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earning Objectives

Set up and use cusum control charts for monitoring the process mean

Design a cusum control chart for the mean to obtain specific ARL performance
Incorporate a fast initial response feature into the cusum control chart

Use a combined Shewhart-cusum monitoring scheme

Set up and use EWMA control charts for monitoring the process mean

Design an EWMA control chart for the mean to obtain specific ARL performance
Understand why the EWMA control chart is robust to the assumption of normality

Understand the performance advantage of cusum and EWMA control charts rel-
ative to Shewhart control charts

Set up and use a control chart based on an ordinary (unweighted) moving average
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9.1 The Cumulative Sum Control Chart

= TABLE 9.1

Data for the Cusum Example

Sample, { (a) x; {(b) x; — 10 () C; = (x; — 10) + C;_,
1 9.45 —0.55 —0.55
2 7.99 -2.01 -2.56
3 9.29 -0.71 -3.27
4 11.66 1.66 —-1.61
5 12.16 2.16 0.55
6 10.18 0.18 0.73
7 8.04 -1.96 -1.23
8 11.46 1.46 0.23
9 9.20 -0.80 -0.57

10 10.34 0.34 -0.23
11 9.03 -0.97 -1.20
12 11.47 1.47 0.27
13 10.51 0.51 0.78
14 9.40 —0.60 0.18
15 10.08 0.08 0.26
16 9.37 -0.63 -0.37
17 10.62 0.62 0.25
18 10.31 0.31 0.56
19 8.52 —1.48 -0.92
20 10.84 0.84 -0.08
21 10.90 0.90 0.82
22 9.33 -0.67 0.15
23 12.29 2.29 2.44
24 11.50 1.50 3.94
25 10.60 0.60 4.54
26 11.08 1.08 5.62
27 10.38 0.38 6.00
28 11.62 1.62 7.62
29 11.31 1.31 8.93
30 10.52 0.52 0.45
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Sample number

B FIGURE 9.1 A Shewhart control chart for the
data in Table 9.1.



The cusum chart directly incorporates all the information in the sequence of sample val-
ues by plotting the cumulative sums of the deviations of the sample values from a target value.
For example, suppose that samples of size n 2 1 are collected, and x; is the average of the jth
sample. Then if u, is the target for the process mean, the cumulative sum control chart is
formed by plotting the quantity

¢ = (Ij_au{}) (9.1)

against the sample number i. C; is called the cumulative sum up to and including the ith sam-
ple. Because they combine information from several samples, cumulative sum charts are
more effective than Shewhart charts for detecting small process shifts. Furthermore, they are
particularly effective with samples of size n= 1. This makes the cumulative sum control chart
a good candidate for use in the chemical and process industries where rational subgroups are
frequently of size 1, and in discrete parts manufacturing with automatic measurement of each
part and on-line process monitoring directly at the work center.

Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 5
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The Cumulative Sum Control Chart

10

i—1

dl =(x;—10)+ ¥ (x; —-10)
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VV\/ =(x,—10)+C,_,
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Sample number

B FIGURE 9.2 Plotof the cumulative sum from
column (c) of Table O.1.
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The Tabular Cusum

The Tabular Cusum

C;" = max|0.x; — (1o + K) + 7 9.2)

C7 =max|0, (gt — K) - x; + C_, | (9.3)

I

o

where the starting values are Cj = ¢; = 0.

5 |m—mo
2 2
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[EXAMPLE 9.

Set up the tabular cusum using the data from Table 9.1.

SOLUTION

Recall that the target value is [ty = 10, the subgroup size is
n= 1, the process standard deviation is ¢'= 1, and suppose that
the magnitude of the shift we are interested in detecting is
[.06 = 1.0(1.0)= 1.0. Therefore, the out-of-control value of the
process mean is (= 10+ 1 = I1. We will use a tabular cusum
with K = % (because the shift size is 1.0oand o= 1) and H=3

Chapter 9

m TABLE 9.2
The Tabular Cusum for Example 9.1

(a) (b)

Period i X; x; — 105 cr Nt 9.5 - x; (o N~
I 9.43 -1.05 0 0 0.05 0.05 1
2 7.99 -2.51 0 0 1.51 1.56 2
3 9.29 -1.21 0 0 0.21 1.77 3
4 11.66 1.16 1.16 | -2.16 0 0
5 12.16 1.66 2.82 2 ~2.66 0 0
6 10.18 -0.32 2.50 3 -0.68 0 0
7 8.04 -2.46 0.04 4 1.46 .46 1
8 11.46 0.96 1.00 5 ~1.96 0 0
9 9.20 -13 0 0 0.30 0.30 1

10 10.34 -0.16 0 0 -0.84 0 0
11 9.03 -1.47 0 0 047 047 1
12 1147 097 097 | -1.97 0 0
13 10.51 0.01 098 2 -1.01 0 0
14 9.40 ~1.10 0 0 0.10 0.10 1
15 10.08 -0.42 0 0 -0.58 0 0
16 0.37 -1.13 0 0 0.13 0.13 1
17 10.62 0.12 0.12 | -1.12 0 0
8 1031 -0.19 0 0 -0.81 0 0
19 8.52 -1.98 0 0 0.98 0.98 1
20 10.84 0.34 0.34 | ~1.34 0 0
21 10.90 0.40 0.74 2 -1.40 0 0
2 9.33 -1.17 0 0 0.17 0.17 1
23 12.29 1.79 1.79 I -2.79 0 0
24 11.50 1.00 2.79 2 -2.00 0 0
25 10.60 0.10 2.89 3 -1.10 0 0
26 11.08 0.58 347 4 -1.58 0 0
27 10.38 -0.12 3.35 5 -0.88 0 0
28 11.62 1.12 447 6 -2.12 0 0
29 1131 0.81 5.8 7 -1.81 0 0
30 10.52 0.02 5.30 8 -1.02 0 0



(because the recommended value of the decision interval is and

H=50=5(1)=)5).

Table 9.2 presents the tabular cusum scheme. To illustrate
the calculations, consider period 1. The equations for C; and

C; are
G = 111;,1}([0. x; =105+ Cy
and

C, = 111a1x[0~9.5— x|+ Ca]

since K = 0.5 and u, = 10. Now x; = 9.45, so since Cj

Co=0.
¢ = max[0,9.45-10.5+0]=0

and
G, = nwx[ﬂ. 05-799+ 0.05] =1.56

Panels (a) and (b) of Table 9.2 summarize the remaining cal-
culations. The quantities N* and N~ in Table 9.2 indicate the
number of consecutive periods that the cusums C; or C; have
been nonzero.
The cusum calculations in Table 9.2 show that the upper-
side cusum at period 29 is C3y = 5.28. Since this is the first
Chapter 9

Cy = max[0,9.5-9.45+0]=0.05
For period 2, we would use
C =max|[0,x, —10.5+C}'

= max 0 X, —10.5+ D]
and
G = max|0,9.5— Xy + C]_]

= max 0 9.5-x, + 0.05]

Since x, = 7.99, we obtain

Cy =max[0,7.99-10.5+0]=0

period at which C; > H = 5, we would conclude that the
process is out of control at that point. The tabular cusum also
indicates when the shift probably occurred. The counter N*
records the number of consecutive periods since the upper-side
cusum C; rose above the value of zero. Since N* =7 at period
29, we would conclude that the process was last in control at
period 29-7=22 so the shift likely occurred between
periods 22 and 23.

Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 9
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Cusum Status Chart (Figure 9.3a)
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MINITAB Version of Cusum Status Chart

Upper cusum
PP — .

|

Cumulative sum

| Lower cusum | | |
0 10 20 30

Subgroup number

. = min(O, X;— Mg+ k + C.i_—l) «— Minitab calculates the lower Cusum this way

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery. 11
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In situations where an adjustment to some manipulatable variable is required in order
to bring the process back to the target value U, it may be helpful to have an estimate of the

new process mean following the shift. This can be computed from

r (""+
,u_ﬂ+f(+Nf+. itC" >H

= C; .
y.()—K—N_. itC;, >H

(9.5)

To illustrate the use of equation (9.5), consider the cusum in period 29 with C3¢ = 5.28. From

equation (9.5), we would estimate the new process average as

+
=g+ K+ C2
N+
5.28
=10.0+0.5+
=11.25
Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.

Copyright (c) 2009 John Wiley & Sons, Inc.

12



Recommendations for Cusum Design

m TABLE 9.3
ARL Performance of the Tabular Cusum with k = % and i = 4 or

h=5

Shift in Mean (multiple of 0) h=4 h=5
0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 .71 2.01

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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= TABLE 9.4

Values of k and the Corresponding Values of 1 That Give ARLy = 370
for the Two-Sided Tabular Cusum [from Hawkins (1993a)]

1.5
1.61

1.25
1.99

1.0
2.52

0.75
3.34

0.5
4.77

0.25
8.01

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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The Standardized Cusum

Many users of the cusum prefer to standardize the variable x; before performing the calcula-
tions. Let

X, — U
y =R 9.8)

be the standardized value of x,. Then the standardized cusums are defined as follows.

The Standardized Two-Sided Cusum

C' = max[O, Vv, —k+ C;tl] (9.9)

C; = max[0.—k—y; +CT_, | (9.10)

There are two advantages to standardizing the cusum. First, many cusum charts can now have
the same values of k£ and &, and the choices of these parameters are not scale dependent (that
is, they do not depend on ). Second, a standardized cusum leads naturally to a cusum for
controlling variability, as we will see in Section 9.1.8.

Chapter 9 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 15
Copyright (c) 2009 John Wiley & Sons, Inc.



Improving Cusum Performance for Large Shifts: The
Combined Shewhart-Cusum Scheme

m TABLE 9.5

ARL Values for Some Modifications of the Basic Cusum with k = % and & = 5 (If subgroups of
size n > 1 are used, then o0 = 6x = 6/ \Vn)

(a) (b) (c) (d)

Shift in Mean Basic Cusum-Shewhart Cusum FIR Cusum-Shewhart
(multiple of ¢) Cusum (Shewhart limits at 3.5¢) with FIR  (Shewhart limits at 3.5¢)

0 465 391 430 360

0.25 139 130.9 122 113.9

0.50 38.0 37.20 28.7 28.1

0.75 17.0 16.80 11.2 11.2

1.00 10.4 10.20 6.35 6.32

1.50 5.75 5.58 3.37 3.37

2.00 4.01 3.77 2.36 2.36

2.50 3.11 2.77 1.86 1.86

3.00 2.57 2.10 1.54 1.54

4.00 2.01 1.34 1.16 1.16

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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The Fast Initial Response (FIR) Cusum

m TABLE 9.6
A Cusum with a Headstart, Process Mean Equal to 100

(a) (b)
Period i X; x; — 103 ct Nt 97 — x; C; N~
| 102 ~1 5 1 -5 1 1
2 97 —6 0 0 0 1 2
3 104 1 1 | ~7 0 0
4 93 —6 0 0 4 4 1
5 100 -3 0 0 — 1 2
6 105 2 2 | -8 0 0
7 96 —7 0 0 | 1 1
8 08 -5 0 0 -1 0 0
9 105 2 2 1 -8 0 0
10 99 —4 0 0 -2 0 0
]
¢ =max|0, x, ~103+CJ |
K=3,H=12, headstart =H/2 =6 = max[0,102— 103+ 6] =5
C: = max[0,97— X +Cg]
= max[0,97—-102+6]=1

Chapter 9 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 17
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= TABLE 9.7

A Cusum with a Headstart, Process Mean Equal to 105
|

(a) (b)
Period i X; x; — 103 (o N 97 — x; o N~
| 107 4 10 I -10 0 0
2 102 ~1 9 2 -5 0 0
3 109 6 15 3 —-12 0 0
4 98 -5 10 4 -1 0 0
5 105 2 12 5 -8 0 0
6 110 7 19 6 -13 0 0
7 101 -2 17 7 —4 0 0
8 103 0 17 8 -6 0 0
9 110 7 24 9 -13 0 0
10 104 | 25 10 ~7 0 0
H = 12 implies that the cusum signals at sample 3
Without the headstart, it would not signal until sample 6
Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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Lower cusum | | |

Subgroup number

B FIGURE 9.4 A Minitab cusum status chart for the data in Table 9.1 illustrating the fast
initial response or headstart feature.
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More on Cusums

e Cusums are often used to determine If a process has
shifted off a specified target because it Is easy to
calculate the required adjustment

e One-sided cusums are often useful
e Cusums can also be used to monitor variability

e Cusums are available for other sample statistics
(ranges, standard deviations, counts, proportions)

 Rational subgroups and cusums

Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 20
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Although we have given the development of the tabular cusum for the case of individual
observations (# = 1), it 1s easily extended to the case of averages of rational subgroups
where the sample size n > 1. Simply replace x; by X, (the sample or subgroup average) in
the above formulas, and replace ¢ with 6= = o//n.

With Shewhart charts, the use of averages of rational subgroups substantially
improves control chart performance. However, this does not alwayvs happen with the
cusum. If, for example, vou have a choice of taking a sample of size n = | every half hour
or a sample consisting of a rational subgroup of size n = 5 every 2.5 hours (not that both
choices have the same sampling intensity), the cusum will often work best with the choice
of n =1 every half hour. For more discussion of this, see Hawkins and Olwell (1998). Only
if there 1s some significant economy of scale or some other valid reason for taking sam-
ples of size greater than unity should one consider using n# > 1 with the cusum.

One practical reason for using rational subgroups of size n > 1 1s that we could now
sef up a cusum on the sample variance and use 1t to monitor process variability. Cusums
for variances are discussed in detail by Hawkins and Olwell (1998); the paper by Chang
and Gan (1995) 1s also recommended.

Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 21
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The Cusum V-Mask

3A -

1A -

B FIGURE 9.5 A typical V-mask.

The tabular cusum and the V-mask scheme are equivalent if

k=Atané (9.17)
and
h= A dtan(0)=dk (9.18)
Chapter 9 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 22
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We strongly advise against using the V-mask procedure. Some of the disadvantages and
problems associated with this scheme are as follows:

1. The headstart feature, which is very useful in practice, cannot be implemented with the
V-mask.

2. It is sometimes difficult to determine how far backward the arms of the V-mask should
extend, thereby making interpretation difficult for the practitioner.

e

Perhaps the biggest problem with the V-mask is the ambiguity associated with ¢ and 3
in the Johnson design procedure.

= TABLE 9.8

Actual Values of ARIL,, for a V-Mask Scheme Designed Using
Johnson’s Method [Adapted from Table 2 in Woodall and Adams

(1993)]
|

Values of ¢ [Desired Value of
ARL, = 1/2ox)]

Shift to Be Detected, 0 0.00135 (370) 0.001 (500)
1.0 2350.6 3184.5
2.0 1804.5 2435.8
3.0 2194.8 2975.4
Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 23
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Adams, Lowry, and Woodall (1992) point out that defining 2¢ as the probability of a false
alarm 1s imncorrect. Essentially, 2¢ cannot be the probability of a false alarm on any single
sample, because this probability changes over time on the cusum, nor can 2¢ be the prob-
ability of eventually obtaining a false alarm (this probability 1s, of course, 1). In fact, 2
must be the long-run proportion of observations resulting in false alarms. If this 1s so. then
the m-control ARL should be ARL, = 1/(2¢). However, Johnson’s design method pro-
duces values of ARL,, that are substantiallv larger than 1/{2).

Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 24
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Chap

9.1.12 The Self-Starting Cusum

The cusum is typically used as a phase II procedure: that is, it is applied to monitor a process
that has already been through the phase I process and most of the large assignable causes have
been removed. In phase II, we typically assume that the process parameters are reasonably
well estimated. In practice, this turns out to be a fairly important assumption, as using esti-
mates of the parameters instead of the true values has an effect on the average run length per-
formance of the control chart [this was discussed in Chapter 4; also see the review paper by
Jensen et al. (2006)]. Control charts that are designed to detect small shifts are particularly
sensitive to this assumption, including the cusum. A Shewhart control chart with the Western
Electric rules also would be very sensitive to the estimates of the process parameters. One
solution to this is to use a large sample of phase I data to estimate the parameters.

An alternative approach for the cusum is to use a self-starting cusum procedure due to
Hawkins (1987). The self-starting cusum for the mean of a normally distributed random vari-
able is easy to implement. It can be applied immediately without any need for a phase I sam-
ple to estimate the process parameters, in this case the mean g and the variance G’

I
Let x, be the average of the first n observations and let w,, = 2 (x; = I_F,)z be the sum
i=1
of squared deviations from the average of those observations. Convenient computing formu-
las to update these quantities after each new observation are
Xn — EM—I

X = X1 +
H

(n— 1)(-“11 - En—l)
n

2

W, =Wy

. . - . . 2 .
The sample variance of the first n observations is s;, = w,/(n — 1). Standardize each succes-
sive new process observation using

Xn — I‘n—]
Tn =

Sn—1



for the case where n is greater than or equal to 3. If the observations are normally distributed,
=
In—1
N n

tive distribution of 7, is

the distribution of T,, 1s a  distribution with n — 1 degrees of freedom. The cumula-

P(T,<1)=F (r 1= l)
(n— — 4t p-2 \." -

where F, is the cumulative 7 distribution with n — 1 degrees of freedom. It turns out that if the
tail area for any continuous random variable is converted to a normal ordinate we obtain a
new random variable that is distributed exactly as a standard normal random variable. That is,
if @' is the inverse normal cumulative distribution, then the transformation

U, = d)_l[F,;_q{a,,T”)] where a,, = ffn. — |

- N n

converts the cusum quantity 7}, into a standard normal random variable. It turns out that the
values of U, are statistically independent (this isn’t obvious, because successive values of U,
share the same data points), so one can plot all values of U,, for n 2 3 on a N(O, 1) cusum.
This nicely avoids the problem of using a large sample of phase I data to estimate the process
parameters for a conventional cusum.

Chapter 9 Introduction to Statistical Quality Control, 6 Edition by Douglas C. Montgomery. 26
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= TABLE 9.9

Calculations for a Self-Starling Cusum
I EEEEE——————————————————————————————————————————————."

n X, X, W, S, T, a,T, F,_>(a,T,) U,
| 045 0.45 0 — — — — —
2 7.99 8.72 1.07 1.03 — — — —
3 0.29 3.91 1.25 0.80 0.55 0.45 0.6346 0.34406
4 [1.66 9.60 6.92 1.52 3.44 2.98 0.9517 1.66157
5 12.16 10.11 12.16 1.75 1.68 1.50 0.8847 1.19881
6 10.18 10.12 12.16 1.56 0.04 0.04 0.5152 0.03811
7 3.04 9.82 15.87 1.63 —1.33 —1.23 0.1324 —1.11512
8 11.46 10.03 18.22 1.62 1.01 0.94 0.8107 0.88048

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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9.2 The Exponentially Weighted Moving
Average Control Chart

The EWMA is

Z!' = AJC!' | (l A’)‘Zf—l (922)

where 0 <A < 1 is a constant and the starting valuc (required with the first samplc at i = 1) is
the process target, so that

%o = Ho

Sometimes the average of preliminary data i1s used as the starting value of the EWMA, so that

n = X.

Chapter 9 Introduction to Statistical Quality Control, 6™ Edition by Douglas C. Montgomery. 28
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i—1 . :
Zf = A& Zo(l — ﬂ,)} XI'_}' + (1 - A)IZO
j:

=
oD
g 0.3 Five-period moving average

EWMA, A =0.2

ﬁ-h-h_

oL 1L 1 I B I B
c 1 2 3 4 5 6 /7 8 9 10

Age of sample mean

B FIGURE 9.6 Weights of past sample means.
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The EWMA Control Chart

A

_ (1 20
UCL = iy + Lo \/ (2_1)[1 (1-2)"] (9.25)
Center line = u,,
/. o
ICL=u, - Lo |[—=|1-(1-1) 9.26)
Ho G\/(Z—JL)[ (1-4) ] (526

Chapter 9

o] * (9.28)

_/
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[EXAMPLE 9.2

Set up an EWMA control chart with A = 0.10 and L = 2.7 to the data in Table 9.1.

SOLUTION

Recall that the target value of the mean is 1y = 10 and the stan-
dard deviation is ¢ = 1. The calculations for the EWMA con-
trol chart are summarized in Table 9.10, and the control chart
(from Minitab) is shown in Fig. 9.7.

To illustrate the calculations, consider the first observation,
x; =9.45. The first value of the EWMA is

Zl = ;uxl + (1 — ’}“‘)ZO
=0.1(9.45) +0.9(10)

=9.945
= TABLE 9.10
EWMA Calculations for Example 9.2
Subgroup, i * = Beyond Limits x; EWMA, z; Subgroup, i * = Beyond Limits x; EWMA, z;
1 9.45 9.945 16 9.37 9.98426
2 7.99 9.7495 17 10.62 10.0478
3 9.29 0.70355 18 10.31 10.074
4 11.66 9.8992 19 8.52 9.91864
5 12.16 10.1253 20 10.84 10.0108
6 10.18 10.1307 21 10.9 10.0997
7 8.04 0.92167 22 0.33 10.0227
8 11.46 10.0755 23 12.29 10.2495
9 9.2 9.98796 24 1.5 10.3745
10 10.34 10.0232 25 10.6 10.3971
11 9.03 9.92384 26 11.08 10.4654
12 11.47 10.0785 27 10.38 10.4568
13 10.51 10.1216 28 11.62 10.5731
14 9.4 10.0495 29 11.31 10.6468%*
15 10.08 10.0525 30 10.52 10.6341%*
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3 6 9 12 15 18 21 24 27 30 B FIGURE 9.7 The EWMA control
Observation chart for Example 9.2.
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Therefore, z; = 9.945 is the first value plotted on the control

and
chart in Fig. 9.7. The second value of the EWMA is
A 5 \2i
2y =20y + (1= 2)g LCL_yD_LGJ@_A [1-(-2)"]
=0.1(7.99) + 0.9(9.945)
=9.7495

—10-2.7(1) [1—(1— )2 ”]
(2
The other values of the EWMA statistic are computed similarly. =964
The control limits in Fig. 9.7 are found using equations
(9.25) and (9.26). For period i = 1, Note from Fig. 9.7 that the control limits increase in width as
{ increases fromi=1.2, ..., until they stabilize at the steady-
/“\. - i
UCL_,uO+Lcr\/ [1-(1-2)%]

_ state values given by equations (9.27) and (9.28)
2-4)
UCL = uy+ Lo 2
= . — |1 —=(1-=0 ] - M0 A -
10+27(1)\/(7_01|[1 (1= 0.1)% 2-7)
=10.27 —10+2.7(1) |21
(2—-0.1)
and =10.62
A 23\2i
LCL=yy-Lo |[——|1-(1-4A and
o=t 5l1-0-27]
_ 0.1 21 LCL = sy — Lo |2
=10-2.7(1) | =——][1-(1-0.1)""] Ho i
_g97n 0.1
2.7 =10-27(1) [ ———
(2-0.1)
For period 2, the limits are — 018
< A 2
UCL=puy+ Lo I 5 [1 -(1-4) E] The EWMA control chart in Fig. 9.7 signals at observation 28
\ ( 4) so we would conclude that the process is out of control
0+27(1)\/ [1—(1—0 1) ]

=10.36
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Design of the EWMA

= TABLE 9.11

Average Run Lengths for Several EWMA Control Schemes
[Adapted from Lucas and Saccucci (1990)]

Shift in Mean L =305 2998 2.962 2.814  2.615
(multiple of o) A =040 0.25 0.20 0.10 0.05

0 500 500 500 500 500

0.25 224 170 150 106 34.1
0.50 71.2 48.2 41.8 31.3 28.8
0.75 28.4 20.1 18.2 15.9 16.4
1.00 14.3 1.1 10.5 10.3 11.4
1.50 59 3.5 5.5 0.1 7.1
2.00 3.5 3.6 3.7 4.4 5.2
2.50 2.5 2.7 2.9 3.4 4.2
3.00 2.0 2.3 2.4 2.9 3.5
4.00 1.4 1.7 1.9 2.2 2.7

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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There is one potential concern about an EWMA with a small value of A. If the value of
the EWMA is on one side of the center line when a shift in the mean in the opposite direc-
tion occurs, it could take the EWMA several periods to react to the shift, because the small A
does not weight the new data very heavily. This is called the inertia effect. It can reduce the
effectiveness of the EWMA in shift detection.

Woodall and Mahmoud (2005) have investigated the inertial properties of several dif-
ferent types of control charts. They define the signal resistance of a control chart to be the
largest standardized deviation of the sample mean from the target or in-control value not lead-
ing to an immediate out-of-control signal. For a Shewhart x chart, the signal resistance is
SR(x) = L. the multiplier used to obtain the control limits. Thus the signal resistance is con-
stant. For the EWMA control chart, the signal resistance is

/
{

L \."If % — (1 - l) W

A

where w is the value of the EWMA statistic. For the EWMA., the maximum value of the sig-
nal resistance averaged over all values of the EWMA statistic is LV (2 — A)/A, if the chart
has the asymptotic limits. These results apply for any sample size, as they are given in terms
of shifts expressed as multiples of the standard error.

SR(EWMA) =
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Clearly the signal resistance of the EWMA control chart depends on the value chosen
for A. with smaller values leading to larger values of the maximum signal resistance. This is
in a sense unfortunate, because we almost always want to use the EWMA with a small value
of A as this results in good ARL performance in detecting small shifts. As we will see in
Section 9.2.3, small values of A are also desirable because they make the EWMA chart quite
insensitive to normality of the process data. Woodall and Mahmoud (2005) recommend
always using a Shewhart chart in conjunction with an EWMA (especially if A is small) as one
way to counteract the signal resistance.

Like the cusum, the EWMA performs well against small shifts but does not react to
large shifts as quickly as the Shewhart chart. A good way to further improve the sensitivity of
the procedure to large shifts without sacrificing the ability to detect small shifts quickly is to
combine a Shewhart chart with the EWMA. These combined Shewhart-EWMA control pro-
cedures are effective against both large and small shifts. When using such schemes, we have
found it helpful to use slightly wider than usual limits on the Shewhart chart (say, 3.25-sigma,
or even 3.5-sigma). It is also possible to plot both x; (or x;) and the EWMA statistic z; on the
same control chart along with both the Shewhart and EWMA limits. This produces one chart
for the combined control procedure that operators quickly become adept at interpreting. When
the plots are computer generated, different colors or plotting symbols can be used for the two
sets of control limits and statistics.
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Robustness of EWMA to
Non-normal Process Data

m TABLE 9.12

In-Control ARLSs for the EWMA and the Individuals Control
Charts for Various Gamma Distributions

EWMA Shewhart

A 0.05 0.1 0.2 1

L 2.492 2.703 2.86 3.00
Normal 370.4 370.8 370.5 370.4
Gam(4., 1) 372 341 259 Q7
Gam(3, 1) 372 332 238 85
Gam(2, 1) 372 315 208 71
Gam(l., 1) 369 274 163 55
Gam(0.5, 1) 357 229 131 45

Chapter 9 Introduction to Statistical Quality Control, 6! Edition by Douglas C. Montgomery.
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= TABLE 9.13

In-Control ARLSs for the EWMA and the Individuals Control

Charts for Various ¢ Distributions
|

EWMA Shewhart

A 0.05 0.1 0.2 1

L 2.492 2.703 2.86 3.00

Normal 370.4 370.8 370.5 370.4

Is0 369 365 353 283
fa0 369 363 348 266
130 368 361 341 242
o 367 355 325 204
15 365 349 310 176
1o 361 335 280 137
fg 358 324 259 117
Ie 351 305 229 06
Iy 343 274 188 76
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Rational Subgroups

The EWMA control chart is often used with individual measurements. However, if
rational subgroups of size n > 1 are taken, then simply replace x; with X; and o with ;=
o/\n in the previous equations.
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Extensions of the EWMA

 Fast initial response feature

e Monitoring variability

« Monitoring count data

 The EWMA as a predictor of process level
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9.3 The Moving Average Control Chart

Suppose that individual observations have been collected, and let x;, x,, ... denote
these observations. The moving average of span w at time 7 is defined as

N ¢

i~ W] (937)

X: I X

_ i i—1
M, =

'F‘}l/‘

That 1s, at time period i, the oldest observation in the moving average set is dropped and the
newest one added to the set. The variance of the moving average M, is

i i 2
V(M;)= la 2‘»’(&‘}-): 1,,, vol=2 (9.38)

W™ j=i—w+] W™ j=i—w+l w

Therelore, 1l Uy denotes the target value ol the mean used as the center line ol the control
chart, then the three-sigma control limits for M; are

30
UCL = gy +—— (9.39)
A w
and
T7T o 30— Ay
LA 1., — y() _\/I \7.14U)
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- EXAMPLE 9.3

Set up a moving average control chart for the data in Table 9.1, using w = 5.

SOLUTION
The observations x; for periods 1 <7< 30 are shown in Table 9.14. for periods i 2 5. For time periods i < 5 the average of the
The statistic plotted on the moving average control chart will be observations for periods 1, 2, ..., 7 is plotted. The values of
these moving averages are shown in Table 9.14.
A= Xt Xt Xy
‘ 5
= TABLE 9.14
%
Observation, i X; M; Observation, i X; M;
I 9.45 9.45 16 9.37 10.166
2 7.99 8.72 17 10.62 9.996
3 9.29 8.91 18 10.31 9.956
4 11.66 9.5975 19 8.52 9.78
5 12.16 10.11 20 10.84 9.932
6 10.18 10.256 21 10.9 10.238
7 8.04 10.266 22 9.33 9.98
8 11.46 10.7 23 12.29 10.376
9 9.2 10.208 24 1.5 10.972
10 10.34 9.844 25 10.6 10.924
11 9.03 9.614 26 11.08 10.96
12 11.47 10.3 27 10.38 11.17
13 10.51 10.11 28 11.62 11.036
Chapter 9 14 9.4 10.15 29 11.31 10.998 42
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The control limits for the moving average control chart may
be easily obtained from equations (9.39) and (9.40). Since we
know that o = 1.0, then

';
UCL =ty + -2 =10+

The control limits for M; apply for periods i =2 5. For peri-
ods 0 < i < 5, the control limits are given by o + 36/\i. An
alternative procedure that avoids using special control limits
for periods i < w 1s to use an ordinary Shewhart chart until at
least w sample means have been obtained.

The moving average control chart is shown in Fig. 9.8. No
points exceed the control limits. Note that for the initial periods
i < w the control limits are wider than their final steady-state
value. Moving averages that are less than w periods apart are
highly correlated, which often complicates interpreting patterns
on the control chart. This 1s easily seen by examining Fig. 9.8.

=11.34
Jw V5
and
LCL = 11, — jﬁ - 10—&‘50):&60
w N
13
12 -

11 /,_/\__.
10 /\—'.‘—0-‘\_ _/\- 10

11.3416

=C
= ~/ N

9 —

8.65836
8 —
7 | | | | |
0 5 10 15 20 25 30 BFIGURE 9.8 Moving average control
Observation chart with w = 5, Example 9.3.
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Important Terms and Concepts

ARL calculations for the cusum

Average run length

Combined cusum-Shewhart procedures

Cusum control chart

Cusum status chart

Decision interval

Design of a cusum

Design of an EWMA control chart

EWMA control chart

Fast initial response (FIR) or headstart feature for a cusum

Fast initial response (FIR) or headstart feature for an
EWMA

Chapter 9

Moving average control chart
One-sided cusums

Poisson EWMA

Reference value

Robustness of the EWMA to normality
Scale cusum

Self-starting cusum

Signal resistance of a control chart
Standardized cusum

Tabular or algorithmic cusum
V-mask form of the cusum
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Learning Objectives

1. Set up and use cusum control charts for monitoring the process mean
2. Design a cusum control chart for the mean to obtain specific ARL performance
3. Incorporate a fast initial response feature into the cusum control chart

. Use a combined Shewhart-cusum monitoring scheme

. Set up and use EWMA control charts for monitoring the process mean

4
5

6. Design an EWMA control chart for the mean to obtain specific ARL performance
7. Understand why the EWMA control chart is robust to the assumption of normality
8

. Understand the performance advantage of cusum and EWMA control charts rel-
ative to Shewhart control charts

9. Set up and use a control chart based on an ordinary (unweighted) moving average
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