Numerical Methods

 in EngineeringDr. Shahram Etemadi

Evaluation

Item	Grades	Note:
Regular home works	$\mathbf{2}$	All home works are collected at the beginning of every session. Computer program home works must be printed on paper, including the computer program, numerical results and graphs, and a short description of the solution algorithm and its theory.
Computer program home works	4	Exams are closed book Any kinds of programmable calculators are forbidden. Simple engineering calculators are allowed. Sharing calculators is forbidden.
Mid term exam	$\mathbf{4}$	10
Final Exam	No Negative points but only three absentees are allowed.	
Absentees	More than three absentees \rightarrow No final exam	

Contents

- Roots of Equations
- Interpolation and Curve Fitting
- Systems of Linear Algebraic Equations
- Numerical Differentiation
- Numerical Integration
- Boundary Value Problems
- Eigenvalue Problems
- Introduction to Optimization

References

Hahn D. B., and Vaentine T. D., Essential MATLAB for Engineers and Scientists, $3^{\text {rd }}$ ed., Elsevier, 2007.
Chapra S. C., Numerical Methods for Engineers, McGraw-Hill, 2006.
Moler C., Numerical Computing with MATLAB, 2004, http://www mathworks.com/moler. Won Y. Y., et al., Applied Numerical Methods Using MATLAB, John Wiley \& Sons, 2005. Hoffman, D. J., Numerical Methods for Engineers and Scientists, Marcel Dekker, 2001. Kiusalaas J. , Numerical Methods in Engineering with MATLAB, Cambridge university press, 2005.

Chap1: Roots of Equations

- Find the solutions of $f(x)=0$, where the function f is given.
- The solutions (values of x) are known as the roots of the equation $f(x)=0$, or the zeroes of the function $f(x)$.
- $f(x)$ can be any nonlinear equation for example:
$f(x)=\cosh (x) \cos (x)-1=0$

Step 1: Bracketing Roots

- There is a unique root in the interval ($\mathrm{x} 1, \mathrm{x} 2$) if:
- $\mathrm{f}(\mathrm{x} 1) . \mathrm{f}(\mathrm{x} 2)<0$
- $f(x)$ is increasing or $f(x)$ is decreasing in ($x 1, x 2$)
- Sign of df/dx must not change in ($\mathrm{x} 1, \mathrm{x} 2$) $f(x)$

- After a root of $\mathrm{f}(\mathrm{x})=\mathrm{o}$ has been bracketed in the interval (xı ,x2), several methods can be used to close in on it.

Bisection Method (Interval Halving Method)

- The method of bisection accomplishes this by successively halving the interval until it becomes sufficiently small.
- $\mathrm{x} 3=(\mathrm{x} 1+\mathrm{x} 2) / 2$

- Note: Both intervals (x1, x2) and (x2, x3) are half the size of the original interval

Bisection Method (Algorithm)

1. Find midpoint of ($\mathrm{x} 1, \mathrm{x} 2$)

- $\mathrm{x} 3=(\mathrm{x} 1+\mathrm{x} 2) / 2$

2. Check ($\mathrm{x} 1, \mathrm{x} 3$) and ($\mathrm{x} 3, \mathrm{x} 2$) to find the interval that contains the root

- If $\mathrm{f}(\mathrm{x} 1) . \mathrm{f}\left(\mathrm{x}_{3}\right)<\mathrm{o} \rightarrow$ root lies in $\left(\mathrm{xx}_{1}, \mathrm{x}_{3}\right)$
- If $f(x 3) . f(x 2)<0 \rightarrow$ root lies in ($\mathrm{x} 3, \mathrm{x} 2$)

3. Replace the original interval ($\mathbf{x 1}, \mathbf{x} 2$) by the new interval and go back to 1 , ie.:

- If root lies in $\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right) \rightarrow \mathrm{x} 4=\left(\mathrm{x} 1+\mathrm{x}_{3}\right) / 2$
- if root lies in $\left(\mathrm{x}_{3}, \mathrm{x} 2\right) \rightarrow \mathrm{x} 4=(\mathrm{x} 3+\mathrm{x} 2) / 2$

Bisection Method (Termination Criteria)

- The bisection is repeated until the interval has been reduced to a small value ε, so that

$$
\left|x_{2}-x_{1}\right| \leq \varepsilon
$$

- The original interval x is reduced to $x / 2$ after one bisection, $x / 2^{\wedge} 2$ after two bisections and after n bisections it is $x / 2^{\wedge} n$.
Setting $x / 2^{\wedge} n=\varepsilon$ and solving for n, we get

$$
n=\ln (|x| / \varepsilon) / \ln 2
$$

Bisection Method (Example)

- Example: Use bisection to find the root of
$f(x)=x^{\wedge} 3-10 x^{\wedge} 2+5=0$
that lies in the interval (o.6, o.8).

x	$f(x)$	Interval
0.6	1.616	-
0.8	-0.888	$(0.6,0.8)$
$(0.6+0.8) / 2=0.7$	0.443	$(0.7,0.8)$
$(0.8+0.7) / 2=0.75$	-0.203	$(0.7,0.75)$
$(0.7+0.75) / 2=0.725$	0.125	$(0.725,0.75)$
$(0.75+0.725) / 2=0.7375$	-0.038	$(0.725,0.7375)$
$(0.725+0.7375) / 2=0.73125$	0.044	$(0.7375,0.73125)$
$(0.7375+0.73125) / 2=0.73438$	0.003	$(0.7375,0.73438)$
$(0.7375+0.73438) / 2=0.73594$	-0.017	$(0.73438,0.73594)$
$(0.73438+0.73594) / 2=0.73516$	-0.007	$(0.73438,0.73516)$
$(0.73438+0.73516) / 2=0.73477$	-0.002	$(0.73438,0.73477)$
$(0.73438+0.73477) / 2=0.73458$	0.000	-

Note: Bisection method is not very fast

Bisection Method (Computer Program)

Incremental Search (Computer Program)

```
clearall; clc; close all
x=-2:0.1:2;
    f=x.^^4-x.^3+x.^^\-x-1;
    plot(x,f); grid on
    xo=-2;dx=0.1
    x1=x0+dx;
```



```
    if P<=0
    [xo x1]
    end
    x0=x1;
End
```

- Homework: Find the root of $f(x)$ in interval $(2.5,5)$ by Bisection method up to five place decimal accuracy.

$$
f(x)=x^{4}-6.4 x^{3}+6.45 x^{2}+20.538 x-31.752
$$

Newton-Raphson Method (Introduction)

- The Newton-Raphson algorithm can be one of the bestknown method of finding roots
it is simple and fast.
- formula can be derived from the Taylor series expansion of $f(x)$ about x :

$$
f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+O\left(x_{i+1}-x_{i}\right)^{2}
$$

- If $x i+1$ is a root of $f(x)=0$, then

$$
0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)+O\left(x_{i+1}-x_{i}\right)^{2}
$$

- Assuming that $x i+1$ is very close to $x i$, the last term can be ignored.

Newton-Raphson Method (Algorithm)

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

1. Let x be a guess for the root off $(x)=0$.
2. Compute $\mathrm{D} x=-f(x) / f^{\prime}(x)$.
3. Let $x \leftarrow x+D x$ and repeat steps 2-3 until $|\Delta x|<\varepsilon$.

Newton-Raphson Method (Local Convergense)

- Newton-Raphson method is very fast, if it converges.
- Newton-Raphson method converges fast near the root, but its global convergence characteristics are poor.
- The reason is that the tangent line is not always an acceptable approximation of the function, as illustrated in these two examples

Newton-Raphson Method (Example)

- A root of $f(x)=x^{\wedge} 3-10 x^{\wedge} 2+5=0$ lies close to $x=0.7$. Compute this root with the Newton-Raphson method.

$$
\begin{aligned}
& f(x)=x^{3}-10 x^{2}+5=0 \\
& f^{\prime}(x)=3 x^{2}-20 x
\end{aligned}
$$

$$
x \leftarrow x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{x^{3}-10 x^{2}+5}{3 x^{2}-20 x}=\frac{2 x^{3}-10 x^{2}-5}{x(3 x-20)}
$$

- It takes only two iterations to reach a five place decimal accuracy.

$$
\begin{gathered}
x \leftarrow \frac{2(0.7)^{3}-10(0.7)^{2}-5}{0.7[3(0.7)-20]}=0.73536 \\
x \leftarrow \frac{2(0.73536)^{3}-10(0.73536)^{2}-5}{0.73536[3(0.73536)-20]}=0.73460
\end{gathered}
$$

Newton-Raphson Method (Computational Cost)

- The method needs to compute $f^{\prime}(x)$ in each iteration and sometimes $f^{\prime}(x)$ is a lot more complicated than $f(x)$. In these cases the Newton-Raphson method, although needs few number of iterations, but every iteration has large number of computations.
For example: $f(x)=\cos \left(x^{\wedge} 2\right) \cdot \tan (2 x) / \ln (\sin (x))$

Homework: Find the root of $f(x)$ in interval $(3.5,5)$ by Newton-Raphson method up to five place decimal accuracy. Use a computer program.

$$
f(x)=x^{4}-6.4 x^{3}+6.45 x^{2}+20.538 x-31.752
$$

Secant Formula

- If calculating $f^{\prime}(x)$ is not economic, secant formula replaces the Newton method:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{g^{\prime}\left(x_{i}\right)}
$$

- Approximate slope of $f(x)$

$$
g^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}
$$

- Note:

Two initial points $\boldsymbol{X i}-\mathbf{1}$ and $\boldsymbol{X i}$ are necessary to begin iteration.

Secant Formula (Algorithm)

The Secant Method.

Given $f(x)=0, \varepsilon$ and two initial points x_{0}, x_{1};
Given max =maximum number of iterations;
For $i=1$ to max

$$
\begin{aligned}
& \text { Compute } g^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right) ;}{x_{i_{i}-x_{i-1}} ;} \\
& \text { Compute } x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{g^{\prime}\left(x_{i}\right)} ; \\
& \text { If }\left|x_{i+1}-x_{i}\right|<\varepsilon ; \\
& \quad \text { Solution }=x_{i+1} ; \\
& \quad \text { Stop the iterations; }
\end{aligned}
$$

Endif

Endfor

Excercise

- Use a computer program to find zero of following function by Secant method
$f(x)=\exp \left(x^{\wedge}\right)-\sin (x)$

Moller Method

- Uses a second order polynomial to estimate the function $\boldsymbol{f}(\boldsymbol{x})$ and find its root in every iteration.

$$
g(x)=a\left(x-x_{i}\right)^{2}+b\left(x-x_{i}\right)+c
$$

- Considering three points on $g(x)$:

$$
\left(x_{i-2}, f_{i-2}\right) ،\left(x_{i-1}, f_{i-1}\right) ،\left(x_{i}, f_{i}\right)
$$

a, b, and c can be obtained:

$$
\left.\begin{array}{l}
f_{i}=c \\
f_{i-1}=a h_{1}^{2}+b h_{1}+c \\
f_{i-2}=a h_{2}^{2}+b h_{2}+c
\end{array}\right\} \rightarrow\left\{\begin{array}{l}
a h_{1}^{2}+b h_{1}=\delta_{1} \\
a h_{2}^{2}+b h_{2}=\delta_{2}
\end{array}\right.
$$

$$
\begin{array}{ll}
h_{1}=\left(x_{i-1}-x_{i}\right), & \delta_{1}=\left(f_{i-1}-f_{i}\right) \\
h_{2}=\left(x_{i-2}-x_{i}\right), & \delta_{2}=\left(f_{i-2}-f_{i}\right)
\end{array}
$$

Moller Method (Algorithm)

$$
a=\frac{\delta_{1} h_{2}-\delta_{2} h_{1}}{h_{1} h_{2}\left(h_{1}-h_{2}\right)} \quad b=\frac{\delta_{2} h_{1}^{2}-\delta_{1} h_{2}^{2}}{h_{1} h_{2}\left(h_{1}-h_{2}\right)} \quad \begin{array}{ll}
h_{1}=\left(x_{i-1}-x_{i}\right), & \delta_{1}=\left(f_{i-1}-f_{i}\right) \\
h_{2}=\left(x_{i-2}-x_{i}\right), & \delta_{2}=\left(f_{i-2}-f_{i}\right)
\end{array}
$$

- Algorithm:

$$
g\left(x_{i+1}\right)=a\left(x_{i+1}-x_{i}\right)^{2}+b\left(x_{i+1}-x_{i}\right)+c=0
$$

$$
x_{i+1}=x_{i}-\frac{2 c}{b \pm \sqrt{b^{2}-4 a c}}
$$

Moller Method (Note)

- three initial points $\boldsymbol{X 1}, \mathbf{X} \mathbf{2}, \boldsymbol{X}_{\mathbf{3}}$ are necessary
- + or - : choose the one that has a sign similar to b
- During the search for real root, if the method results in a complex value, ignore the imaginary part and continue the search.

$$
x_{i+1}=x_{i}-\frac{2 c}{b \pm \sqrt{b^{2}-4 a c}}
$$

False Position Method

- Instead of the real slope (Newton method), uses a line connecting both ends of the
 function in the interval [a, b].
- Slope of the line:

$$
g^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

- The line: $f(x)=f\left(a_{0}\right)+g^{\prime}(x)\left(x-a_{0}\right)$ meets x -axis in C where $f(C)=0$. So:

$$
f(c)=0 \rightarrow c=a-\frac{f(b)}{g^{\prime}(x)}
$$

C is the first guess.

False Position Algorithm

1. Determine the slope g ':

$$
g^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

2. Calculate C :

$$
c=a-\frac{f(b)}{g^{\prime}(x)}
$$

3. Check a termination criteria, and if the result is satisfactory, then stop

$$
|b-a| \leq \varepsilon_{1} \text { and /or }|f(c)| \leq \varepsilon_{2}
$$

4. Replace by by the value of C and go back to step 1 .

Fixed Point Method

- Turns the function $f(x)=o$ to a recursive formula like $x=g(x)$ where x converges to C.
- Algorithm: $\mathbf{X i + 1 = g (X i)}$

1. Choose an arbitrary value of x like $\mathbf{C o}$ in $[a, b]$.
2. Evaluate $\mathbf{C 1}$ from $\mathbf{C l}=g(\mathbf{C o})$.
3. Check a termination criteria like $f\left(\mathbf{C l}_{\mathbf{1}}\right)<\varepsilon$, and if the result is satisfactory, then stop.
4. If not repeat step 2.

Fixed Point Method (Note)

- $g(x)$ is not necessarily unique. Eg:

$$
x^{2}+\sqrt[3]{x}-10=0 \Rightarrow\left\{\begin{array}{l}
x=\sqrt{10-\sqrt[3]{x}} \\
x=\left(10-x^{2}\right)^{3} \\
x=10+x-x^{2}-\sqrt[3]{x}
\end{array}\right.
$$

- $g(x)$ is acceptable only if $\left|g^{\prime}(X i)\right|<1$ in [a, b]
(Convergence Criteria)

Fixed Point Method (Example)

- $f(x)=\boldsymbol{x}^{\wedge} \mathbf{2 - 1 = 0}$ in [1, 1.5]
- First guess:
$x=\frac{2}{x}=g_{a}(x) ? \quad \rightarrow g_{a}^{\prime}(x)=-\frac{2}{x^{2}} \quad \rightarrow\left|g_{a}^{\prime}(x)\right|=\left|\frac{2}{x^{2}}\right| \stackrel{?}{<} \quad \forall x \in I$
- Second guess: $(x+x=x+2 / x)$

$$
x=\frac{1}{2}\left(x+\frac{2}{x}\right)=g_{a}(x) ? \quad\left|g_{a}^{\prime}(x)\right|=\frac{1}{2}\left|1-\frac{2}{x^{2}}\right| \stackrel{?}{<} \quad \forall x \in I
$$

- The second guess meets the expectations

Fixed point Method (Exercise)

- Find the root of $x^{\wedge} 3+x^{\wedge} 2-1=0$ in [-1, +1] by using fixed point method.

Aitken Method

- A method to accelerate convergence:

$$
x_{k+3}=x_{k}-\frac{\left(\Delta x_{k}\right)^{2}}{\Delta^{2} x_{k}}, \quad \Delta x_{k}=x_{k+1}-x_{k}, \quad \Delta^{2} x_{k}=x_{k+2}-2 x_{k+1}+x_{k}
$$

- Can be used once in every four steps in a stable iteration.

Eg: $\circ x_{k+1}=g\left(x_{k}\right)$

- $x_{k+2}=g\left(x_{k+1}\right)$
- $x_{k+3}=$ from Aitken method,
- $x_{k+4}=g\left(x_{k+3}\right)$
- $x_{k+5}=g\left(x_{k+4}\right)$
- $x_{k+6}=$ from Aitken method, - ...

Set of Nonlinear Equations

Example

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x^{2}+y^{2}+z^{2}=5 \\
e^{x}+x y-x z=1
\end{array} \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right.
$$

Set of Nonlinear Equations

- Remember the 1D-Newton-raphson method

$$
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}=x^{(k)}-\left[f^{\prime}\left(x^{(k)}\right)\right]^{-1} f\left(x^{(k)}\right)
$$

- Is Generalization possible?

$$
\begin{aligned}
& \boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}-\left[\boldsymbol{f}^{\prime}\left(\boldsymbol{x}^{(k)}\right)\right]^{-1} \boldsymbol{f}\left(\boldsymbol{x}^{(k)}\right) \\
& {\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{1}}
\end{array}\right] \quad\left[f^{\prime}\left(x^{(k)}\right)\right] \equiv \text { Jacobian }} \\
& \mathcal{J}=f^{\prime}(x)=\left|\begin{array}{cccc}
\partial x_{1} & \partial x_{2} & & \partial x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \ldots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|
\end{aligned}
$$

Set of Nonlinear Equations

- General Form:

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0
\end{array}\right.
$$

- Using Teylor series expansion:

$$
f_{i}\left(x_{1}+h_{1}, x_{2}+h_{2}, \cdots, x_{n}+h_{n}\right)=f_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right)+
$$

$$
h_{1} \frac{\partial f_{i}}{\partial x_{1}}+h_{2} \frac{\partial f_{i}}{\partial x_{2}}+\cdots+h_{n} \frac{\partial f_{i}}{\partial x_{n}}+H O T S
$$

$$
\boldsymbol{h}=\left(h_{1}, h_{2}, \cdots, h_{n}\right)^{T}
$$

Set of Nonlinear Equations

- Assume $x^{(0)}$ as initial guess
- $x^{(1)}=x^{(0)}+h$

Set of Nonlinear Equations

$$
\begin{aligned}
& f\left(x^{(1)}+h\right)=f\left(x^{(0)}\right)+f^{\prime}\left(x^{(0)}\right) \boldsymbol{h} \approx 0 \\
& h \approx-\left[f^{\prime}\left(x^{(0)}\right)\right]^{-1} f\left(x^{(0)}\right)
\end{aligned}
$$

- Recursive Formula

$$
x^{(k+1)}=x^{(k)}-\left[f^{\prime}\left(x^{(k)}\right)\right]^{-1} f\left(x^{(k)}\right)
$$

Set of Nonlinear Equations

- Example:

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x^{2}+y^{2}+z^{2}=5 \\
e^{x}+x y-x z=1
\end{array} \Rightarrow \mathcal{J}(f)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 x & 2 y & 2 z \\
e^{x}+y-z & x & -x
\end{array}\right]\right.
$$

$$
\left[\begin{array}{l}
x^{(k+1)} \\
y^{(k+1)} \\
z^{(k+1)}
\end{array}\right]=\left[\begin{array}{c}
x^{(k)} \\
y^{(k)} \\
z^{(k)}
\end{array}\right]
$$

Set of Nonlinear Equations

- Iterative method for a set of equations:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ x ^ { 2 } - 2 x + 0 . 5 + y = 0 } \\
{ x ^ { 2 } + 4 y ^ { 2 } - 4 = 0 }
\end{array} \xrightarrow { \text { Add } 4 8 y \text { to beftside } } \begin{array} { c }
{ \text { of } 2 ^ { 4 \pi } \text { eq. } }
\end{array} \left\{\begin{array}{l}
x=\frac{x^{2}-y+0.5}{2} \\
y=\frac{-x^{2}-4 y^{2}+8 y+4}{8}
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ x _ { k + 1 } = \frac { x _ { k } ^ { 2 } - y _ { k } + 0 . 5 } { 2 } } \\
{ y _ { k + 1 } = \frac { - x _ { k } ^ { 2 } - 4 y _ { k } ^ { 2 } + 8 y _ { k } + 4 } { 8 } }
\end{array} \rightarrow \left\{\begin{array}{l}
x_{0}=0, y_{0}=1 \\
x_{9}=-02222146, y_{9}=0.9938084
\end{array}\right.\right.
\end{aligned}
$$

Set of Nonlinear Equations

- Fixed point method

$$
\left\{\begin{array} { c }
{ f _ { 1 } (x _ { 1 } , x _ { 2 } , \cdots , x _ { n }) = 0 } \\
{ f _ { 2 } (x _ { 1 } , x _ { 2 } , \cdots , x _ { n }) = 0 } \\
{ \vdots } \\
{ f _ { n } (x _ { 1 } , x _ { 2 } , \cdots , x _ { n }) = 0 }
\end{array} \rightarrow \left\{\begin{array}{c}
x_{1}=g_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
x_{2}=g_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\
\vdots \\
x_{n}=g_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right.\right.
$$

- Iterative Formula:

$$
\left\{\begin{array}{l}
x_{1}^{(k+1)}=g_{1}\left(x_{1}^{(k)}, x_{2}^{(k)} \cdots, x_{n}^{(k)}\right) \\
x_{2}^{(k+1)}=g_{2}\left(x_{1}^{(k)}, x_{2}^{(k)} \cdots, x_{n}^{(k)}\right) \\
\vdots \\
x_{n}^{(k+1)}=g_{n}\left(x_{1}^{(k)}, x_{2}^{(k)} \cdots, x_{n}^{(k)}\right)
\end{array}\right.
$$

Set of Nonlinear Equations

Converges if:

- Example

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sum_{i=1}^{n}\left|\frac{\partial g_{1}}{\partial x_{1}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right|<1 \\
\sum_{i=1}^{n}\left|\frac{\partial g_{2}}{\partial x_{i}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right|<1 \\
\vdots \\
\sum_{i=1}^{n}\left|\frac{\partial g_{n}}{\partial x_{i}}\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right|<1
\end{array}\right. \\
& \left\{\begin{array}{l}
\left|\frac{\partial g_{1}}{\partial x}\right|+\left|\frac{\partial g_{1}}{\partial y}\right|<1 \\
\left|\frac{\partial g_{2}}{\partial x}\right|+\left|\frac{\partial g_{2}}{\partial y}\right|<1
\end{array}\right.
\end{aligned}
$$

Set of Nonlinear Equations

- Example:

$$
\left\{\begin{array}{l}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}=0 \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin \left(x_{3}\right)+1.06=0 \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0
\end{array}\right.
$$

- Fixed point model:

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{3} \cos \left(x_{2} x_{3}\right)+\frac{1}{6} \\
x_{2}=\frac{1}{9} \sqrt{x_{1}^{2}+\sin \left(x_{3}\right)+1.06}-0.1 \\
x_{3}=-\frac{1}{20} e^{-x_{1} x_{2}}+\frac{10 \pi-3}{3}
\end{array}\right.
$$

- Assume that $D=-1<x 1, x 2, x 3<+1$

Set of Nonlinear Equations

- Existence of solution:
$\left|\left|g_{1}\left(X_{1}, x_{2}, X_{3}\right)\right| \leq \frac{1}{3} \cos \left(x_{2} X_{3}\right)\right|+\frac{1}{6} \leq \frac{1}{2}$
$\left|g_{2}\left(x_{1}, x_{2}, x_{3}\right)\right|=\left|\frac{1}{9} \sqrt{x_{1}^{2}+\sin \left(x_{3}\right)+1.06}-0.1\right| \leq \frac{1}{9} \sqrt{1+\sin (1)+1.06}-0.1<0.90$
$\left|g_{3}\left(x_{1}, x_{2}, x_{3}\right)\right|=\left|-\frac{1}{20} e^{-x_{1} x_{2}}+\frac{10 \pi-3}{3}\right| \leq \frac{1}{20} e+\frac{10 \pi-3}{3}<0.61$
- $\forall i=1,2,3 .-1 \leq g_{i}\left(x_{1}, x_{2}, x_{3}\right) \leq 1$ Hence
- $x \in D, G(x) \in D$

Set of Nonlinear Equations

- Convergence investigation:

$$
\begin{aligned}
& \left\lvert\, \frac{\partial g_{1}}{\partial x_{1}}=0\right. \\
& \left.\left|\frac{\partial g_{1}}{\partial x_{2}}\right| \leq \frac{1}{3}\left|x_{3}\right| \sin \left(x_{2} x_{3}\right) \right\rvert\, \leq \frac{1}{3} \sin (1)<0.281 \\
& \left.\left|\frac{\partial g_{1}}{\partial x_{3}}\right|=\frac{1}{3}\left|x_{2}\right| \sin \left(x_{2} x_{3}\right) \right\rvert\, \leq \frac{1}{3} \sin (1)<0.281 \\
& \left|\frac{\partial g_{3}}{\partial x_{1}}\right|=\frac{x_{2}}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e \leq 0.14 \\
& \left|\frac{\partial g_{3}}{\partial x_{2}}\right|=\frac{x_{1}}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e \leq 0.14 \\
& \left|\frac{\partial g_{3}}{\partial x_{3}}\right|=0
\end{aligned}
$$

$$
\left|\frac{\partial g_{2}}{\partial x_{1}}\right|=\frac{\left|x_{1}\right|}{9 \sqrt{x_{1}^{2}+\sin \left(x_{3}\right)+1.06}} \leq \frac{1}{9 \sqrt{0.218}}<0238
$$

$$
\left|\frac{\partial g_{2}}{\partial x_{2}}\right|=0
$$

$$
\left|\frac{\partial g_{2}}{\partial x_{3}}\right|=\frac{\left|\cos \left(x_{1}\right)\right|}{18 \sqrt{x_{1}^{2}+\sin \left(x_{3}\right)+1.06}} \leq \frac{1}{18 \sqrt{0.218}}<0.119
$$

Set of Nonlinear Equations

- Homework
- Use the fixed point method to solve the given set of equations:

$$
\left\{\begin{array}{l}
x+y+z=3 \\
x^{2}+y^{2}+z^{2}=5 \xrightarrow{\text { solution }} \\
e^{x}+x y-x z=1
\end{array}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\right.
$$

Roots of Polynomials

Horner Laws

$$
\begin{aligned}
& P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x^{1}+a_{0} \\
& \quad=(x-z)\left(b_{n-1} x^{n-1}+b_{n-2} x^{n-2}+\cdots+a_{1} x^{1}+b_{0}\right)+R \\
& \left\{\begin{array} { l }
{ a _ { n } = b _ { n - 1 } } \\
{ a _ { n - 1 } = b _ { n - 2 } - z b _ { n - 1 } } \\
{ a _ { n - 2 } = b _ { n - 3 } - z b _ { n - 2 } } \\
{ \vdots } \\
{ a _ { 1 } = b _ { 8 } - z b _ { 1 } } \\
{ a _ { 0 } = R - z b _ { 0 } }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ b _ { n - 1 } = a _ { n } } \\
{ b _ { n - 2 } = a _ { n - 1 } + z b _ { n - 1 } } \\
{ b _ { n - 3 } = a _ { n - 2 } + z b _ { n - 2 } } \\
{ \vdots } \\
{ b _ { 0 } = a _ { 1 } + z b _ { 1 } } \\
{ R = a _ { 0 } + z b _ { 8 } }
\end{array} \rightarrow \left\{\begin{array}{l}
b_{(n)}=0 \\
b_{(i)}=a_{(i+1)}+z b_{(i+1)}
\end{array}\right.\right.\right.
\end{aligned}
$$

Roots of Polynomials Horner method

Example:

$$
\begin{aligned}
& P(x)=x^{3}-3 x^{2}+4 x-2 \\
& \quad=(x-1) Q(x) \\
& \left\{\begin{aligned}
b_{2}= & a_{3}=1.0 \\
Q_{1}= & a_{2}+z b_{2}=-3.0+(1.0)(1.0)=-2.0 \\
b_{0}= & a_{1}+z q=4.0+(1.0)(-2.0)=2.0
\end{aligned}\right. \\
& Q(x)=x^{2}-2 x+2
\end{aligned}
$$

Roots of Polynomials Newton-Raphson mehtod

$$
\begin{aligned}
& P(x)=x^{3}-3 x^{2}+4 x-2 \\
& Q(x)=3 x^{2}-6 x+4 \\
& x_{i+1}=x_{i}-\frac{P(x)}{Q(x)} \\
& x_{0}=15, \\
& x_{1}=x_{0}-\frac{P\left(x_{0}\right)}{P^{\prime}\left(x_{0}\right)}=15-\frac{0.6250}{1.750}=1.142857
\end{aligned}
$$

Repeated Roots of Polynomials

$1^{\text {st }}$ Modified Newton-Raphson

$$
x_{i+1}=x_{i}-m \frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

$$
f(x)=(x-\alpha)^{m} h(x)
$$

$2^{\text {nd }}$ Modified Newton-Raphson

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right) f^{\prime}\left(x_{i}\right)}{\left[f^{\prime}\left(x_{i}\right)\right]^{2}-f\left(x_{i}\right) f^{\prime \prime}\left(x_{i}\right)}
$$

Repeated Roots of Polynomials

\& Example

$$
\begin{aligned}
& \begin{array}{l}
f(x)=x^{3}-x^{2}-x+1, \quad x_{0}=15 \\
\\
=(x+1)(x-1)(x-1) \\
f^{\prime}(x)=3 x^{2}-2 x-1, \quad f^{\prime \prime}(x)=6 x-2 \\
f(15)=0.6250 \quad f^{\prime}(15)=2.750, \quad f^{\prime \prime}(15)=7.0 \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \rightarrow x_{1}=15-\frac{0.6250}{2.750}=2.272727 \\
x_{1}=x_{0}-m \frac{f^{\prime}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \rightarrow x_{1}=15-2.0 \frac{0.6250}{2.750}=1.045355 \\
x_{1}=x_{0}-\frac{f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)}{\left[f^{\prime}\left(x_{0}\right)\right]^{2}-f\left(x_{0}\right) f^{\prime \prime}\left(x_{0}\right)} \rightarrow \\
x_{1}=1.5-\frac{(0.6250)(2.750)}{[2.750]^{2}-(0.6250)(7.0)}=0.960784
\end{array}
\end{aligned}
$$

