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Learning Objectives

Investigate and analyze process capability using control charts, histograms, and
probability plots

Understand the difference between process capability and process potential
Calculate and properly interpret process capability ratios

Understand the role of the normal distribution in interpreting most process capa-
bility ratios

Calculate confidence intervals on process capability ratios

Know how to conduct and analyze a measurement systems capability (or gauge
R & R) experiment

7. Know how to estimate the components of variability in a measurement system
8. Know how to set specifications on components in a system involving interaction
components to ensure that overall system requirements are met
9. Estimate the natural limits of a process from a sample of data from that
process
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Process Capability

Process capability refers to the uniformity of the process. Obviously, the variability
of critical-to-quality characteristics in the process i1s a measure of the uniformity of out-
put. There are two ways to think of this variability:

1. The natural or inherent variability in a critical-to-quality characteristic at a spec-
ified time: that 1s, “instantaneous™ variability

2. The vanability 1n a critical-to-quality characteristic over time

Natural tolerance limits are defined
as follows:

UNTL =u+30
INTL=u-3

0.00135 0.00135
- u -
LNTL 30 30 UNTL

Process mean

BMFIGURE 8.1 Upper and lower natural tolerance
Chapter 8 limits in the normal distribution.



We define process capability analysis as an engineering study to estimate process capa-
bility. The estimate of process capability may be in the form of a probability distribution
having a specified shape, center (mean), and spread (standard deviation). For example, we
may determine that the process output 1s normally distributed with mean ¢ = 1.0 ¢cm and
standard deviation = 0.001 cm. In this sense, a process capability analysis may be per-
formed without regard to specifications on the quality characteristic. Alternatively, we
may express process capability as a percentage outside of specifications. However, speci-
fications are not necessary to process capability analysis.

Uses of process capability data:

Predicting how well the process will hold the tolerances
Assisting product developers/designers 1n selecting or modifying a process
Assisting in establishing an mterval between sampling for process monitoring

Specifving performance requirements for new equipment

n d= ek b e

Selecting between competing suppliers and other aspects of supply chain
management

6. Planning the sequence of production processes when there 1s an interactive effect
of processes on tolerances

7. Reducing the variability in a manufacturing process



Reasons for Poor Process Capability

B W

LSL u USL
(b)

BFIGURE 8.3 Some reasons for poor process capability. () Poor process centering. (b) Excess process

variability.

Process may have
good potential
capability
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8.2 Process Capability Analysis Using a Histogram or a Probability Plot

8.2.1 Using the Histogram

The histogram can be helpful in estimating process capability. Alternatively, a stem-and-leaf
plot may be substituted for the histogram. At least 100 or more observations should be avail-
able for the histogram (or the stem-and-leaf plot) to be moderately stable so that a reasonably
reliable estimate of process capability may be obtained. If the quality engineer has access to
the process and can control the data-collection effort, the following steps should be followed
prior to data collection:

1. Choose the machine or machines to be used. If the results based on one (or a few)
machines are to be extended to a larger population of machines, the machine selected
should be representative of those in the population. Furthermore, if the machine has mul-
tiple workstations or heads, it may be important to collect the data so that head-to-head
variability can be isolated. This may imply that designed experiments should be used.

2. Select the process operating conditions. Carefully define conditions, such as cutting
speeds, feed rates, and temperatures, for future reference. It may be important to study
the effects of varying these factors on process capability.

W
-

Select a representative operator. In some studies, it may be important to estimate oper-
ator variability. In these cases, the operators should be selected at random from the pop-
ulation of operators.

4. Carefully monitor the data-collection process, and record the time order in which each
unit is produced.

The histogram, along with the sample average x and sample standard deviation s,
provides information about process capability. You may wish to review the guidelines for
constructing histograms in Chapter 3.



/EXAMPLE 8.1

-

Figure 8.2 presents a histogram of the bursting strength of 100
glass containers. The data are shown in Table 8.1. What is the

capability of the process?

SOLUTION

Analysis of the 100 observations gives

Consequently, the process capability would be estimated as

or

X =264.06 §=232.02

X *+3s

264.06 £ 3(32.02)= 264 £ 96 psi

40 —

Frequency

170 190 210 230 250 270 290 310 330 350

Bursting strength (psi)

BFIGURE 8.2 Histogram for the bursting-

strength data.

J

Furthermore, the shape of the histogram implies that the
distribution of bursting strength is approximately normal.
Thus, we can estimate that approximately 99.73% of the bot-
tles manufactured by this process will burst between 168 and
360 psi. Note that we can estimate process capability indepen-
dent of the specifications on bursting strength.

= TABLE 8.1

Bursting Strengths for 100 Glass Containers

265
205
263
307
220
268
260
234
299
215

197
286
274
243
231
267
281
265
214
318

346
317
242
258
276
300
208
187
264
271

280
242
260
321
228
250
299
258
267
293

265
254
281
294
223
260
308
235
283
277

200
235
246
328
296
276
264
269
235
290

221
176
248
263
231
334
280
265
272
283

265
262
271
245
301
280
274
253
287
258

278
250
265
270
298
257
210
280
269
251



8.2.2 Probability Plotting

Probability plotting is an alternative to the histogram that can be used to determine the shape,
center, and spread of the distribution. It has the advantage that it is unnecessary to divide the
range of the variable into class intervals, and it often produces reasonable results for moder-
ately small samples (which the histogram will not). Generally, a probability plot is a graph of
the ranked data versus the sample cumulative frequency on special paper with a vertical scale
chosen so that the cumulative distribution of the assumed type is a straight line. In Chapter 3
we discussed and illustrated normal probability plots. These plots are very useful in process
capability studies.

To illustrate the use of a normal probability plot in a process capability study, consider
the following 20 observations on glass container bursting strength: 197, 200, 215, 221, 231,
242,245, 258, 265, 265, 271, 275, 277, 278, 280, 283, 290, 301, 318, and 346. Figure 8.4 is
the normal probability plot of strength. Note that the data lie nearly along a straight line,
implying that the distribution of bursting strength 1s normal. Recall from Chapter 4 that the
mean of the normal distribution is the fiftieth percentile, which we may estimate from
Fig. 8.4 as approximately 265 psi, and the standard deviation of the distribution is the slope
of the straight line. It is convenient to estimate the standard deviation as the difference
between the eighty-fourth and the fiftieth percentiles. For the strength data shown above and
using Fig. 8.4, we find that

0 = 84th percentile — 50th percentile = 298 — 265 psi = 33 psi

Note that tt = 265 psi and 6 = 33 psi are not far from the sample average x = 264.06 and stan-
dard deviation s = 32.02.



Probability Plotting

99.9

Cumulative percent

0.1 I I I
190 230 270 310 350

Container strength

BMFIGURE 8.4 Normal probability plot of the container-
strength data.
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Care should be exercised in using probability plots. If the data do not come from the
assumed distribution, inferences about process capability drawn from the plot may be seri-
ously 1n error. Figure 7-5 presents a normal probability plot of times to failure (in hours)
of a valve in a chemical plant. From examining this plot, we can see that the distribution
of failure time 1s not normal.

An obvious disadvantage of probability plotting 1s that it 1s not an objective procedure.
[t 15 possible for two analysts to arrive at different conclusions using the same data. For
this reason, if 1s often desirable to supplement probability plots with more formal statisti-
cally based goodness-of-fit tests. A good introduction to these tests 15 1 Shapiro (1980).
Augmenting the interprefation of a normal probability plot with the Shapiro-Wilk test for
normality can make the procedure much more powerful and objective.

 The distribution may not be normal; other types
of probability plots can be useful in determining
the appropriate distribution.

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 11
Copyright (c) 2009 John Wiley & Sons, Inc.



8.3 Process Capability Ratios

8.3.1 Use and Interpretation of C,

[t is frequently convenient to have a simple, quantitative way to express process capability.
One way to do so is through the process capability ratio (PCR) C, first introduced in
Chapter 6. Recall that

~ USL-LSL
60

C

f (8.4)

where USL and LSL are the upper and lower specification limits, respectively. C, and other
process capability ratios are used extensively in industry. They are also widely misused. We
will point out some of the more common abuses of process capability ratios. An excellent
recent book on process capability ratios that 1s highly recommended is Kotz and Lovelace
(1998). There is also extensive technical literature on process capability analysis and process
capability ratios. The review paper by Kotz and Johnson (2002) and the bibliography by
Spiring, Leong, Cheng, and Yeung (2003) are excellent sources.

In a practical application, the process standard deviation ¢ 1s almost always unknown
and must be replaced by an estimate 0. To estimate @ we typically use either the sample stan-
dard deviation s or R /d, (when variables control charts arc uscd in the capability study). This
results in an estimate of C,—say,

. USL-LSL

C 8.5
66 (8-

p




To illustrate the calculation of C), recall the semiconductor hard-bake process first ana-
lyzed in Example 6.1 using x and R charts. The specifications on flow width are USL = 1.00
microns and LSL = 2.00 microns, and from the R chart we estimated ¢ = E/dz = 0.1398. Thus,
our estimate of the PCR Cj,, s

A USL - LSL 2.00-1.00
C,= — =1.192
| 60 6(0.1398)

In Chapter 6, we assumed that flow width is approximately normally distributed (a rea-
sonable assumption, based on the histogram in Fig. 8.7) and the cumulative normal distribu-
tion table in the Appendix was used to estimate that the process produces approximately 350
ppm (parts per million) defective.

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 13
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The PCR C,, in equation (8.4) has a useful practical interpretation—namely,

P[llmo (8.6)
CP
For the hard bake process:
] .
P=| ——|100=283.89
1.192
Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 14
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One-Sided PCR

TTCT - -
USL — u e
Cpy = it (upper specification only) (8.7)
30
— LSL e
Cp K (lower specification only) (8.8)
30
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Copyright (c) 2009 John Wiley & Sons, Inc.




Interpretation of the PCR

m TABLE 8.2

Values of the Process Capability Ratio (C,) and Associated
Process Fallout for a Normally Distributed Process (in Defective
ppm) That Is in Statistical Control

Process Fallout (in defective ppm)

PCR One-Sided Specifications Two-Sided Specifications

0.25 226,628 453,255
0.50 66,807 133,614
0.60 35031 71,861
0.70 17,865 35,729
0.80 8,108 16,395
0.90 3,467 6,934
1.00 1,350 2,700
1.10 484 067
1.20 159 318
1.30 48 96
1.40 14 27
1.50 4 7
1.60 1 2
1.70 0.17 0.34
1.80 0.03 0.06

Chapter 8 2.00 0.0009 0.0018



Assumptions for Interpretation of Numbers In
Table 8.2

1. The quality characteristic has a normal distribution.
2. The process is in statistical control.

3. In the case of two-sided specifications, the process mean 1s centered between
the lower and upper specification limits.

 Violation of these assumptions can lead to big trouble in
using the data in Table 8.2.

Chapter 8 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 17
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= TABLE 8.3

Recommended Minimum Values of the Process Capability Ratio

Two-Sided One-Sided
Specifications Specifications
Existing processes .33 .25
New processes .50 1.45
Safety, strength, or critical .50 .45
parameter, existing process
Safety, strength, or critical .67 .60
parameter, new process
|
Chapter 8 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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. Cp does not take
process centering
Into account

It is ameasure
of potential
capability, not
actual capability

Chapter 8

LSL

0=2 C,=2.0
(@ Cp=2.0
38 44 50 56 62
o= 2 ‘P =2.0
Cpp=1.5
(h) | | |
38 44 50 56 52
c=2-_/T ¢,=2.0
c,=1.0
(c) | "
38 A4 50 56 52
o= 2 Cp = 20
Cpp=0
(d) | |
38 44 50 56 52
€,=2.0
T = 2 C}Jﬂ' - ‘05
(e) | | |
38 a4 50 56 52 65

BFIGURE 8.8

Relationship of C, and C,,.
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A Measure of Actual Capability

C,y =min(C,,.C, | 8.9)

Note that C, 1s simply the one-sided PCR for the specification limit nearest to the process
average. For the process shown in Fig. 8.85, we would have

Cpk = mm(ﬁ Cpu ’ Cpf )

C

= min

(o _USL-pt . p—LSL]

pu 30 “pl 36
/
: 62-33 53— 38
=min| C), = ———=1.5.C) = —=2.5
\ 3(2) 3(2)
=1.5
Chapter 8 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 20
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Normality and Process Capability Ratios

e The assumption of normality is critical to the usual
Interpretation of these ratios (such as Table 8.2)

 For non-normal data, options are
1. Transform non-normal data to normal

2. Extend the usual definitions of PCRs to handle
non-normal data

3. Modify the definitions of PCRs for general
families of distributions

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 21
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Other Types of Process Capability Ratios

 First generation
e Second generation
e Third generation

| ots of research has been done to develop ratios that
overcome some of the problems with the basic ones

« Not much evidence that these ratios are used to any
significant extent in practice

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 22
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Confidence Intervals on Process Capability Ratios. Much of the industrial use
of process capability ratios focuses on computing and interpreting the point estimate of the
desired quantity. It is easy to forget that C, or C,; (for examples) are simply point estimates,
and, as such, are subject to statistical fluctuation. An alternative that should become standard
practice is to report confidence intervals for process capability ratios.

It is easy to find a contidence interval for the “first generation” ratio C,. If we replace
o by s in the equation for C,, we produce the usual point estimator C,,. If the quality charac-
teristic follows a normal distribution, then a 100(1 — a)% conlidence interval on C, is

obtained from

USL - LSL \/Xlz—o:_,’z,n—l (8.19)

USL - LSL \/ Xaj2n-1
p <(C = :
A)

2
n-—1 ! Os n—1

or

(8.20)

ép\/xla;lnl <C
n—1

where le —an.n—1 and szz‘,z _ are the lower 0/2 and upper o/2 percentage points of the

chi-square distribution with n — 1 degrees of freedom. These percentage points are tabulated
in Appendix Table III.



[EXAMPLE 8.4

Suppose that a stable process has upper and lower specifica- mately at the midpoint of the specification interval and that the
tions at USL = 62 and LSL = 38. A sample of size n = 20 from sample standard deviation s = 1.75. Find a 95% confidence
this process reveals that the process mean is centered approxi- interval on C,.

SOLUTION

A point estimate of C, is where 7707510 = 8.91 and ¥’ 02510 = 32.85 were taken from

USL-LSL 62-38 Appendix Table I11.

6s  6(1.75)

Cp=

The 95% confidence interval on C, is found from equation
(8.20) as follows:

& ’ll X1-00250-1 - 5 ’Zoozsnl
P n—1 -1
8.91 32.85
229 |— < C <229 |——
19
1.57< C <3.0
Chapter 8 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 24
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For more complicated ratios such as C,; and C,,, various authors have developed
approximate confidence intervals; for example, see Zhang, Stenbeck, and Wardrop (1990),
Bissell (1990), Kushler and Hurley (1992), and Pearn et al. (1992). If the quality characteris-
tic is normally distributed. then an approximate 100(1 — )% confidence interval on C,; is

given as follows.

e

Cp.-’c I - Z’ﬂff”’

=

l I

J

InCy  2(n—1) Pk

~—+ <C
p

»

I l
< 1+Z — 1
P szQIICﬁk 2(n—1) (8.21)

Kotz and Lovelace (1998) give an extensive summary of confidence intervals for various

PCREs.

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 25
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[EXAMPLE 8.5

A sample of size n = 20 from a stable process is used to esti-
mate Cpp, with the result that Cpr = 1.33. Find an approximate
95% confidence interval on Cpy.

SOLUTION

Using equation (8.21), an approximate 95% confidence inter-

val on Cpy is
C.|1-Z S
pk a2 9n@§k 2(n—1)

1.33l:1—1.96\/ L }
9(20)(1.33)*  2(19)

IA
0
Bl
IA
—
%)
‘s
1
ot
+
o)
(=)}
-f____
O
—
o
—_—
[a—
(S
(S
e
S
[
—_—
_— —
O
—
I

or

0.83=<C, =1.78
This is an extremely wide confidence interval. Based on the we have learned very little about actual process capability,
sample data, the ratio C,,; could be less than 1 (a very bad situa- because C,; is very imprecisely estimated. The reason for this,

tion), or it could be as large as 1.78 (a very good situation). Thus, of course, is that a very small sample (n = 20) has been used.



Process Performance Indices. In 1991, the Automotive Industry Action Group
(AIAG) was formed and consists of representatives of the “big three” (Ford, General Motors,
and Chrysler) and the American Society for Quality Control (now the American Society for
Quality). One of their objectives was to standardize the reporting requirements from suppliers
and in general of their industry. The AIAG recommends using the process capability indices C),
and Cpr when the process is in control, with the process standard deviation estimated by

Rfdz. When the process is not in control, the AIAG recommends using process perfor-
mance indices P, and P,;, where. for example,

USL - LSL
65

P, =

and s 1s the usual sample standard deviation s = \/ZI 1 (x; — })2/(;1 —1). Even the
American National Standards Institute in ANSI Standard Z1 on Process Capability Analysis
(1996) states that P, and P, should be used when the process is not in control.

Now it is clear that when the process is normally distributed and in control, PP 1S
essentially C' and P, 1s essentially C,; because for a stable process the difference
between s and(T R,rﬁ':. 1s minimal. However, please note that if the process 1s not in con-
trol, the indices P, and P, have no meaningful interpretation relative to process capability,
because they C"ll'll]Dt predlct process performance. Furthermore, their statistical properties
are not determinable, and so no valid inference can be made regarding their true (or popu-
lation) values. Also, P, and P,; provide no motivation or incentive to the companies that
use them to bring theu processes nto control.



Kotz and Lovelace (1998) strongly recommend against the use of £, and P, indi-
cafing that these indices are actually a step backwards in quantifving process capability.
They refer to the mandated use of P, and P, through quality standards or industry guide-
lines as undiluted statistical terrorism (1.¢., the use or misuse of statistical methods along
with threats and/or intimidation to achieve a business objective).

This author agrees completely with Kotz and Lovelace. The process performance
indices P, and P, are actually more than a step backwards. They are a waste of engi-
neering and management effort—they tell vou nothing. Unless the process is stable (in
control), no index is going to carry useful predictive information about process capability
or convey any information about future performance. Instead of imposing the use of mean-
ingless indices, organizations should devote effort to developing and implementing an
effective process characterization and control plan. The U.S. semiconductor industry did
this in the late 1980s (at Sematech) with great success. This 1s a much more reasonable
and effective approach to process improvement.

Chapter 8 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 28
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Process Capability
Analysis using Control

Charts

Chapter 8

m TABLE 8.5
Glass Container Strength Data (psi)

Sample Data X R
1 265 205 263 307 220 252.0 102
2 268 260 234 200 215 2552 34
3 197 286 274 243 231 246.2 89
4 267 281 265 214 318 269.0 104
5 346 317 242 258 276 287.8 104
6 300 208 187 264 271 246.0 113
7 280 242 260 321 228 266.2 03
8 250 299 258 267 293 273.4 49
9 265 254 281 204 223 263.4 71

10 260 308 235 283 277 272.6 73
1 200 235 246 328 296 261.0 128
12 276 264 269 235 290 266.8 55
13 221 176 248 263 231 227.8 87
14 334 280 265 272 283 286.8 69
15 265 262 271 245 301 268.8 56
16 280 274 253 287 258 270.4 34
17 261 248 260 274 337 276.0 89
18 250 278 254 274 275 266.2 28
19 278 250 265 270 298 2722 48
20 257 210 280 269 251 253.4 70
Y=206406 R=773

Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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320

310 = ucL
300
_ 290 - - —
X 280 - /\ M (= =264.00
270 |- A CL —
260/ \/M \ . R 773
gig - T = = -=33.23
o | d, 2.320
230 LCL -
220
210 -
200 I I I I
5 10 15 20
Sample number
200 ;
ucL  Slince LSL =200
160 [~
R
= LSL  264.06-200
. [ — 64.06 — _
MAN SN Ao o =R T T 64
Vv \f 36 3(33.23)
40 —
0 | | | |
5 10 15 20
Sample number
BFIGURE 8.12 XandR charts for the bottle-strength
data.
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8.5 Process Capability Analysis Using Designed Experiments

A designed experiment is a systematic approach to varying the input controllable variables
in the process and analyzing the effects of these process variables on the output. Designed
experiments are also useful in discovering which set of process variables is influential on the
output, and at what levels these variables should be held to optimize process performance.
Thus, design of experiments is useful in more general problems than merely estimating
process capability. For an introduction to design of experiments. see Montgomery (2005).
Part V of this textbook provides more information on experimental design methods and on
their use in process improvement.

One of the major uses of designed experiments is in isolating and estimating the
sources of variability in a process. For example. consider a machine that fills bottles with a
soft-drink beverage. Each machine has a large number of filling heads that must be indepen-
dently adjusted. The quality characteristic measured is the syrup content (in degrees brix) of
the finished product. There can be variation in the observed brix (O'fg) because of machine vari-
ability (O'i;). head variability (O'f;). and analytical test variability (0',24). The variability in the
observed brix value is

2 2 2 2
Op=0j+0y+0;

An experiment can be designed, involving sampling from several machines and several heads
on each machine, and making several analyses on each bottle, which would allow estimation
of the variances (Uﬁ,;). (02”). and (Gﬁ). Suppose that the results appear as in Fig. 8.13. Since a
substantial portion of the total variability in observed brix is due to variability between heads,
this indicates that the process can perhaps best be improved by reducing the head-to-head
variability. This could be done by more careful setup or by more careful control of the oper-
ation of the machine.



Machine variability

2
Oy

'
I
|
: Head-to-head variability
|
I

/-'-'

/ U',:rz,r

Analytical test

T
|
|
: variability

Mean  Observed BFIGURE 8.13 Sources of variability in
brix brix the bottling line example.
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8.6 Process Capability Analysis with Attribute Data

Often process performance is measured in terms of attribute data; that is, nonconforming
units or defectives, or nonconformities or defects. When a fraction nonconforming is the mea-
sure of performance, it is typical to use the parts per million (ppm) defective as a measure of
process capability. In some organizations, this ppm defective is converted to an equivalent
sigma level. For example, a process producing 2700 ppm defective would be equivalent to a
three-sigma process (without the “usual™ 1.5 ¢ shift in the mean that many six-sigma organi-
zations employ in the calculations taken into account).

When dealing with nonconformities or defects, a defects per unit (DPU) statistic is
often used as a measure of capability, where

Total number of defects
DPU =

Total number of units

Here the unit is something that is delivered to a customer and can be evaluated or judged as
to its suitability. Some examples include:

1. Aninvoice
2. A shipment
3.

A customer order

-

. An enquiry or call

The defects or nonconformities are anything that does not meet the customer requirements,
such as:

1. An error on an invoice
2. An incorrect or incomplete shipment

3. An incorrect or incomplete customer order

4. A call that 1s not satisfactorily completed



Obviously, these quantities are estimated from sample data. Large samples need to be used to
obtain reliable estimates.

The DPU measure does not directly take the complexity of the unit into account. A
widely used way to do this is the defect per million opportunities (DPMO) measure

Total number of defects

DPMO = — — : —
Number of units X Number of opportunities

Opportunities are the number of potential chances within a unit for a defect to occur. For
example, on a purchase order, the number of opportunities would be the number of fields in
which information is recorded times two, because each field can either be filled out incor-
rectly or blank (information is missing). It is important to be consistent about how opportu-
nities are defined, as a process may be artificially improved simply by increasing the number
of opportunities over time.
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8.7 Gauge and Measurement Systems
Capability Studies

» Determine how much of the observed variability is
due to the gauge or measurement system

* [solate the components of variability in the
measurement system

 Assess whether the gauge Is capable (suitable for the
Intended application)

Chapter 8 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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To introduce some of the basic ideas of measurement systems analysis (MSA) consider
a simple but reasonable model for measurement system capability studies

y=x+§& (8.23)

where v is the total observed measurement, x is the true value of the measurement on a unit
of product, and € is the measurement error. We will assume that x and € are normal]y and inde-

pendently distributed random variables with means i and 0 and variances (Gp) and (CTG ange)

s Tal oY 1nf11r 17 1'\. Irnuinnn sy 'p l"l fn"‘nl lF\ Eat ok rl 111111111111 =t 1 1r~ 1 sy
ICDPCLLI\' Ly. 11IC vdlld 1ICC OI 1€ 10Ld1l ODSCIrved Imeds Urcimciit, Vs 1o UG

2 2 2
OTota = Op + O.Gaugc (824)

Control charts and other statistical methods can be used to separate these components of vari-
ance, as well as to give an assessment of gauge capability.
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EXAMPLE 8.7

An instrument 18 to be used as part of a proposed SPC imple-
mentation. The quality-improvement team involved in design-
ing the SPC system would like (o get an assessment of gauge
capability. Twenty units of the product are obtained, and the

SOLUTION

process operator who will actually take the measurements for
the control chart uses the instrument to measure each unit of
product twice. The data are shown in Table 8.6.

Figure 8.14 shows the x and R charts for these data. Note that
the x chart exhibits many out-of-control points. This i3 to be
expected, because in this situation the x chart has an interpre-
tation that is somewhat different from the usual interpretation.
The x chart in this example shows the discriminating power
of the instrument—Iliterally, the ability of the gauge to distin-
guish between units of product. The R chart directly shows the
magnitude of measurement error, or the gauge capability. The
R values represent the difference between measurements made
on the same unit using the same instrument. In this example,
the R chart is in control. This indicates that the operator is having

Chapter 8

no difficulty in making consistent measurements. Out-of-control
points on the R chart could indicate that the operator is having
difficulty using the instrument.

The standard deviation of measurement error, Ogayge, Can
be estimated as follows:

R 10

—=—-=0.887

d, 1.128

The distribution of measurement error is usually well approxi-
mated by the normal. Thus, 6'glmge Is a good estimate of gauge

capability.

OGauge =

(continued)
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= TABLE 8.6

Parts Measurement Data

Part Measurements
Number 1 2 X R
_ : 30
1 21 20 20.5 1
2 24 23 23.5 1
3 20 21 20.5 1 X op | ﬂ UCL =24.2 ¢
4 27 27 27.0 0 _ A/ " r‘ \ /\
5 19 18 18.5 1 VARYY
6 23 21 22.0 2 20 3(
7 22 21 21.5 1
8 19 17 18.0 2 LCL=20.42
9 24 23 23.5 1 15 g 1'0 1'5 20
10 25 23 24.0 2
1 21 20 20.5 1
12 18 19 18.5 ! 47 UCL = 3.267
13 23 25 24.0 2 R
14 24 24 24.0 0 ,L
15 29 30 29.5 1 3
16 26 26 26.0 0 R
17 20 20 20.0 0 0 | |
18 19 21 20.0 2 5 10 15 20
19 25 26 25.5 1 BFIGURE 8.14 Control
20 19 19 19.0 0

charts for the gauge capability analysis
in Example 8.7. 38
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The P/T (precision-to-tolerance) ratio:

kﬁGuugu
- USL  LSL

PIT

In equation (8.25), popular choices for the constant k are k = 5.15 and k£ = 6. The value k =
5.15 corresponds to the limiting value of the number of standard deviations between bounds
of a 95% tolcrance interval that contains at Icast 99% of a normal population, and k = 6 cor-
responds to the number of standard deviations between the usual natural tolerance limits of a
normal population.

The part used in Example 8.7 has USL = 60 and LSL = 5. Therefore. taking k = 6 in
equation (8.25), an estimate of the P/T ratio 1s

6(0.887) 5.32

T=— = 0.097
60 -5 55
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Values of the estimated ratio P/T of 0.1 or less often are taken to imply adequate gauge capa-
bility. This 1s based on the generally used rule that requires a measurement device to be cali-
brated in units one-tenth as large as the accuracy required in the final measurement. However,
we should use caution in accepting this general rule of thumb in all cases. A gauge must be
sufficiently capable to measure product accurately enough and precisely enough so that the
analyst can make the correct decision. This may not necessarily require that /T < 0.1.
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Estimating the VVariance Components

Orom =5~ = (3.17) = 1005
Since from equation (8.24) we have

2
U"zfnml =0p+t U%augc

and because we have an estimate of O'G auge = (0. 887) = (.79, we can obtain an estimate of

O'%U as
&2 _ a2 2
Op=0Total ~ O'G auge — = 10.05-0.79=9.26

Therefore, an estimate of the standard deviation of the product characteristic 1s

6,=V9.26 = 3.04
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There are other measures of gauge capability that have been proposed. One of these is the
ratio of process (part) variability to total variability:

3
Op |
PP =" (8.26)
O Total
and another is the ratio ol measurement system variability (o total variability:
OC.
~iauge "
Pm=""75 (8.27)
OTotal

Obviously, pp = | — py,. For the situation in Example 8.7 we can calculate an estimate of py,
as follows:

~

O-(Eluugc 0.79 :
.ﬁﬂ'f - 5 - 10 OS — 00786

OTotal e

Thus the variance of the measuring instrument contributes about 7.86% of the total observed
variance of the measurements.
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Another measure of measurement system adequacy is defined by the AIAG (199))
[note that there is also on updated edition of this manual, AIAG (2002)] as the signal-to-noise
ratio (SNR):

Fi
f ZPP

AIAG defined the SNR as the number of distinct levels or categories that can be reli-
ably obtained from the measurements. A value of five or greater is recommended, and a value
of less than two indicates inadequate gauge capability. For Example 8.7 we have p,; = 0.0786,

and using pp = | — py; we find that pp = 1 = py; = 1 = 0.0786 = 0.9214, so an estimate of the
SNR 1n equation (8.28) 15

SNR = 8.28
\ (8.20)

2 [2009214)

SNR = =
\ - \ |- 09214

The gauge is not capable by this criterion
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Discrimination Ratio

| + pp

DR =
| = pp

(8.29)

Some authors have suggested that for a gauge to be capable the DR must exceed four.
This 1s a very arbitrary requirement. For the situation in Example 8.7, we would calculate an
estimate of the discrimination ratio as

~ l4pp 14092104

DR = = =2445
| —pp 1-09214
Clearly by this measure, the gauge is capable.
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Accuracy and Precision

high
We have
Accuracy focused only
on precision
low

(c) (d)

high Precision low

BFIGURE 8.15 The concepts of accuracy and precision. (a)

The gauge is accurate and precise. (b) The gauge is accurate but not

precise. (¢) The gauge is not accurate but it 1s precise. (d) The gauge is 45
neither accurate nor precise.



Gauge R&R Studies

It is also possiblc to design measurement systems capability studics to investigate two
components of measurement error, commonly called the repeatability and the reproducibil-
ity of the gauge. We define reproducibility as the variability due to different operators using
the gauge (or different time periods, or different environments, or in general, different condi-
tions) and repeatability as reflecting the basic inherent precision of the gauge itself. That is,

2 _ 2 _ 2 2 , \
OMecasurcment Error = GGﬂugu - GRG[}CHI&Ihi“[}" + GRL‘,pmducihilily (8?0’

The experiment used to measure the components of (}'ém,gt is usually called a gauge R
.2 .
& R study, [or the two components ol Og,yge- We now show how (o analyze gauge R & R
experiments.
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Gauge R&R Studies Are Usually Conducted
with a Factorial Experiment

If there are a randomly selected parts and » randomly selected operators, and each oper-
ator measures every part n times, then the measurements (i = part, j = operator, kK = measure-
ment) could be represented by the model

i=1,2,..., p
Vik =M+ Pi+ O; + (PO); + €5 j=1,2....,0
k=1,2,....n

where the model parameters P;, O;. (PO);;, and g, are all independent random variables that
represent the effects of parts, operators, the interaction or joint effects of parts and operators,
and random error. This is a random effects model analysis of variance (ANOVA). It is also
sometimes called the standard model for a gauge R & R experiment. We assume that the ran-
dom variables P;. O;, (PO);;, and € arc normally distributed with mean zero and variances
given by V(P;) = O',zu. V(0)) = O'?;. VI(PO);| = G?pg. and V(E;j) = o~. Therefore, the variance of
any observation is

V(vix) = Op + 00 + Opo + O (8.31)

2 2 2 . : .
and Op, O’%). Opo. and 0~ are the variance components. We want to estimate the variance
components.



= TABLE 8.7
Thermal Impedance Data (°C/W X 100) for the Gauge R & R Experiment

Part Inspector 1 Inspector 2 Inspector 3
Number  Test1l Test2 Test3 Testl Test2 Test3d Testl Test2  Test3
| 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26
10 35 34 34 35 35 34 35 34 35

This is a two-factor factorial experiment

ANOVA methods are used to analyze the data and to
estimate the variance components
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S8 rotal = SSpars 1 SSUpcmlors i

‘S1LS1F><{} } SSI:rr-::r

) —1 o . , ,
"f 1 E(MSy)=0"+n0py +ancg
VS, = ‘5'5{ Iperators o > 5
LReide) — 0— l E{‘lf'}]n{} } =0 + HUI:H
4 -SI.S-‘r:H () E (}IB‘E } - ﬂ';
.'31'{1'.;'!:[} —
(p—=1)lo-1)
C - = MS,
MS,. = Dbror S
© o po(n-1) Gi = MSpo — MS;
) ! PO
1
['_i'z) _ ;',1"?-5'{] — ."1';'{-5}:[}
‘ pn
- f_‘?} _ ;"1'{.5}3 - j’fflg"r}{-.]
o
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= TABLE 8.8
ANOVA: Thermal Impedance versus Part Number, Operator

Factor Type Levels Values
Part Num random 10 1 2 3 4 5 6 7
8 9 10
Operator random 3 1 2 3
Analysis of Variance for Thermal
Source DF SS MS F P
Part Num 9 3935.96 437.33 162.27 0.000
Operator 2 39.27 19.63 /.28 0.005
Part Num*Operator 18 48.51 2.70 5.27 0.000
Error 60 30.67 0.51
Total 89 4054 .40
Source Variance Error Expected Mean Square for Each
component term Term (using unrestricted model)
1 Part Num 48.2926 3 (4) + 3(3) + 9(1)
2 Operator 0.5646 3 (4) + 3(3) + 30(2)
3 Part Num*Operator 0.7280 4 (4) + 3(3)
4 Error 0.5111 (4)
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Gr =m0 D 4829 6= MS,

/ -2 MSpy — MS
5 1963-270 Oro = p
Op=—"7 =0.56
{]ﬂ}{ﬂ} ~2 LfS'I.:] le 1)
Op =
. 5 2.70-0.51 0.73 pr
Opo = 3 — Yl ., MS,— MS,,
- [:TJI'} —
. n
o =0.51
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» Negative estimates of a variance component
would lead to filling a reduced model, such as,
for example:

_'I‘--I-i. — ‘“ + ir‘; + {}.-' + E{'.-".-'l'
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Typically we think of ¢° as the repeatability variance component, and the gauge
reproducibility as the sum of the operator and the part x operator variance components,

U]_{cprw.hmihil ity = Op+0pg
Theretore

" " 7
U{jnui_-c = U]{cprnducilﬁi|ilj. +URC|"'Ci1l;Ll"i|il_"|'
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For this Example

. o, ~ 7 A D

U{inugc =0+ (TD +UPD
=0514+056+0.73
=1.80

The lower and upper specifications on this power module are LSL = 18 and USL = 58,
Theretfore the P/ T ratio for the gauge 1s estimated as

r

. 60, . A1 14
F/TI Gauge {"'{_]-J—” — 027
USL -LSL  38-18

By the standard measures of gauge capability, this gauge would not be considered capable
because the estimate of the P/T ratio exceeds 0.10.
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Other Topics In Gauge R&R Studies

e Section 8.7.3 provides a description of methods to
obtain confidence intervals on the variance
components and measures of gauge R&R

e Section 8.7.4 presents a new measure of gauge
capability, the probabilities of misclassification of
parts

— Rejecting good units (producer’s risk)
— Passing bad units (consumer’s risk)
— Methods for calculating these two probabilities are given
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8.7.5 Attribute Gauge Capability

Sometimes the output of a gauge isn’t numerical — it’s just
pass/fail

Nominal or ordinal data is also common
Occurs frequently in service businesses

Common situation — do operating personnel consistently make
the same decisions regarding the units they are inspecting or
analyzing

Example — a bank uses manual underwriting of mortgage loans

The underwriter uses information to classify the applicant into
one of four categories; decline or category 1, 2, 3 — categories
2 & 3 are low-risk and 1 is high risk

Compare underwriters performance relative to a “consensus”
evaluation determined by a panel of “experts”
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= TABLE 8.183

Loan Evaluation Data for Attribute Gauge Capability Analysis
L]

Application  Classification Suel Sue2 Fredl Fred2 Johnl John2
1 Fund-1 Fund-3 Fund-3 Fund-2 Fund-2 Fund-1 Fund-3
2 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-1
3 Fund-1 Fund-3 Fund-3 Fund-2 Fund-2 Fund-1 Fund-1
4 ['und-1 I'und-1 ['und-1 ['und-2 ['und-1 ['und-1 T'und-1
5 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1
6 Fund-3 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-1
7 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3
8 Fund-3 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-3
9 ['und-1 I'und-3 ['und-3 ['und-1 ['und-1 ['und-1 T'und-1

10 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1
11 Decline Decline Decline Fund-3 Fund-3 Decline Decline
12 Fund-2 Fund-3 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2
13 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1
14 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2
15 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1
16 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1
17 Fund-3 Decline Fund-3 Fund-1 Fund-1 Fund-3 Fund-3
18 Fund-3 Fund-3 Fund-1 Fund-3 Fund-3 Fund-3 Fund-1
19 Decline Fund-3 Fund-3 Fund-3 Decline Decline Decline
20 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1
21 Fund-2 Fund-2 Fund-2 Fund-1 Fund-2 Fund-2 Fund-1
22 Fund-2 Fund-1 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2
23 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1 Fund-1
24 Fund-3 Decline Fund-3 Fund-1 Fund-2 Fund-3 Fund-1
25 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3
26 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-3 Fund-1
27 Fund-2 Fund-2 Fund-2 Fund-2 Fund-1 Fund-2 Fund-2
28 Decline Decline Decline Fund-3 Decline Decline Decline
20 Decline Decline Decline Fund-3 Decline Decline Fund-3
30 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2 Fund-2

Thirty applicants,
three underwriters

Each underwriter
evaluates each
application twice

The applications are
“blinded” by
removing names,
SSNs, addresses,
and other identifying
information
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Attribute Gauge Capability

« Determine the proportion of time that the underwriter
agrees with him/herself — this measures repeatability

« Determine the proportion of time that the underwriter
agrees with the correct classification — this measures
bias

« Minitab performs the analysis — using the attribute
agreement analysis routine
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Minitab Attribute Agreement Analysis for the Loan Evaluation Data in Table 8.13
__________________________________________________________________________________________________________________________________________________________________________|]
Attribute Agreement Analysis for Suel, Sue2, Fred!, Fred2, John!l, John2

Within Appraisers

Assessment Agreement

Appraiser # Inspected # Matched Percent 95% CI

Sue 30 23 76.67 (57.72, 90.07)

Fred 30 21 70.00 (50.60, 85.27)

John 30 18 60.00 (40.60, 77.34)

# Matched: Appraiser agrees with him/herself across trials.

Each Appraiser vs Standard

Assessment Agreement

Appraiser # Inspected # Matched Percent 95% CI

Sue 30 19 63.33 (43.86, 80.07)
Fred 30 17 56.67 (37.43, 74.54)
John 30 18 60.00 (40.60, 77.34)

# Matched: Appraiser’s assessment across trials agrees with the known standard.

Between Appraisers

Assessment Agreement
# Inspected # Matched Percent 95% CI
30 7 23.33 (9.93, 42.28)
# Matched: All appraisers’ assessments agree with each other.

All Appraisers vs Standard

Assessment Agreement
# Inspected # Matched Percent 95% CI
30 7 23.33 (9.93, 42.28)

# Matched: All appraisers’ assessments agree with the known standard.
I ——_—
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Assessment Agreement

Within appraisers

Percent

Date of study:
Reported by:
Name of product
Misc:

Appraiser vs. standard

90 X
X
80
¢ X
- 70} L]
o
e
£ 60 4
X
50 |- X
40 - X
| | |
Sue Fred John
Appraiser
»# 95.0% CI

90
80 ¥
X
X
/70 —
[ ]
60 — &
®
50
X
40 - X
| :|( |
Sue Fred John
Appraiser
® Percent

BFIGURE 8.17 Confidence intervals for the attribute agreement analysis.
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8.8 Setting Specifications on Discrete
Components

« Components interact with other components
e Complex assemblies

* Tolerance stack-up problems

 Linear combinations

* Nonlinear combinations

Chapter 8 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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8.8.1 Linear Combinations

[n many cases, the dimension of an item is a linear combination of the dimensions of the com-
ponent parts. That is, if the dimensions of the components are xy, X, . .. .. » then the dimen-
sion of the final assembly is

V=a1X) + daXo + -+ apx, (8.38)

where the a,. are constants.
[f the x; are normally and independently distributed with mean Juf and variance
then yis normally distributed with mean i, = E,I_] a;ll; and variance rJ“ = Ei,_| uz O2
Theletore if 11, and 07 are known for each component, the fraction of assembled items falling
outside the specifications can be determined.
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EXAMP_E o4 Meeting Customer Specifications

& uE mEw LR

A linkage consists of four components as shown in Fig. 8.18.
The lengths of xy, x5, X3, and x, are known to be x ~ N(2.0,
0.0004), x, ~ N(4.5, 0.0009), x5 ~ N(3.0, 0.0004), and x4 ~
N(2.5. 0.0001). The leneths of the comnonents can be

assumed independent, because they are produced on different
machines. All lengths are in inches. Determine the proportion

of linkages that meet the customer specification on overall
length of 12 +0.10.

SOLUTION

To find the fraction of linkages that fall within design specifi-
cation limits, note that y is normally distributed with mean

1, =2.0+45+3.0+25=120

and variance

[

0y, = 0.0004 +0.0009 +0.0004 +0.0001 = 0.0018

u.-

¢ *) *) )

«—X—>

4—):2—:- 4—X3—} 4—x4—:-

- 5 -
- =

BFIGURE 8.18 Alinkage assembly

with four components.

To find the fraction of linkages that are within specification,
we must evaluate

P{11.90<y<12.10}= P{ y 0} {y<1190}

-12.00 11.90—12.00
J0.0018 v0.0018

= ®(2.36) - O(-2.36)
=0.99086—0.00914
=0.98172

Therefore, we conclude that 98.172% of the assembled
linkages will fall within the specification limits. This is not a
six-sigma product.



8.8.2 Nonlinear Combinations
In some problems, the dimension of interest may be a nonlinear function of the » compo-
nent dimensions xq, X>, . . . X,—say,

y= g(,rl. X9y ovns xn) (8.41)

In problems of this type, the usual approach is to approximate the nonlinear function g by a
linear function of the x; in the region of interest. It y,, W,, ... l, are the nominal dimensions
associated with the components xq, x,. . . . x,, then by expanding the right-hand side of equa-
tion (8.41) in a Taylor series about [y, >, . .. iU, we obtain

v=g(x. X xy)

. dg 8.42
=g(trs Mo s M)+ X ()5 TR A
i=l X ) T D T

where R represents the higher-order terms. Neglecting the terms of higher order, we can apply
the expected value and variance operators to obtain

ty = g(Hy Moy ooy Hy) (8.43)
and
,
o n 80 "
oy=2| 50 o; (8.44)
i=1| 9x;
g .l

This procedure to find an approximate mean and variance of a nonlinear combination of ran-
dom variables 1s sometimes called the delta method. Equation (8.44) 1s often called the
transmission of error formula.
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.
/EXAMPLE811 A Product with Nonlinear D

Consider the simple DC circuit components shown in Fig. independently distributed with means equal to their nominal
8.21. Suppose that the voltage across the points (a, D) is values.
required to be 100 £2 V. The specifications on the current and From Ohm’s law, we know that the voltage is
the resistance in the circuit are shown in Fig. 8.21. We assume
that the component random variables 7 and R are normally and V=IR
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I —

a R b
o AN o
I1=25+1
R=4+0.06

BFIGURE 8.21
Electrical circuit for
Example 8.11.

Since this involves a nonlinear combination, we expand Vin a
Taylor series about mean current ft; and mean resistance [g,
yielding

V= gt + (1= g g + (R—HR).“J

neglecting the terms of higher order. Now the mean and vari-
ance of voltage are

Hy = g
and
2. 2.2 2 2
Oy = HRO[ +HjOR

approximately, where o7 and o are the variances of / and R,
respectively.

Now suppose that 7/ and R are centered at their nominal
values and that the natural tolerance limits are defined so that
o= 0.0027 is the fraction of values of each component falling
outside these limits. Assume also that the specification limits
are exactly equal to the natural tolerance limits. For the cur-
rent / we have =25+ 1 A. Thatis, 24 </ <26 A correspond
to the natural tolerance limits and the specifications. Since
I ~ N(25, 67, and since Zg = Zy 00135 = 3.00, we have

or oy = 0.33. For the resistance, we have R = 4 + 0.06 ohm as
the specification limits and the natural tolerance limits. Thus,

4.06 — 4.00
Opg

- /

=3.00

and og = 0.02. Note that o; and o are the largest possible val-
ues of the component standard deviations consistent with the
natural tolerance limits falling inside or equal to the specifica-
tion limits.

Using these results, and if we assume that the voltage V is
approximately normally distributed, then

Hy = Uylip =(25)(4)=100 V
and
O = Uxor + 1icy =(4)7(0.33)% +(25)7(0.02)* =1.99
approximately. Thus o, = V 1.99 = 1.41. Therefore, the proba-
bility that the voltage will fall within the design specifications is

P{98 <V <102} = P{V <102} - P{V <98}

:(D[IOQ—IOOJ_(I)[QS—IOO)
1.41 - 141

= O(1.42) — D(—1.42)
=0.92219—0.07781
=0.84438

That is, only 84% of the observed output voltages will fall
within the design specifications. Note that the natural tolerance
limits or process capability for the output voltage is

My £3.000,
or
100£4.23V
In this problem the process capability ratio is

_ USL-LSL _102-98

c _ =— =047
60 6(1.41)

r

Note that, although the individual current and resistance
variations are not excessive relative to their specifications,
because of tolerance stack-up problems, they interact to produce
a circuit whose performance relative to the voltage specifica-
tions is very poor. 66



8.9 Estimating the Natural Tolerance
Limits of a Process

For a normal distribution with unknown mean and variance;

Xt Za‘;’QS

(8.45)

e Difference between tolerance limits and confidence limits

« Nonparametric tolerance limits can also be calculated
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Important Terms and Concepts

ANOVA approach to a gauge R & R experiment
Components of gauge error

Components of measurement error

Confidence intervals for gauge R & R studies

Discrimination ratio (DR) for a gauge
Estimating variance components

Faclorial experiment

Gauge R & R experiment

Graphical methods for process capability analysis
Measurement systems capability analysis
Natural tolerance limits for a normal distribution
Natural tolerance limits of a process
Nonparametric tolerance limits

Normal distribution and process capability ratios
One-sided process-capability ratios

Confidence intervals on process capability ratios
Consumer’s risk or missed fault for a gauge
Control charts and process capability analysis
Delta method

PCR C,,,
Precision and accuracy of a gauge
Precision-to-tolerence (P/T) ratio

Process capability

Process capability analysis

Process performance indices P, and P,
Producer’s risk or false failure for a gauge
Product characterization

Random effects model ANOVA
Signal-to-noise ratio (SNR) for a gauge
Tolerance stack-up problems

PCR C, Transmission of error formula
PCR C,,
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Learning Objectives

1. Investigate and analyze process capability using control charts, histograms, and
probability plots

2. Understand the difference between process capability and process potential

3. Calculate and properly interpret process capability ratios

4. Understand the role of the normal distribution in interpreting most process capa-
bility ratios

5. Calculate confidence intervals on process capability ratios

6. Know how to conduct and analyze a measurement systems capability (or gauge
R & R) experiment

7. Know how to estimate the components of variability in a measurement system

8. Know how to set specifications on components in a system involving interaction
components to ensure that overall system requirements are met

9. Estimate the natural limits of a process from a sample of data from that
process
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