Numerical Methods in Engineering

5- NUMERICAL SOLUTIONS FOR

 DIFFERENTIAL EQUATIONSDR. ETEMADI

Initial Value Differential Equations

- $1^{\text {st }}$ order differential equation
$y^{\prime}=f(x, y), \quad y^{\prime}=d y / d x, \quad f(x, y) \equiv$ given function
Initial value: $\quad y(a)=\alpha$
- Order n:

$$
y^{(n)}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)
$$

Initial value:

$$
y^{(i)}(a)=\alpha_{i}, i=0, \cdots, n-1
$$

State Space Representation
 $$
y^{(n)}=f\left(x, y, y^{\prime}, \cdots, y^{(n-1)}\right)
$$

- Chose variables as following:

$$
y_{1}=y, \quad y_{2}=y^{\prime}, \quad y_{3}=y^{\prime \prime}, \cdots, \quad y_{n}=y^{(n-1)}
$$

- So the eq. turns into n eqs.
$y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=y_{3}, \quad y_{3}^{\prime}=y_{4}, \cdots, \quad y_{n}^{\prime}=f\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$
Num. Methods: 5-Differential Equations

Example (Satellite Dynamics)

(4)

- Turn the diff. equ. Into state-space form:
$J \ddot{\theta}=\tau(t)$
- State variable:

$$
\Rightarrow\left\{\begin{array}{l}
y_{1}=\theta \\
y_{2}=\dot{\theta}
\end{array}\right.
$$

- State-space form of the equation:

$$
\Rightarrow \dot{\boldsymbol{y}}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \boldsymbol{y}+\frac{1}{\boldsymbol{J}}\left[\begin{array}{l}
0 \\
\tau
\end{array}\right]
$$

Example (Pendulum Dynamics)

- Turn the diff. equ. Into state-space form:
$m L^{2} \ddot{\theta}+c_{f} \dot{\theta}+m g L \sin \theta=\tau(t)$
- State variable:

$$
\left\{\begin{array}{l}
x_{1}=\theta \\
x_{2}=\dot{\theta}
\end{array}\right.
$$

m

- State-space form of the equation:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{g}{L} \sin \left(x_{1}\right)-\frac{c_{f}}{m L^{2}} x_{2}+\frac{\tau(t)}{m L^{2}}
\end{array}\right.
$$

Taylor Series Method

- Taylor series expansion
$y(x+h) \approx$

$$
y(x)+y^{\prime}(x) h+\frac{1}{2!} y^{\prime \prime}(x) h^{2}+\frac{1}{3!} y^{m \prime}(x) h^{3}+\cdots+\frac{1}{m!} y^{m}(x) h^{m}
$$

- Error:

$$
\begin{aligned}
& \boldsymbol{E}=\frac{1}{(m+1)!} y^{(m+1)}(\zeta) h^{m+1}, \quad x<\zeta<x+h \\
& \boldsymbol{y}^{(m+1)}(\zeta) \approx \frac{1}{h}\left[\boldsymbol{y}^{(m)}(x+h)-\boldsymbol{y}^{(m)}(x)\right] \\
& \boldsymbol{E} \approx \frac{h^{m}}{(m+1)!}\left[\boldsymbol{y}^{(m)}(x+h)-\boldsymbol{y}^{(m)}(x)\right]
\end{aligned}
$$

Taylor Series Method

- At first construct the following matrix:

$$
\boldsymbol{d}=\left[\begin{array}{c}
\left(\boldsymbol{y}^{\prime}\right)^{T} \\
\left(\boldsymbol{y}^{\prime \prime}\right)^{T} \\
\vdots \\
\left(\boldsymbol{y}^{m}\right)^{T}
\end{array}\right]=\left[\begin{array}{cccc}
y_{1}^{\prime} & y_{2}^{\prime} & \cdots & y_{n}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & \cdots & y_{n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \vdots \\
y_{1}^{m} & y_{2}^{m} & \cdots & y_{n}^{m}
\end{array}\right]
$$

Taylor Series Method (Example 1)

(8)

$$
y^{\prime}=-4 y+x^{2}, \quad y(0)=1
$$

- Choosing $m=4$, we have:

$$
\begin{aligned}
& y(h)=y(0)+y^{\prime}(0) h+\frac{1}{2!} y^{\prime \prime}(0) h^{2}+\frac{1}{3!} y^{\prime \prime \prime}(0) h^{3}+\frac{1}{4!} y^{4}(0) h^{4} \\
& \left\{\begin{array}{l}
y^{\prime}=-4 y+x^{2} \\
y^{\prime \prime}=-4 y^{\prime}+2 x=16 y-4 x^{2}+2 x \\
y^{\prime \prime \prime}=16 y^{\prime}-8 x+2=-64 y+16 x^{2}-8 x+2 \\
y^{4}=-64 y^{\prime}+32 x-8=256 y-64 x^{2}+32 x-8
\end{array}\right.
\end{aligned}
$$

Taylor Series Method (Example 1)

(9)

$$
\begin{aligned}
& \left\{\begin{array}{l}
y^{\prime}=-4 y+x^{2} \\
y^{\prime \prime}=-4 y^{\prime}+2 x=16 y-4 x^{2}+2 x \\
y^{\prime \prime \prime}=16 y^{\prime}-8 x+2=-64 y+16 x^{2}-8 x+2 \\
y^{4}=-64 y^{\prime}+32 x-8=256 y-64 x^{2}+32 x-8
\end{array}\right. \\
& {\left[\begin{array}{l}
y^{\prime} \\
y^{\prime \prime} \\
y^{\prime \prime \prime} \\
y^{4}
\end{array}\right]=\left[\begin{array}{c}
-4 y+x^{2} \\
16 y-4 x^{2}+2 x \\
-64 y+16 x^{2}-8 x+2 \\
256 y-64 x^{2}+32 x-8
\end{array}\right]}
\end{aligned}
$$

Taylor Series Method (Example 1)

(10)

- For $y(0)=1$

$$
\left\{\begin{array}{l}
y^{\prime}(0)=-4(1)=-4 \\
y^{\prime \prime}(0)=16 y-4 x^{2}+2 x=16(1)=16 \\
y^{\prime \prime \prime}(0)=-64 y+16 x^{2}-8 x+2=-64(1)+2=-62 \\
y^{4}(0)=256 y-64 x^{2}+32 x-8=256(1)-8=248
\end{array}\right.
$$

- For $\mathrm{h}=0.2$ the first estimation of y can be obtained from

Taylor expansion:

$$
\begin{aligned}
y(0.2) & =1+(-4)(0.2)+\frac{1}{2!}(16)(0.2)^{2}+\frac{1}{3!}(-62)(0.2)^{3}+\frac{1}{4!}(248)(0.2)^{4} \\
& =0.4539
\end{aligned}
$$

Taylor Series Method (Example 1)

(11)

- Rounding error:

$$
E=\frac{h^{4}}{(4+1)!}\left[y^{(4)}(0.2)-y^{(4)}(0)\right]=-0.0018
$$

- Analytical solution $y(x)=\frac{31}{32} e^{-4 x}+\frac{1}{4} x^{2}-\frac{1}{8} x+\frac{1}{32}$

$$
y(0.2)=0.4515
$$

- Estimation error

$$
\left.y(0.2)\right|_{\text {Exact }}-\left.y(0.2)\right|_{\text {Estim }}=0.4515-0.4539=-0.0024
$$

Taylor Series Method (Example 1)

- Estimation can be continued usingy(0.2) as initial value, to obtain $\mathrm{y}(0.4)$, and also $\mathrm{y}(0.6), \mathrm{y}(0.8), \ldots$, as well.
- $\mathrm{y}(0.2) \rightarrow \mathrm{y}(0.4)$
- $\mathrm{y}(0.4) \rightarrow \mathrm{y}(0.6)$
- $\mathrm{y}(0.6) \rightarrow \mathrm{y}(0.8)$
- $\mathrm{y}(0.8) \rightarrow \mathrm{y}(1.0)$
- Note: For more accurate estimation use smaller value for h.

Homework

- Find $\mathrm{y}(1)$ for $\mathrm{h}=0.5$ and $\mathrm{h}=0.25$ and then compare the results with the exact solution.

$$
y^{\prime}=-4 y+x^{2}, \quad y(0)=1
$$

- Class activity:
- Find y(0.4) for $\mathrm{h}=0.2$.

Taylor Series Method (Example 2)
(14)
$y^{\prime \prime}=-0.1 y^{\prime}-x \quad y(0)=0, \quad y^{\prime}(0)=1$

- State-space form:

$$
y_{1}=y, y_{2}=y^{\prime}
$$

$\boldsymbol{y}^{\prime}=\left[\begin{array}{c}y_{1}^{\prime} \\ y_{2}^{\prime}\end{array}\right]=\left[\begin{array}{c}y_{2} \\ -0.1 y_{2}-x\end{array}\right], \quad \boldsymbol{y}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Taylor Series Method (Example 2)

(15)

- Choose m=4
$y^{\prime \prime}=\left[\begin{array}{c}y_{2}^{\prime} \\ -0.1 y_{2}^{\prime}-1\end{array}\right]=\left[\begin{array}{c}-0.1 y_{2}-x \\ 0.01 y_{2}+0.1 x-1\end{array}\right]$
$y^{\prime \prime \prime}=\left[\begin{array}{c}-0.1 y_{2}^{\prime}-1 \\ 0.01 y_{2}^{\prime}+0.1\end{array}\right]=\left[\begin{array}{c}0.01 y_{2}+0.1 x-1 \\ -0.001 y_{2}-0.01 x+0.1\end{array}\right]$
$\boldsymbol{y}^{(4)}=\left[\begin{array}{c}0.01 y_{2}^{\prime}+0.1 \\ -0.001 y_{2}^{\prime}-0.01\end{array}\right]=\left[\begin{array}{c}-0.0001 y_{2}-0.01 x+0.1 \\ 0.0001 y_{2}+0.001 x-0.01\end{array}\right]$

Taylor Series Method (Example 2)

(16)

$$
\boldsymbol{d}=\left[\begin{array}{cc}
y_{1}^{\prime} & y_{2}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime} \\
y_{1}^{(4)} & y_{2}^{(4)}
\end{array}\right]=\left[\begin{array}{cc}
y_{2} & -0.1 y_{2}-x \\
-0.1 y_{2}-x & 0.01 y_{2}+0.1 x-1 \\
0.01 y_{2}+0.1 x-1 & -0.001 y_{2}-0.01 x+0.1 \\
-0.001 y_{2}-0.01 x+0.1 & 0.0001 y_{2}+0.001 x-0.01
\end{array}\right]
$$

- Class activity:
- For h=1; solve the differential equation. Use $\boldsymbol{y}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to find $\mathrm{y}(1)$

$2^{\text {nd }}$ and $4^{\text {th }}$ Order Runge-Kutta Methods

- If \mathbf{F} is the state-space form of the equation then:

1. RK2:

$$
\begin{aligned}
& \boldsymbol{K}_{1}=\boldsymbol{h} \boldsymbol{F}(x, y) \\
& \boldsymbol{y}(x+h)=\boldsymbol{y}(x)+\boldsymbol{K}_{2}
\end{aligned}
$$

$$
\boldsymbol{K}_{2}=\boldsymbol{h} \boldsymbol{F}\left(\boldsymbol{x}+\frac{h}{2}, \boldsymbol{y}+\frac{1}{2} \boldsymbol{K}_{1}\right)
$$

2. RK4:

$$
\begin{array}{ll}
\boldsymbol{K}_{1}=\boldsymbol{h} \boldsymbol{F}(x, y) & \boldsymbol{K}_{2}=\boldsymbol{h} \boldsymbol{F}\left(\boldsymbol{x}+\frac{h}{2}, \boldsymbol{y}+\frac{1}{2} \boldsymbol{K}_{1}\right) \\
\boldsymbol{K}_{3}=\boldsymbol{h} \boldsymbol{F}\left(\boldsymbol{x}+\frac{h}{2}, \boldsymbol{y}+\frac{1}{2} \boldsymbol{K}_{2}\right) & \boldsymbol{K}_{4}=\boldsymbol{h} \boldsymbol{F}\left(\boldsymbol{x}+\boldsymbol{h}, \boldsymbol{y}+\boldsymbol{K}_{3}\right) \\
\boldsymbol{y}(\boldsymbol{x}+\boldsymbol{h})=\boldsymbol{y}(x)+\frac{1}{6}\left(\boldsymbol{K}_{1}+2 \boldsymbol{K}_{2}+2 \boldsymbol{K}_{3}+\boldsymbol{K}_{4}\right)
\end{array}
$$

Runge-Kutta 2 (Example)

(18)

$$
\begin{array}{lr}
y^{\prime \prime}=-0.1 y^{\prime}-x & y(0)=0, \quad y^{\prime}(0)=1 \\
y_{1}=y & F(x, y)=y^{\prime}=\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y_{2} \\
y_{2}=y^{\prime}=y_{1}^{\prime} \\
y_{2}^{\prime}=-0.1 y_{2}-x
\end{array}\right.
\end{array}
$$

1. Class Activity: Solve by RK2 using $h=0.5$ to find $y(1)$
2. Homework: Solve by RK4 using h=0.5 to find y (1) and compare results with RK2

Computer Program 1

- Use Taylor and RK4 method with $\mathrm{m}=4$ to find R . use similar value of h in both methods
y

$$
\begin{array}{lr}
v_{0}=50 \mathrm{~m} / \mathrm{s} & m=0.25 \mathrm{~kg} \\
\theta=30^{\circ} & g=9.80665 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

$$
v=\sqrt{\dot{x}^{2}+\dot{y}^{2}}
$$

$$
C_{D}=0.03
$$

Computer Program 2

- Use RK2 and RK4 method with a proper value of h to find maximum deflection of the spring and final deflection of it.
use similar value of h in both methods

$$
\ddot{y}=-\frac{k}{m} y-\mu g \frac{\dot{y}}{|\dot{y}|} \quad y(0)=0.1
$$

$$
m=6 k g \quad k=3000 \mathrm{~N} / \mathrm{m}
$$

$$
g=9.80665 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\mu=0.5
$$

Num. Methods: 5-Differential Equations

