of events chart, Average number of events
a4 ~lanaet Alanat L oalanaet
8 Clidll Likadit, 7 vllall
_ _ T 1 r L T f
Upper control limit (UCL) f+ L\/n( = a)(— = (I IF l) —F——= /( = a)(— = (7} 35 1)
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Center line (CL) t P
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7.3.2 Procedures with Variable Sample Size

Control charts for nonconformities are occasionally formed using 100% inspection of the
product. When this method of sampling is used, the number of inspection units in a sample
will usually not be constant. For example, the inspection of rolls of cloth or paper often leads
to a situation in which the size of the sample varies, because not all rolls are exactly the same
length or width. If a control chart for nonconformities (¢ chart) is used in this situation, both
the center line and the control limits will vary with the sample size. Such a control chart
would be very difficult to interpret. The correct procedure is to use a control chart for non-
conformities per unit (# chart). This chart will have a constant center line; however, the con-
trol limits will vary inversely with the square root of the sample size n.

EXAMPLE 7.5

In a textile finishing plant, dyed cloth is inspected for the rolls of cloth are shown in Table 7.11. Use these data to set up
occurrence of defects per 50 square meters. The data on ten a control chart for nonconformities per unit.

= TABLE 7.11
Occurrence of Nonconformities in Dyed Cloth

Number of Number of
Roll Number of Total Number Inspection Nonconformities
Number Square Meters of Nonconformities Units in Roll, »  per Inspection Unit

1 500 14 10.0 1.40
2 400 12 8.0 1.50
3 650 20 13.0 1.54
- 500 11 10.0 1.10
5 475 7 9.5 0.74
6 500 10 10.0 1.00
7 600 21 12.0 1.75
8 525 16 10.5 1.52
9 600 19 12.0 1.58
10 625 23 12.5 1.84
153 107.50
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SOLUTION

The center line of the chart should be the average number of
nonconformities per inspection unit—that is, the average
number of nonconformities per 50 square meters. computed as

Note that # is the ratio of the total number of obscrved non-
conformities to the total number of inspection units.

= TABLE 7.12

The control limits on this chart are computed from equa-
tion (7.19) with n replaced by n;. The width of the control lim-
its will vary inversely with n;, the number of inspection units
in the roll. The calculations for the control limits are displayed
in Table 7.12. Figure 7.17 plots the control chart constructed
by Minitab.

Calculation of Control Limits, Example 7.5

Roll
Number, i n; UCL =u + 3Vu/n; LCL = u-3Vu/n,

| 10.0 2.35 0.29
2 8.0 2.68 0.16
3 13.0 2.41 0.43
4 10.0 2.55 0.29
5 9.5 2.58 0.26
6 10.0 2.35 0.29
7 12.0 2.45 0.39
8 10.5 2.52 0.32
9 12.0 2.45 0.39
10 12.5 243 0.41

3.0

25— | —

“o0
Bl g—a—a S~ 1.42326
1.0+ N S
v-
0.b -
0.0 | | |
0 2 4 6 8 10

Subgroup

BFIGURE 7.17 Computer-generated
(Minitab) control chart for Example 7.5.
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As noted previously, the u chart should always be used when the sample size is vari-
able. The most common implementation involves variable control limits, as illustrated in
Example 7.5. There are, however, two other possible approaches:

1. Use control limits based on an average sample size
m
=2 n;/m

2. Use a standardized control chart (this is the preferred option). This second alternative
would involve plotting a standardized statistic
B H’f -

(7.20)

on a control chart with LCL = =3 and UCL =+3 and the center line at zero. This chart is appro-
priate if tests for runs and other pattern-recognition methods are to be used in conjunction with
the chart. Figure 7.18 shows the standardized version of the control chart in Example 7.5. This
standardized control chart could also be useful in the short production run situation (see
Chapter 10, Section 10.1).
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2 4 6 8 10 BFIGURE 7.18 Standardized control

Subgroup chart for nonconformities per unit, Example 7.5.
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7.3.3 Demerit Systems

With complex products such as automobiles, computers, or major appliances. we usually find
that many different types of nonconformities or defects can occur. Not all of these types of
dcfects arc cqually important. A unit of product having one very scrious defect would proba-
bly be classified as nonconforming (o requirements. but a unit having several minor defects
might not necessarily be nonconforming. In such situations, we need a method to classity
nonconformities or defects according to severity and to weight the various types of defects in
a reasonable manner. Demerit systems for attribute data can be of value in these situations.
One possible demerit scheme is defined as follows.

Class A Defects—Very Serious. The unit is either completely unfit for service, or
will fail in service in such a manner that cannot be easily corrected in the field, or
will cause personal injury or property damage.

Class B Defects—Serious. The unit will possibly suffer a Class A operating fail-
ure, or will certainly cause somewhat less serious operating problems, or will cer-
tainly have reduced life or increased maintenance cost.

Class C Defects—Moderately Serious. The unit will possibly fail in service, or
cause trouble that is less serious than operating failure, or possibly have reduced
life or increased maintenance costs, or have a major defect in finish, appearance, or
quality of work.

Class D Defects—Minor. The unit will not fail in service but has minor defects in
finish, appearance, or quality of work.
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Let ¢;a, C;ps Cic» and c¢;p represent the number of Class A, Class B, Class C, and Class D
defects, respectively, in the ith inspection unit. We assume that each class of defect is inde-
pendent, and the occurrence of defects in each class is well modeled by a Poisson distribu-
tion. Then we define the number of demerits in the inspection unit as

d; =100¢;5 +50¢5 +10¢,c + ¢, (7.21)

The demerit weights of Class A—100, Class B—350, Class C—10, and Class D—1 are used
fairly widely in practice. However, any reasonable set of weights appropriate for a specific
problem may also be used.

Suppose that a sample of #n inspection units is used. Then the number of demerits per unit is

D
U =— (7.22)

n
n - ~- - - - - - - - -

where D = E ld,- is the total number of demerits in all 7 inspection units. Since u; is a linear
i=

combination of independent Poisson random variables, the statistics u; could be plotted on a

control chart with the following parameters:

UCL=u+36,
Center line =u (7.23)
LCL=u-30,
where
and
2_ 2_ 20 _ V2
.| (100)77, +(50) g + (10) w1 + ity (7.25)
W
n
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7.3.4 The Operating-Characteristic Function

The operating-characteristic (OC) curves for both the ¢ chart and the u chart can be obtained
from the Poisson distribution. For the ¢ chart, the OC curve plots the probability of type II
error 8 against the true mean number of defects ¢. The expression for f3 is

B =P{x<UCLlc} - P{x<LCL|c} (7.26)

where x is a Poisson random variable with parameter ¢. Note that if the LCL < O the second
term on the right-hand side of equation (7.26) should be dropped.

We will generate the OC curve for the ¢ chart in Example 7.3. For this example, since
the LCL = 6.48 and the UCL = 33.22, equation (7.26) becomes

B=P{x<3322c}—- P{x< 648}
Since the number of nonconformities must be integer, this is equivalent to
B=P{x<33c}—P{x<olc}

These probabilities are evaluated in Table 7.13. The OC curve is shown in Fig. 7.19.
For the u chart, we may generate the OC curve from

B=P{x<UCLju}— P{x <LCLJu}
= P{c < HUCL\;.{JL - P{(f < ;zLCLu}
= P{NLCL <x= nUCL‘u}

B [nUZC:L] e—nu(””)x 727)

x=(nLcL) X!

where (nLCL} denotes the smallest integer greater than or equal to nLCL and [nUCL] denotes
the largest integer less than or equal to nUCL. The limits on the summation in equation (7.26)
follow from the fact that the total number of nonconformities observed in a sample of n
inspection units must be an integer. Note that n need not be an integer.
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= TABLE 7.13

Calculation of the OC Curve for a ¢ Chart with UCL = 33.22 and

LCL = 6.48

Pix =6|c} B=Pl{x =33|c} — Plx = 6|c}

c P{x = 33|c}

1 1.000
3 1.000
5 1.000
7 1.000
10 1.000
15 0.999
20 0.997
25 0.950
30 0.744
33 0.546
35 0.410
40 0.151
45 0.038

Chapter 7

0.999
0.966
0.762
0.450
0.130
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.001
0.034
0.238
0.550
0.870
0.991
0.997
0.950
0.744
0.546
0.410
0.151
0.038

1.00
0.90
0.80
B o.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

1 I 1 I | I | I I
5 10 15 20 25 30 35 40 45 50

C

BFIGURE 7.19 0OCcurve of a ¢ chart
with LCL = 6.48 and UCL = 33.22.

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
Copyright (c) 2009 John Wiley & Sons, Inc.
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Low Defect Levels

One way to deal with this problem is adopt a time between occurrence control chart,
which charts a new variable: the time between the successive occurrences of the count. The
time-between-events control chart has been very effective as a process-control procedure for
processes with low defect levels.

Suppose that defects or counts or “events™ of interest occur according to a Poisson dis-
tribution. Then the probability distribution of the time between events is the exponential
distribution. Therefore, constructing a time-between-events control chart 1s essentially equiv-
alent to control charting an exponentially distributed variable. However, the exponential dis-
tribution is highly skewed, and as a result, the corresponding control chart would be very
asymmetric. Such a control chart would certainly look unusual, and might present some dif-
ficulties in interpretation for operating personnel.

Nelson (1994) has suggested solving this problem by transforming the exponential ran-
dom variable to a Weibull random variable such that the resulting Weibull distribution is well
approximated by the normal distribution. If y represents the original exponential random vari-
able, the appropriate transformation is

3.6 2
y = V36— 02777

(7.28)

One would now construct a control chart on x, assuming that x follows a normal distribution.



[EXAVPLE 7.6 I

A chemical engineer wants to set up a control chart for moni-
toring the occurrence of failures of an important valve. She has
decided to use the number of hours between failures as the vari-

SOLUTION

able to monitor. Table 7.14 shows the number of hours between
failures for the last twenty failures of this valve. Figure 7.20 is
a normal probability plot of the time between failures.

Set up a time-between-events control chart for this process.
Clearly, time between failures is not normally distributed.
Table 7.14 also shows the values of the transformed time
between events, computed from equation (7.27). Figure

Normal probability plot
99.9

99
95

80
50
20
5¢
1 |

Cumulative percent

| |
2.0 2.5 3.0
(x 1000)

0.1 | | |
0 0.5 1.0 1.5

Time between failures

BMFIGURE 7.20 Normal probability plot of
time between failures, Example 7.6.

Chapter 7

7.21 is a normal probability plot of the transformed time
between failures. Note that the plot indicates that the distri-
bution of this transformed variable is well approximated by
the normal.

Normal probability plot

99.9

Cumulative percent

0.1 | | | |
0 2 4 6 8 10

Transformed time between failures

BFIGURE 7.21 Normal probability plot

for the transformed failure data.
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= TABLE 7.14

Time between Failure Data, Example 7.6

Time between

Transformed Value of Time

Failure Failures, y (hr) hetween Failures, x = y“'”'”
1 286 4.80986
2 948 670903
3 536 5.72650
4 124 3.81367
5 s10 0.43541
6 729 6.23705
7 4 1.46958
8 143 3.96768
9 431 5.30007
10 8 1.78151
11 2837 9.09619
12 596 5.89774
13 81 3. 38833
14 227 4.51005
15 603 591690
16 492 5.59189
17 1199 7.16124
18 1214 7.18601
19 2831 909083
20 06 3.55203
14
11 11.6611
= 8
=
E 5 5.38662
2
-1 , , , | -0.88787
0 4 8 12 16 20
8 1771135
6 4
s 4
=
o 1 2.35921
% 4 g 12 16 20’
Subgroup

BMFIGURE 7.22 Control charts for individuals and moving-range control chart for
the transformed time between failures, Example 7.6.

Figure 7.22 is a control chart for individuals and a moving
rangc control chart Tor the translormed hme between Talures.
Note that the control charts
ing that the failure mechanism for this valve is constant. If a
process change is made that improves the failure rate (such as

indicate a state of control. imply-

a different type of maintenance action), then we would expect

o see the mean lime between failures gel longer. This would

result in points plotting above the upper control limit on the 59
individuals control chart in Fig. 7.22.



The previous example illustrated the use of the individuals control chart with time-
between-events data. In many cases, the cusum and EWMA control charts in Chapter 4
would be better alternatives, because they are more effective in detecting small shifts in
the mean.

Kittlitz (1999) has also investigated transforming the exponential distribution for con-
trol charting purposes. He notes that a log transformation will stabilize the variance of the
exponential distribution, but produces a rather negatively skewed distribution. Kittlitz sug-
gests using the transformation x = _1'0‘25. noting that it is very similar to Nelson’s recom-
mendation and it is also very easy to compute (simply push the square root key on the cal-
culator twice!).
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7.4 Choice Between Attributes and Variables Control Charts

Chapter 7

In many applications, the analyst will have to choose between using a variables control chart,
such as the x and R charts, and an attributes control chart, such as the p chart. In some cases,
the choice will be clear-cut. For example, if the quality characteristic is the color of the item,
such as might be the case in carpet or cloth production, then attributes inspection would often
be preferred over an attempt to quantify the quality characteristic “color” In other cases, the
choice will not be obvious, and the analyst must take several factors into account in choosing
between attributes and variables control charts.

Altributes control charts have the advantage that several quality characteristics can be
considered jointly and the unit classified as nonconforming if it fails to meet the specification
on any onc characteristic. On the other hand, if the several quality characteristics arc treated
as variables, then each one must be measured, and either a separate x and R chart must be
maintained on each or some multivariate control technique that considers all the characteris-
tics must simultaneously be emploved. There is an obvious simplicity associated with the
attributes chart in this case. Furthermore. expensive and time-consuming measurements may
sometimes be avoided by attributes inspection.

Variables control charts, in contrast, provide much more useful information about
process perlormance than does an attributes control chart. Specilic information about the
process mean and variability is obtained directly. In addition, when points plot out of con-
trol on variables control charts, usually much more information is provided relative to the
potential cause of that out-of-control signal. For a process capability study, variables control
charts are almost always preferable to attributes control charts. The exceptions to this are
studies relative to nonconformities produced by machines or operators in which there are a
very limited number of sources of nonconformities. or studies directly concerned with
process yields and fallouts.
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MFIGURE 7.23 Why the
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LSL Uy Uy pz USL ing trouble.
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Determining Which Characteristics to Control
and Where to Put the Control Charts

At the start of a control chart program, it is usually difficult to determine which product
or process characteristics should be controlled and at which points in the process to apply
control charts. Some useful guidelines follow.

1.

Chapter 7

At the beginning of a control chart program. control charts should be applied to any
product characteristics or manufacturing operations believed to be important. The
charts will provide immediate feedback as to whether they are actually needed.

The control charts found to be unnecessary should be removed. and others that
engineering and operator judgment indicates may be required should be added.
More control charts will usually be employed at the beginning than after the
process has stabilized.

Information on the number and types of control charts on the process should be
kept current. It 1s best to keep separate records on the variables and attributes
charts. In general, after the control charts are first installed, we often find that the
number of control charts tends to increase rather steadilv. After that, it will usu-
ally decrease. When the process stabilizes, we typically find that it has the same
number of charts from one vear to the next. However, they are not necessarily the
same charts.
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[t control charts are being used eftectively and it new knowledge is being gained
about the kev process variables, we should find that the number of X and R charts
increases and the number of attributes control charts decreases.

At the beginning of a control chart program there will usually be more attributes
control charts, applied to semifinished or finished units near the end of the man-
ufacturing process. As we learn more about the process. these charts will be
replaced with X and R charts applied earfier in the process to the critical param-
eters and operations that result in nonconformities in the finished product.
Generally, the earlier that process control can be established, the better. In a
complex assembly process, this may imply that process controls need to be imple-
mented at the vendor or supplier level.

Control charts are an on-line, process-monitoring procedure. Theyv should be
implemented and maintained as close to the work center as possible, so that feed-
back will be rapid. Furthermore, the process operators and process engineering
should have direct responsibility for collecting the process data, maintaining the
charts, and interpreting the results. The operators and engineers have the detailed
knowledge of the process required to correct process upsets and use the control
chart to improve process performance. Microcomputers can speed up the feedback
and should be an itegral part of any modern, on-line, process-control procedure.

The out-of-control-action plan (OCAP) 1s a vital part of the control chart. Operat-
ing and engineering personnel should strive to keep OCAPs up-to-date and valid.
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Choosing the Proper Type ot Control Chart

A.

x and R (or X and s) charts. Consider using variables control charts in these situations:

1.

LN

10.

A new process 1s coming on stream., or a new product is being manufactured by
an existing process.

The process has been in operation for some time, but it is chronically in trouble
or unable to hold the specified tolerances.

The process 1s in trouble, and the control chart can be useful for diagnostic pur-
poses (troubleshooting).

Destructive testing (or other expensive testing procedures) is required.

It 1s desirable to reduce acceptance-sampling or other downstream testing to a
minimum when the process can be operated in control.

Attributes control charts have been used, but the process is either out of control
or in control but the yield 1s unacceptable.

There are very tight specifications, overlapping assembly tolerances, or other
difficult manufacturing problems.

The operator must decide whether or not to adjust the process, or when a setup
must be evaluated.

A change in product specifications 1s desired.

Process stability and capability must be continually demonstrated, such as in
regulated industries.

-
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Attributes Charts (p charts, ¢ charts, and « charts). Consider using attributes
control charts in these situations:

1.

2.

LN

Operators control the assignable causes, and 1t 1s necessary to reduce process fall-
out.

The process 1s a complex assembly operation and product quality 1s measured in
terms of the occurrence of nonconformities. successful or unsuccessful product
function. and so forth. (Examples include computers, office automation equip-
ment, automobiles, and the major subsystems of these products.)

Process control is necessary. but measurement data cannot be obtained.

A historical summary of process performance 1s necessary. Attributes control
charts, such as p charts, ¢ charts, and « charts, are very etfective for summarizing
iformation about the process for management review.

Remember that attributes charts are generally inferior to charts for variables.
Always use X and R or X and s charts whenever possible.
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C. Control Charts for Individuals. Consider using the control chart for individuals in
conjunction with a moving-range chart in these situations:

1.

Chapter 7

It is inconvenient or impossible to obtain more than one measurement per sam-
ple. or repeat measurements will only differ by laboratory or analysis error.
Examples often occur in chemical processes.

Automated testing and inspection technology allow measurement of every unit
produced. In these cases, also consider the cumulative sum control chart and the
exponentially weighted moving average control chart discussed in Chapter 7.
The data become available very slowly, and waiting for a larger sample will be
impractical or make the control procedure too slow to react to problems. This
often happens in nonproduct situations; for example, accounting data may
become available only monthly.

Generally, once we are in phase 11, individuals charts have poor performance in
shift detection and can be very sensitive to departures from normality. Always use
the EWMA and cusum charts of Chapter 8 in phase II mnstead of individuals
charts whenever possible.
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Actions taken to Improve a process

[S

THE
PROCESS
IN
CONTROL?

IS THE PROCESS CAPABLE?

Yes

No

Yes SPC

SPC
Experimental design
Investigate specifications
Change process

No SPC

SPC
Experimental design
Investigate specifications
Change process

BFIGURE 7.27 Actions taken to improve a process.
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The lower two boxes in Fig. 7.27 deal with the case of an out-of-control process. The
southeast corner presents the case of a process that is out of control and not capable.
(Remember our nontechnical use of the term capability.) The actions recommended here are
identical to those for the box in the northeast corner, except that SPC would be expected to
yield fairly rapid results now, because the control charts should be identifying the presence of
assignable causes. The other methods of attack will warrant consideration and use in many
cases, however. Finally, the southwest corner treats the case of a process that exhibits lack of
statistical control but does not produce a meaningful number of defectives because the spec-
ifications are very wide. SPC methods should still be used to establish control and reduce
variability in this case, for the following reasons:

1. Specifications can change without notice.
2. The customer may require both control and capability.
3

. The fact that the process experiences assignable causes implies that unknown forces are
at work; these unknown forces could result in poor capability in the near future.
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Important Terms and Concepts

Attribute data

Average run length for attribute control charts

Cause-and-effect diagram

Choice between attributes and variables data

Control chart for defects or nonconformities per
unit or u chart

Control chart for fraction nonconforming or p chart

Control chart for nonconformities or ¢ chart

Control chart for number nonconforming or np chart

Defect

Defective

Demerit systems for attribute data

Design of attributes control charts

Fraction defective

Fraction nonconforming

Nonconformity

Operating characteristic curve for the ¢ and u charts
Operating characteristic curve for the p chart
Pareto chart

Standardized control charts

Time between occurrence control charts
Variable sample size for attributes control chart
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Chapter 7

Learning Objectives

Understand the statistical basis of attributes control charts
Know how to design attributes control charts
Know how to set up and use the p chart for fraction nonconforming

Know how to set up and use the np control chart for the number of noncon-
forming items

Know how to set up and use the ¢ control chart for defects
Know how to set up and use the u control chart for defects per unit
Use attributes control charts with variable sample size

Understand the advantages and disadvantages of attributes versus variables con-
trol charts

Undecrstand the rational subgroup concept for attributes control charts

Determine the average run length for attributes control charts
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