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Evaluation 
Item Grades Note: 

Regular home works 2 All home works are collected at the beginning of 
every session. 
 

Computer program home works must be printed 
on paper, including the computer program, 
numerical results and graphs, and a short 
description of the solution algorithm and its 
theory. 

Computer program 
home works 

4 

Mid term exam 4 Exams are closed book 
 

Any kinds of programmable calculators are 
forbidden. Simple engineering calculators are 
allowed. 
 

Sharing calculators is forbidden.  
 

Final Exam 10 

Absentees 
No Negative points but only three absentees are allowed. 
 
More than three absentees  No final exam 
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Chap1: Roots of Equations 
 Find the solutions of f (x) = 0, where the function f is 

given. 

 The solutions (values of x) are known as the roots of the 
equation f (x) = 0, or the zeroes of the function f (x). 

 

 f(x) can be any nonlinear equation 

for example: 

f (x) = cosh(x) cos(x) − 1 =0 
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Step 1: Bracketing Roots 
 There is a unique root in the interval (x1, x2) if: 

 f(x1).f(x2)<0 

 f (x) is increasing or f(x) is decreasing in (x1, x2) 

 Sign of df/dx must not change in (x1 ,x2) 

 

 

 

 

 After a root of f (x) = 0 has been bracketed in the interval (x1 
,x2), several methods can be used to close in on it. 
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Bisection Method (Interval Halving Method) 

 The method of bisection accomplishes this by 
successively halving the interval until it becomes 
sufficiently small. 

 

 x3=(x1+x2)/2 

 

 Note: Both intervals (x1, x2) and (x2, x3) are half the size 
of the original interval 
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Bisection Method (Algorithm) 
1. Find midpoint of (x1, x2) 

 x3=(x1+x2)/2 

 

2. Check (x1, x3) and (x3, x2) to find the interval that contains the 
root 

 If f(x1).f(x3)<0    root lies in (x1, x3) 

 If f(x3).f(x2)<0    root lies in (x3, x2) 

 

3. Replace the original interval (x1, x2) by the new interval and go 
back to 1, ie.: 

 If root lies in (x1, x3)    x4=(x1+x3)/2 

 if root lies in (x3, x2)    x4=(x3+x2)/2 
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Bisection Method (Termination Criteria) 
 The bisection is repeated until the interval has been 

reduced to a small value ε, so that 

|x2 − x1| ≤ ε 

 

 The original interval x is reduced to x/2 after one bisection,  

    x/2^2 after two bisections 

    and after n bisections it is x/2^n. 

    Setting x/2^n = ε and solving for n, we get 

n = ln (|x| /ε)/ln2 
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Bisection Method (Example) 
 Example: Use bisection to find the root of  

    f (x) = x^3 − 10x^2 + 5 = 0  

    that lies in the interval (0.6, 0.8). 

 

 

 

 

 

 

            Note: Bisection method is  

                                                                                    not very fast 
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Bisection Method (Computer Program) 
clear all; 
  
x=-2:0.01:2; 
y=x.^3+x; 
  
plot(x,y);grid on 
f3=1e3; 
x1=-0.5; 
x2=+1; 
%for i=1:100 
 

while abs(f3)>1e-5 
    f1=x1^3+x1; 
    f2=x2^3+x2; 
     x3=(x1+x2)/2; 
    f3=x3^3+x3; 
     P1=f1*f3; 
    P2=f2*f3; 
  
    if P1<0 
        x2=x3; 
    else 
        x1=x3; 
    end 
    [x1 x2] 
 end 
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Incremental Search (Computer Program) 
clear all; clc; close all 
x=-2:0.1:2; 
f=x.^4-x.^3+x.^2-x-1;  
 plot(x,f); grid on 
 x0=-2;dx=0.1; 
for i=-2:dx:+2 
    x1=x0+dx; 
    f0=x0^4-x0^3+x0^2-x0-1; 
    f1=x1^4-x1^3+x1^2-x1-1; 
    P=f0*f1; 
  
    if P<=0 
        [x0 x1] 
    end 
    x0=x1; 
End 
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 Homework: Find the root of f(x) in interval (2.5, 5) by 
Bisection method up to five place decimal accuracy. 
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Newton-Raphson Method (Introduction) 
 The Newton–Raphson algorithm can be one of the best-

known method of finding roots  

                       it is simple and fast. 

 formula can be derived from the Taylor series expansion 
of f (x) about x: 

 

 If xi+1   is a root of  f (x) = 0, then 

 

 Assuming that xi+1  is very close to xi, the last term can 
be ignored. 
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Newton-Raphson Method (Algorithm) 
 

 

 

 

 

1. Let x be a guess for the root of f (x) = 0. 

2. Compute      Dx = −f (x)/ f ‘(x). 

3. Let x ← x +D x and repeat steps 2-3 until |x| < ε. 
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Newton-Raphson Method (Local Convergense) 

 Newton-Raphson method is very fast, if it converges. 

 Newton–Raphson method converges fast near the root, 
but its global convergence characteristics are poor.  

 The reason is that the tangent line is not always an 
acceptable approximation of the function, as illustrated 
in these two examples 
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Newton-Raphson Method (Example) 
 A root of f (x) = x^3 − 10x^2 + 5 = 0 lies close to x = 0.7. 

Compute this root with the Newton–Raphson method. 

 

 

 

 

 It takes only two iterations to reach a five place decimal 
accuracy. 

Chap.1, Roots of Equations 17 



Newton-Raphson Method (Computational Cost) 
 The method needs to compute  f ‘(x) in each iteration 

and sometimes f ‘(x) is a lot more complicated than f(x). 
In these cases the Newton-Raphson method, although 
needs few number of iterations, but every iteration has 
large number of computations. 

    For example: f(x)=cos(x^2) . tan(2x) / ln(sin(x))  

 

Homework: Find the root of f(x) in interval (3.5, 5) by 
Newton-Raphson method up to five place decimal 
accuracy. Use a computer program. 
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Secant Formula 
 If calculating f ‘(x) is not economic, secant formula 

replaces the Newton method: 

 

 

 Approximate slope of f(x) 

 

 

 Note: 

 Two initial points Xi-1 and Xi are necessary to begin 
iteration. 

Chap.1, Roots of Equations 19 



Secant Formula (Algorithm) 
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Excercise 
 Use a computer program to find zero of following 

function by Secant method 

 

 f(x)=exp(x^2)-sin(x)  
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Moller Method 
 Uses a second order polynomial to estimate the 

function f(x) and find its root in every iteration. 

 

 Considering three points on g(x): 

 

 a, b, and c can be obtained: 
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Moller Method (Algorithm) 
 

 

 

 

 Algorithm: 
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Moller Method (Note) 
  three initial points X1, X2, X3 are necessary 

  + or - : choose the one that has a sign similar to b 

  During the search for real root, if the method results in a 
complex value, ignore the imaginary part and continue the 
search.  
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False Position Method 
 Instead of the real slope (Newton method), 

uses a line connecting both ends of the 
function in the interval [a, b]. 

 

 Slope of the line: 

 The line:    f(x)=f (a0)+g’(x)(x- a0) 

 meets x-axis in C where f(C)=0. So: 

 

 

C is the first guess. 
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False Position Algorithm 
1. Determine the slope g’: 

2. Calculate C: 

 

3. Check a termination criteria, and if the result is 
satisfactory, then stop 

 

 

4. Replace b by the value of C and go back to step 1. 
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Fixed Point Method 
 Turns the function f(x)=0 to a recursive formula like x=g(x) 

where x converges to C. 

 

 Algorithm: Xi+1=g(Xi) 

1. Choose an arbitrary value of x like C0 in [a, b]. 

2. Evaluate C1 from C1= g(C0). 

3. Check a termination criteria like f(C1)<, and if the result 
is satisfactory, then stop. 

4. If not repeat step 2. 
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Fixed Point Method (Note) 
 g(x) is not necessarily unique. Eg: 

 

 

 

 

 

 g(x) is acceptable only if |g’(Xi)|< 1 in [a, b] 

   (Convergence Criteria) 
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Fixed Point Method (Example) 
 f(x)=x^2-1=0 in [1, 1.5] 

 First guess: 

 

 

 Second guess: (x+x=x+2/x) 

 

 

 

 The second guess meets the expectations 
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Fixed point Method (Exercise) 
 Find the root of     x^3+x^2-1=0    in [-1, +1] by using 

fixed point method. 
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Aitken Method 
 A method to accelerate convergence: 

 

 

 Can be used once in every four steps in a stable iteration. 
Eg:  
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Example 
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• Remember the 1D-Newton-raphson method 
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• General Form: 

• Using Teylor series expansion: 
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• Assume x(0)  as initial guess 

• x(1) = x(0) + h 
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• Example: 
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• Iterative method for a set of equations: 
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• Fixed point method 
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Converges if:   
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• Example: 

1 2

1 2 3

2 2

1 2 3

3

1
3 0

2

81 0 1 1 06 0

10 3
20 0

3




  




    
 

  


x x

x x x

x x x

e x

cos( )

( .) sin( ) .

• Fixed point model: 

 

 

 

 
• Assume that D= -1<x1, x2, x3<+1 

1 2

1 2 3

2

2 1 3

3

1 1

3 6

1
1 06 0 1

9

1 10 3

20 3




 





   



  



x x

x x x

x x x

x e

cos( )

sin( ) . .



1 2

1 1 2 3 2 3

2

2 1 2 3 1 3

3 1 2 3

1 1

3 6

1 1
1 06 0 1 1 1 1 06 0 1

9 9

1 10 3 1 10 3

20 3 20 3

1

2

0 90

0 61
 


  




        

  

     


x x

g x x x x x

g x x x x x

g x x x e e

( , , ) cos( )

( , , ) sin( ) . . sin() . .

(

.

., , )

Set of Nonlinear Equations 

42 Chap.1, Roots of Equations 

• Existence of solution: 

• i = 1,2,3   ، -1 gi(x1,x2,x3) 1  Hence  

• xD, G(x)D   
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• Convergence investigation: 
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• Homework 

• Use the fixed point method to solve the given set of 
equations: 
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 Example: 
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 1st Modified Newton-Raphson 
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 Example 
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