Numerical Methods in Engineering

2- INTERPOLATION AND CURVE FITTING

DR. ETEMADI

Interpolation

2

• Consider a table of values (xi, fi), i=1, 2, 3,

xo	X1	x2	x3	•••	•••	•••	xn
fo	f1	<i>f</i> 2	<i>f3</i>	•••	•••	•••	fn

The process of estimating f for any intermediate value of x is called interpolation.

• $Pn(x) \cong f(x)$

Polynomial Pn(x) is used as an estimation for the unknown function f(x)n refers to the order of polynomial P

Interpolation

3

Pn describes a curve that passes through the points of the table:
xo
x1
x2
x3
...
xn

f3

• • •

•••

• • •

f0

 f_1

*f*2

fn

Interpolation Methods

• Newton method

- o Newton forward formula
- o Newton backward formula
- o Forward difference method
- o Backward difference method
- Lagrange's formula
- Spline interpolation

- The result is a function:
 - o Continuous
 - Not differentiable

Linear Interpolation (Example)

- Horizontal axis: t
- Vertical Axis: x

Polynomial Interpolation
General Form
$$\{(x_i, y_i)\}_{i=0}^{n}$$

$$f(x) = \sum_{k=0}^{n} a_k x^k \Rightarrow y_i = f(x_i) = \sum_{k=0}^{n} a_k x_i^k, \quad k = 0, \dots, n$$

$$y_{0} = a_{0} + a_{1}x_{0} + \dots + a_{n}x_{0}$$

$$y_{1} = a_{0} + a_{1}x_{1}^{1} + \dots + a_{n}x_{1}^{n}$$

$$\vdots$$

$$y_{n} = a_{0} + a_{1}x_{n}^{1} + \dots + a_{n}x_{n}^{n}$$

$$\therefore a = x^{-1}y$$

$$\Rightarrow \begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

 $f(x) = 0.4917x^5 - 6.2083x^4 + 27.4583x^3 - 49.2917x^2 + 29.55x$

Polynomial Interpolation

11

• Disadvantages:

- By increasing number of points, order of the polynomial grows
- Solving the set of linear equations might be not very easy.

Lagrange's Interpolation (Example)
• Data:
$$\{(0,6), (1,0), (2,2)\}$$

 $L_1(x) = \frac{(x-0)(x-2)}{(1-0)(1-2)} = \frac{x^2 - 2x}{-1}$
 $L_0(x) = \frac{(x-1)(x-2)}{(0-1)(0-2)} = \frac{x^2 - 3x + 2}{2}$
 $L_2(x) = \frac{(x-0)(x-1)}{(2-0)(2-1)} = \frac{x^2 - x}{2}$
 $f(x) = \sum_{k=0}^{2} L_k(x)y_k = L_0(x)y_0 + L_1(x)y_1 + L_2(x)y_2$
 $f(x) = \sum_{k=0}^{2} L_k(x)y_k = 6L_0(x) + 0L_1(x) + 2L_2(x) = 4x^2 - 10x + 6$

Newton's Interpolation Formula

$$\begin{array}{c}
\hline & & & & & \\
\hline n_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots \\ + a_n(x - x_0)(x - x_1) \cdots (x - x_n)
\end{array}$$

$$\begin{array}{c}
\hline a_n = \frac{D^{n-1}f_1 - D^{n-1}f_0}{x_n - x_0} \equiv D^n f_0 \\
\hline a_n = \frac{D^{n-1}f_1 - D^{n-1}f_0}{x_n - x_0} \equiv D^n f_0 \\
\hline \hline x_n - x_0 \\
\hline x_1 \quad y_1 \quad Df_0 = \frac{y_1 - y_0}{x_1 - x_0} \\
\hline x_2 \quad y_2 \quad Df_2 = \frac{y_3 - y_2}{x_3 - x_2} \\
\hline x_3 \quad y_3 \\
\hline x_4 \quad x_5 \\
\hline x_5 \\$$

Newton's Interpolation Formula (Example)

x_{k}	$y_k^{}$	Df_k	$D^2 f_k$	$D^3 f_k$	$D^4 f_k$
0	-5	1-0	$D^2 f_0 = \frac{6 - 2}{-1 - 0} = -4$	$D^{3}f_{0} = \frac{12 - (-4)}{2 - 0} = 8$	$D^4 f_0 = \frac{2 - 8}{-2 - 0} = 3$
1	-3	-1-1	$D^2 f_1 = \frac{18-6}{2-1} = 12$	$D^{3}f_{0} = \frac{6-12}{-2-1} = 2$	—
-1	-15	$Df_2 = \frac{39 - (-15)}{2 - (-1)} = 18$	$D^2 f_2 = \frac{12 - 18}{-2 - (-1)} = 6$	_	
2	39	$Df_3 = \frac{-9-39}{-2-2} = 12$	—		
-2	-9	—			

 $n_4(x) = -5 + 2x - 4x(x-1) + 8x(x-1)(x+1) + 3x(x-1)(x+1)(x-2)$

Newton or Lagrange

19

- Disadvantage of Lagrange's method of interpolation: To add new data, new set of lagrangian multipliers must be calculated
- Advantage of Newton method:

By introducing new terms, new data can be added to the existing polynomial.

Equally spaced Interpolation Newton's Forward Difference Method

21

• If the points of interpolation are equally spaced:

$$x_j = x_0 + jh;$$
 $j = 0, \pm 1, \pm 2, \ldots$

• Assume forward difference operator as:

$$\Delta f(x) \equiv f(x+h) - f(x)$$

$\Delta^{n+1}f(x) = \Delta^n[\Delta f(x)]$	$= \Delta^n f(x + h) -$	$\Delta^n f(x);$	$n=1,2,\ldots$

x f(x)	Δ	Δ^{2}	Δ^{3}	•••
$x_0 f(x_0)$				
$x_1 f(x_1)$	$f(x_1) - f(x_0) = \Delta f(x_0)$ $f(x_2) - f(x_1) = \Delta f(x_1)$	$\Delta f(x_1) - \Delta f(x_0) = \Delta^2 f(x_0)$	$\Delta^2 f(x_1) - \Delta^2 f(x_0) = \Delta^3 f(x_0)$	
$x_2 f(x_2)$	$f(x_3) - f(x_2) = \Delta f(x_2)$	$\Delta f(x_2) - \Delta f(x_1) = \Delta^2 f(x_1)$	$\Delta^2 f(x_2) - \Delta^2 f(x_1) = \Delta^3 f(x_1)$	•••
$x_3 f(x_3)$	$f(x_4) - f(x_3) = \Delta f(x_3)$	$\Delta f(x_3) - \Delta f(x_2) = \Delta^2 f(x_2)$	÷	
$\begin{array}{c} x_4 \ f(x_4) \\ \vdots \\ \end{array}$:		

HomeWork

22

• Do some research and find the Newton's forward difference formula for equidistance data.

• Then solve the problem of finding the interpolation polynomial by Newton's forward difference formula for the following data:

Spline Interpolation

- Fit a single polynomial between every pair of adjacent points.
- Composition of these polynomials are called Spline
- They all form a continuous composite curve.

Spline Interpolation

24

• Linear spline: 1st-order lines between adjacent points

• Continuous but not differentiable

- Cubic spline:
 - 3rd-order curves in each subinterval
 - $\circ f$ is Continuous at *xi*
 - o f' is Continuous at xi
 - o f " is Continuous at xi

Why Spline?

• Too many data point \rightarrow high order interpolating polynomial

- Cubic spline : just 3rd order polynomials
- Spline is computationally more economic for heavy problems

Spline Interpolation 26 • The spline is defined by a set of equations each defining a 3rd-order curve for a subinterval $f_1(x)$ $x_0 \leq x \leq x_1$ Continuouity f'Continuouity $f_1(x_1) = f_2(x_1)$ $f'_1(x_1) = f'_2(x_1)$ $x_1 \leq x \leq x_2$ $f_2(x)$ $f_2(x_2)=f_3(x_2)$ $f'_2(x_2)=f'_3(x_2)$ $f_i(x)$ $x_{i-1} \leq x \leq x_i$ $f_3(x_3)=f_4(x_3)$ $f'_3(x_3)=f'_4(x_3)$ $x_{n-1} \leq x \leq x_n$ (x)f "Continuouity $f''_1(x_1) = f''_2(x_1)$ $f''_2(x_2) = f''_3(x_2)$

Spline Curve

27

- Number of data $n \rightarrow$ Number of spline curves n-1
- *f* " is continuous at each point:

$$f_{i\!-\!1,i}''(x_i)\!=\!f_{i,i\!+\!1}''(x_i)\!=\!k_i$$

• Cubic spline \rightarrow curvature is linear

$$k_{i,i+1}''(x) = k_i l_i(x) + k_{i+1} l_{i+1}(x)$$

• From Lagrange's method

$$egin{aligned} &l_i(x) \!=\! rac{x\!-\!x_{i+1}}{x_i\!-\!x_{i+1}} & l_{i+1}(x) \!=\! rac{x\!-\!x_i}{x_{i+1}\!-\!x_i} \ &f_{i,i+1}''(x) \!=\! rac{k_i ig(x\!-\!x_{i+1}ig) \!-\!k_{i+1} ig(x\!-\!x_iig)}{x_i\!-\!x_{i+1}} \end{aligned}$$

• Using boundary values leads to:

$$\begin{split} f_{i,i+1}(x) &= \frac{k_i}{6} \left[\frac{(x - x_{i+1})^3}{x_i - x_{i+1}} - (x - x_{i+1})(x_i - x_{i+1}) \right] \\ &- \frac{k_{i+1}}{6} \left[\frac{(x - x_i)^3}{x_i - x_{i+1}} - (x - x_i)(x_i - x_{i+1}) \right] + \frac{y_i (x - x_{i+1}) - y_{i+1} (x - x_i)}{x_i - x_{i+1}} \end{split}$$

Spline Curve 1

29

Calculating intermediate curvatures *ki*, *i=2,3,4, ..., n-1*.
 Use slope continuity at each point:

 $f_{i\!-\!1,i}^{\prime}(x_{i})\!=\!f_{i,i\!+\!1}^{\prime}(x_{i})$

$$k_{i-1}(x_{i-1}-x_i) + 2k_i(x_{i-1}-x_{i+1}) + k_{i+1}(x_i-x_{i+1}) = 6\left(rac{y_{i-1}-y_i}{x_{i-1}-x_i} - rac{y_i-y_{i+1}}{x_i-x_{i+1}}
ight)$$

Note that *ko=kn=o*

• Initial and final curvatures of the composite curve is set to zero

Spline Curve 1

30

• Special case:

For equidistant points: h=xi+1-xi

$$egin{cases} k_{i-1}+4k_i+k_{i+1}=&rac{6}{h^2}(y_{i-1}-2y_i+y_{i+1}),\ i=2,3,\cdots,n-1\ k_i=0,n \end{cases}$$

Spline Interpolation 2

- Instead of initial and final curvature, initial and final slopes, *So* and *S1* are controlled
- For equidistant points:

$$x_{i+1} - x_i = h$$
, $i = n-1, \dots, 0$

$$\begin{split} x_{i} \leq x \leq x_{i+1} \\ f_{i,i+1}(x) = & \left[\frac{(x - x_{i+1})^{2}}{h^{2}} + 2\frac{(x - x_{i})(x - x_{i+1})}{h^{3}} \right] y_{i} \\ & + \left[\frac{(x - x_{i})^{2}}{h^{2}} - 2\frac{(x - x_{i})^{2}(x - x_{i+1})}{h^{3}} \right] y_{i+1} \\ & + \frac{(x - x_{i})(x - x_{i+1})^{2}}{h^{2}} S_{i} + \frac{(x - x_{i})^{2}(x - x_{i+1})}{h^{3}} S_{i+1} \\ \\ S_{i} + 4S_{i+1} + S_{i+2} = \frac{3}{h} (f_{i+2} - f_{i}), \qquad i = 0, 1, \cdots, n - 1 \end{split}$$

Homework

36)

• Use a computer program to determine cubic curves of a spline for tabulated points

x	0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0
У	0.302	0.185	0.106	0.093	0.240	0.579	0.561	0.468	0.302

- Solve the problem for these conditions:
- **1.** *kO*=*kn*=*O*
- **2. S**o=o and **S**n= $\pi/2$

Deliver the solution on paper with details and attach a copy of computer program.

2D Interpolation (Lagrange method)

- Function *z=f(x, y)* is evaluated in several points
 zi=f(xi, yi)
- Goal is to calculate a function to estimate *z* for any arbitrary value of *x* and *y*.
- Lagrange method

Curve Fitting

39

• A smooth curve passing not necessarily through the given points but with minimum distance from them.

• Polynomial interpolation passes through all points and yields an oscillatory curve.

Least Squares Method

40

 $(x_i, y_i), i = 1, 2, \cdots, n$

- Given data
- Approximating Function

m<n

- Difference between every point and its approximated velue: $r_i = y_i - f(x_i) = residual$
- Sum of squares of residuals:

$$S(a_1, a_2, \cdots, a_m) = \sum_{i=1}^n [y_i - f(x_i)]^2$$

To have the best approximation, *S* must be minimized wrt *a*k:

$$\frac{\partial S}{\partial a_k} = 0, k = 1, 2, \cdots, m$$

Least Squares Method (Line Fitting)

41

- For a table of data (*xi*, *yi*), *i*=1,2,3, ..., *n* the approximating function is a line: *f*(*x*)=*a*+*bx*
- To solve the problem parameters *a* and *b* must be evaluated:
- 1. Construct the error function:
- 2. Minimize S wrt a and b:

$$\frac{\partial S}{\partial a} = \sum_{i=1}^{n} -2(y_i - a - bx_i) = 2\left(-\sum_{i=1}^{n} y_i + na + b\sum_{i=1}^{n} x_i\right) = 0$$
$$\frac{\partial S}{\partial b} = \sum_{i=1}^{n} -2(y_i - a - bx_i)x_i = 2\left(-\sum_{i=1}^{n} x_i y_i + a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} x_i^2\right) = 0$$

 $S(a,b) = \sum [y_i - a - bx_i]^2$

Least Squares Method (Line Fitting) 42 • $(xi, yi), i=1,2,3, ..., n \to f(x)=a+bx$ $rac{\sum x_i^2 - \overline{x} \sum x_i y_i}{\sum x_i^2 - n \overline{x}^2}$ $\overline{x} = -\sum x_i$ $\overline{y} = \sum_{i=1}^{n} \frac{x_i y_i - n \overline{x} \overline{y}_i}{\sum_{i=1}^{n} x_i^2 - n \overline{x}^2}$

• Alternative formula

$$b \!=\! rac{\sum y_i \left(x_i - \overline{x}
ight)}{\sum x_i \left(x_i - \overline{x}
ight)} \qquad a \!=\! \overline{y} \!-\! \overline{x} b$$

• $[a1, a2, a3, ..., am] = A^{(-1)*b}$

Least Squares Method (Polynomial Fitting)

- Note that:
- Increasing the order does not necessarily lead to more accuracy.
- Use standard deviation to find the best curve, n: number of data m: curve's polynomial order

$$\sigma^2 = \frac{\sum e_i^2}{n - m - 1}$$

Homework

46

• Use a computer program and find the best curve to be fitted on the tabulated data(Check *m=2,3, ..., 10*)

xData	1.2	2.8	4.3	5.4	6.8	7.0
yData	7.5	16.1	38.9	67.0	146.6	266.2

