
1

Numerical Methods in 
Engineering

3- SET OF LINEAR EQUATIONS

D R .  E T E M A D I

Linear Equations

 Static deflection of springs in this example can be 
found by solving the following set of equations

2

found by solving the following set of equations

For these values, the set 
turns intoturns into
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Set of Linear Equations (General Form)
3

 Matrix Form
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Different Conditions

 A set of equations like 

may have different conditions:

4

may have different conditions:

 M=N  Number of equations and variables are equal.
 Straight forward (unique) solution

 M<N  Number of equations is less than variables.
 Too many solution (choose the best by minimum norm)

 M>N  Number of equations is more than variables M>N  Number of equations is more than variables.
 No solution (Use least squares method and find a solution 

based on minimum error.
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Set of Linear Equations

If   M=N=n then:

 The solution can be obtained if: 
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 The solution can be obtained if: 

A is Invertible or is Full Rank.

 Determinant of A=|A|0      or   Rank(A)=n

 If |A|=0   Rank(A)<n    or   A is not full rank.

then some equations are linearly dependent to others 
like:
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Determinant and Norm

 |A|=det(A)0

Determinant is small if   |A|<<||A||
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Determinant is small if   |A|<<||A||

 Norms:

Euclidian norm

Maximum row sum
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Norm (Example)
7

 Determine the norm of matrix A by maximum row sum
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ill - Conditioning

 Condition Number

8

Cond(A)>>1 bad conditioned

Cond(A)1 well conditioned

 Well conditioned matrix can numerically lead to 
l tisolution.
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Cramer’s Rule

 A x = b

 Aj is constructed by replacing  jth column of A by b
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 Aj is constructed by replacing  jth column of A by b.

 Cramer’s solution:
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Cramer’s rule (Example)
10
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Gauss-Elimination Rule

 Added matrix
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 Keep the first row

 Multiply the 1st row by proper coefficients

 Subtract it from other rows so that their first 
l t  b  elements become zero
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Gauss-Elimination Rule
12

 Now keep the 2nd row and do the same for other rows
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Gauss-Elimination Rule
13

 Back substitution yields:
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Pivoting

 If diagonal elements become zero, then the method 
fails. Use pivoting:
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fails. Use pivoting:

 Change rows of the added matrix to have biggest 
possible diagonal elements 

 For example
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Pivoting (Example)
15
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Pivoting (Example)
16

 Back substitution
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Scaling

 If the pivoting element is too small then the error of 
rounding becomes very large
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 Use scaling:
1. Before using gauss elimination, normalize the first 

column; divide elements of the first column by the biggest 
element of the first row.

2. Choose pivoting element  and perform gauss elimination

Normalize the 2nd column for all elements except the 1st3. Normalize the 2nd column for all elements except the 1st

one; divide elements of the 2nd column (except the 1st one) 
by the biggest element of the 2nd row.

4. Choose pivoting element  and perform gauss elimination

5. ……
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Gauss Elimination with Scaling (Example)
18

 Normalization shows that the 1st and the 3rd columns 
must be replaced
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Gauss Elimination with Scaling (Example)
19

 Normalization of the 2nd column shows that no 
replacement is needed.
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Gauss-Jordan Elimination

 Similar to Gauss method, but elimination continues 
until all elements except diagonal elements vanish.

20

until all elements except diagonal elements vanish.

 Hence in added matrix, A converts to I and b
converts to the answers of x.
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Gauss-Jordan Elimination (Example)

 Normalize the first row

21

 Elimination of elemnts on the 1st column

 Normalize the second row
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Gauss-Jordan Elimination (Example)

 Elimination of elements on 
1st and 3rd row

22

3

 Normalize the 3rd row

 Elimination of elements on 
the 1st and 2nd row
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Gauss-Jordan Elimination (Example)

 Final form of the added Matrix

23

 Answer
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Inverse of a Matrix by Gauss-Jordan
24

 By definition  

A* A^-1=I       An  n

A*X=I    Xn  n=A^-1
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Inverse of a Matrix (Example)
25

 From Gauss-Jordan: 
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Jacobi Iterative Method
26
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Gauss-Seidel Iterative Method 
27

 Diagonal dominance is a necessity for convergence
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Iterative Methods

 Jacobi
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 Gauss-Seidel
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Minimum Norm

 If M<N:

29

Number of equations is less than the number of 
variables.

 Among many solutions, minimum norm gives:
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Minimum Norm (Example)
30
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 wefw

is called the right pseudo inverse of A
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Least squares error

 If M>N:

Number of equations is more than the number of 
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Number of equations is more than the number of 
variables.

 No Exact solution exists An answer with the least 
error is:

Left pseudo inverse
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Least squares error (Example)
32
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