Lecture 2: Basic Elements and Mechanisms of Machine Tools

مقدمہ	
TABLE 2.1	
Percentage of Different Types of Operating Machine Tools	
Type of Machine Tool	Percentage
Lathes including automatics	34
Grinding	30
Milling	15
Drilling and boring	10
Planers and shapers	4
Others	7
Lecture 2: Basic Elements and Mechanisms	Dr. Parviz Kahhal • 3

مقدمه

- قابلیت تولید یک ماشین ابزار توسط
- تعداد قطعه توليد شده در واحد زمانی،
 - یا نرخ براده برداری حجمی،
- یا نرخ براده برداری مخصوص به از ای توان واحد مصرف شده،
 - اندازه گیری می شود.
- سطح قابلیت تولید (بهره وری) را می توان با استفاده از روش های زیر ارتقا بخشید:
 - افزایش سرعت ها و نرخ تغذیه ماشین
 - 2. افزایش توان در دسترس ماشین ابزار
 - 3. استفاده از چند ابزار و یا ماشینکاری چند قطعه کار به صورت همزمان
 - افزایش سرعت حرکت واحد های اجرایی در زمان های غیر ماشینکاری
- افزایش سطح اتواسیون برای واحد های اجرایی ماشین های ابزار و اجزا قابل تعویض
 - 6. به کارگیری تکنیک های کنترل مدرن نظیر NC و NC.
- 7. انتخاب مناسب فر آیند های ماشینکاری بر اساس ماده، پیچیدگی شکل، دقت و صافی سطح قطعه ماشینکاری شده.
 - 8. به کارگیری قید ها و بند ها که قطعه کار را در کمترین زمان ممکن مکان یابی و محکم می کند.

Dr. Parviz Kahhal •5

 Lecture 2: Basic Elements and Mechanisms

ساختار ماشین های ابز ار

- ساختار ماشین های ابزار به دو دسته قاب های باز و بسته تقسیم می شوند.
- قاب های باز قابلیت دسترسی عالی به ابزار و قطعه کار را فراهم می کند. نمونه های رایج قاب های باز را می توان در ماشین های تراش، فرز، سنگ زنی، شیار زنی و داخل تراشی مشاهده نمود.
- قاب های بسته را می توان در ماشین های صفحه تراش و فرز های با دو اسپیندل مشاهده نمود.
- ساختار یک ماشین ابزار ابزار و قطعه کار را گرفته و راهنمایی می کاند و موقعیت نسبی آن ها را در حین فرآیند ماشینکاری فراهم می کند.
- ساختار های ماشین ابزار باید به گنوای طراحی شوند که بدون تغییر مکان، نیرو های برش و وزن قطعات متحرک را به شاسی منتقل نمایند.

Dr. Parviz Kahhal 🛚 13

 Lecture 2: Basic Elements and Mechanisms

ساختار ماشین های ابز ار

- خصوصیات استاتیکی
- این خصوصیات در رابطه با خیز (تغییر مکان) ثابت تحت عوامل زیر می باشند.
 - بارهای عملیاتی برشی ثابت
 - 2. وزن اجزا متحرک
 - 3. اصطکاک
 - 4. نیروهای اینرسی
- این عوامل یر روی دقت قطعات ماشینکاری شده موثرند و معمولا توسط سفتی استاتیکی اندازه گیری می شوند.
 - خصوصیات دینامیکی
 - این خصوصیات اغلب توسط خیز دینامیکی و فرکانس های طبیعی تعیین می شوند.
- این خصوصیات بر پدیده چتر ماشین ابزار و در نتیجه پایداری عملیات ماشینکاری موثرند.

Dr. Parviz Kahhal 🛚 17

 Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal •22

 Lecture 2: Basic Elements and Mechanisms

11

MACHINE TOOL GUIDEWAYS: SLIDING FRICTION GUIDEWAYS

- Sliding friction guideways consist of any one of or a combination of the flat, vee, dovetail, and cylindrical guideway elements.
- Flat circular guideways are used for guiding the rotating table of the vertical turning and boring machines.
- Figure 2.12 shows the different types of guideways that are normally used to guide sliding parts in the longitudinal directions.
- Holding strips may be provided to prevent the moving part from lifting or tilling by the operational forces.
- Scraping and the introduction of thin shims are used for readjustments that may be required to compensate wear of the sliding parts.

Dr. Parviz Kahhal • 33

 Lecture 2: Basic Elements and Mechanisms

<section-header>MACHINE TOOL GUIDEWAYS:
SLIDING FRICTION GUIDEWAASImage: colspan="2">OutputImage: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2">Image: colspan="2"Image: cols

 Lecture 2: Basic Elements and Mechanisms

- Machine tool spindles are used to locate, hold, and drive the tool or the WP.
- These spindles possess a high degree of rigidity, rotational accuracy, and wear resistance.
- Spindles of the general purpose machine tools are subjected to heavier loads compared with precision ones.
- In the former class of spindles, rigidity is the main requirement; in the second, the manufacturing accuracy is of the prime consideration.
- Spindles are normally made hollow and provided with an internal taper at the nose end to accommodate the center or the shank of the cutting tool (Figure 2.19).

 Lecture 2: Basic Elements and Mechanisms

MACHINE TOOL SPINDLES

- A thread can be added at the nose end to fix a chuck or a face plate.
- Medium-carbon steel containing 0.5% C is used for making spindles in which hardening is followed by tempering to produce a surface hardness of about 40 Rockwell (HRC).
- Low-carbon steel containing 0.2% C can also be carburized, quenched, and tempered to produce a surface hardness of 50–60 HRC.
- Spindles for high-precision machine tools are hardened by nitriding, which provides a sufficient hardness with the minimum possible deformation.
- Manganese steel is used for heavy-duty machine tool spindles.

Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal •51

MACHINE TOOL SPINDLES: SPINDLE BEARINGS

- Generally, machine tool spindle bearings must provide the following requirements:
- 1. Minimum deflection under varying loads
- 2. Accurate running under loads of varying magnitudes and directions
- 3. Adjustability to obtain minimum axial and radial clearances
- 4. Simple and convenient assembly
- 5. Sufficiently long service
- 6. Maximum temperature variation throughout the speed ranges
- 7. Sufficient wear resistance

Lecture 2: Basic Elements and Mechanisms

- The forces acting on a machine tool spindle are the cutting force, which acts at the spindle nose, and the driving force, which acts in between the spindle bearings (Figure 2.20).
- The cutting force can be resolved into two components with respect to the spindle.
- The spindle bearings have to take radial and axial components of the cutting and driving forces.
- In this manner, when the machine tool spindle is mounted at two points, the bearing at one point takes the axial component besides the reaction of the radial component, while the other takes only the reaction of the radial component.
- The bearings that carry the axial component should prevent the axial movement of the spindle under the effect of the cutting and driving forces (fixed bearing).
- The other bearing (floating bearing) provides only a radial support and provides axial displacement due to differential thermal expansion of the spindle shaft and the housing.

Lecture 2: Basic Elements and
Mechanisms

- 5. stiffness of the spindle shaft
- 6. class of accuracy of the machine.

 Lecture 2: Basic Elements and Mechanisms

MACHINE TOOL SPINDLES:

SLIDING FRICTION SPINDLE BEARING

- 3. Mackensen bearing is used in highly accurate machine tool spindles, running at extremely high speeds, under limited applied load. As shown in Figure 2.26, an elastic bearing bush is supported at three points in the housing. This bush has nine equally spaced axial slots along its circumference. When the shaft is running, the bush deforms into a triangular shape, and three wedge-shaped oil pockets are formed, which constitute the loadcarrying parts of the bearing.
- 4. Hydrodynamic multipad spindle bearing of high radial and axial thrust capacity, high stiffness, and practically no clearance during operation.

Lecture 2: Basic Elements and
Mechanisms

MACHINE TOOL DRIVES

- To obtain a machined part by a machine tool, coordinated motions must be imparted to its working members.
- These motions are either primary (cutting and feed) movements, which removes the chips from the WP or auxiliary motions that are required to prepare for machining and ensure the successive machining of several surfaces of one WP or a similar surface of different WPs.
- Principal motions may be either rotating or straight reciprocating.
- In some machine tools, this motion is a combination of rotating and reciprocating motions.
- Feed movement may be continuous (lathes, milling machine, drilling machine) or intermittent (planers).
- As shown in Figure 2.27, stepped motions are obtained using belting or gearing.
- Stepless speeds are achieved by mechanical, hydraulic, and electrical methods.

 Lecture 2: Basic Elements and Mechanisms

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES: Gearboxes

- Machine tools are characterized by their large number of spindle speeds and feeds to cope with the requirements of machining parts of different materials and dimensions using different types of cutting tool materials and geometries.
- The cutting speed is determined on the bases of the cutting ability of the tool used, surface finish required, and economical considerations.
- A wide variety of gearboxes utilize sliding gears or friction or jaw coupling.
- The selection of a particular mechanism depends on the purpose of the machine tool, the frequency of speed change, and the duration of the working movement.

Dr. Parviz Kahhal •71

Lecture 2: Basic Elements and Mechanisms

MACHINE TOOL DRIVES: STEPPED **SPEED DRIVES: Gearboxes** • The advantage of a sliding gear transmission is that it is capable of transmitting higher torque and is small in radial dimensions. Among the disadvantages of these gearboxes is the impossibility of changing speeds during running. Clutch-type aearboxes require axial small displacement needed for speed changing, less engagement force compared with sliding gear mechanisms, and therefore can employ helical gears. Lecture 2: Basic Elements and Dr. Parviz Kahhal •72 1echanisms

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES: Gearboxes

- In case of machine tools having rectilinear main motion (planers and shapers), the speed range $\rm R_n$ is dependent only on $\rm R_v.$
- For other machine tools, R_n is a function of R_v and $R_d,$ large cutting speeds and diameter ranges are required.
- Generally, when selecting a machine tool, the speed range R_n is increased by 25% for future developments in the cutting tool materials.
- Table 2.4 shows the maximum speed ranges in modern machine tools.

Dr. Parviz Kahhal •75

Lecture 2: Basic Elements and Mechanisms

MACHINE TOOL DRIVES: STEPPED **SPEED DRIVES: Gearboxes TABLE 2.4 Speed Range for Different Machine Tools** Machine Range Numerically controlled lathes 250 Boring 100 Milling 50 Drilling 10 Surface grinding 4 Lecture 2: Basic Elements and Dr. Parviz Kahhal • 76 Mechanisms

$$\varphi = \sqrt[z-1]{\frac{n_z}{n_1}} = \sqrt[z-1]{R_n} = (R_n)^{1/(z-1)}$$

• from which

$$z = \frac{\log R_n}{\log \varphi} + 1$$

 Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal •81

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES:							
Stepping of	Speeds Acc	ording to G	eometric Pro	ogression			
TABLE 2.5 Standard Values of Pro Normung (DIN) 323	ogression Ratio φ	According to ISC	D/R229 and Deut	tsches Institüt für			
Basic and Derived Series	Standard Value	Accurate Value	Percentage Drop	Application			
R20	$20\sqrt{10} = 1.12$	1.1221	10	Seldom used			
R20/2	$(20\sqrt{10})^2 = 1.26$	1.258	20	Machines of large z			
R20/3	$(20\sqrt{10})^3 = 1.4$	1.4125	30	Machines of large R_n			
R20/4	$(20\sqrt{10})^4 = 1.6$	1.5849	40	and small z			
R20/6	$(20\sqrt{10})^6 = 2.0$	1.9953	50	Drilling machines			
<i>Note:</i> z, Number of speeds; <i>I</i>	R _n , speed range.						
Lecture 2: Basic Elem	ents and		I	Dr. Parviz Kahhal ●83			

	Basic Series		Derived Series						
Accurate	R20	R20/2	R20/3		R20/4 1400-800	220/4 R2 00-800 28		Limiting Values	Considering 2% Mechanica Tolerance
(rpm)	$\varphi = 1.12$	$\varphi = 1.25$	$\varphi = 1.$	4	$\varphi = 1.6$	9	p = 2.0	-2%	+2%
100	100							98	102
112.2	112	112	11.2		112	11.2		110	114
162.89	125		125					123	128
141.25	140	140		1400	140		1400	138	144
158.49	160		16					155	162
177.83	180	160	180		180		180	174	181
199.52	200			2000				193	204
223.87	224	224	22.4		224	22.4		219	228
251.19	250		250					246	256
281.84	280	280		2800	280		2800	276	287
316.23	315		31.5					310	323
854.81	355	355	355		355		355	348	368
398.11	400			4000				390	406
446.68	450	450	45		450	45		448	456
501.19	500		500					491	511
562.34	560	560		5600	560		5600	551	574
630.96	630		63					618	643
707.95	710	710	710		710		710	694	722
794.33	800			8000				778	810
891.25	900	900	90		900	90		873	909
1000	1000		1000					980	1020

			Nomina	Values				
R20	R20/2		R20/3		R20/4		R20/6	
$\varphi = 1.12$	$\varphi = 1.25$		$\varphi = 1.4$		$\varphi = 1.6$		$\varphi = 2.0$	
1.00	1.0		1.0		1.0		1.0	
1.12				11.2				
1.25	1.25	0.125				0.125		
1.40			1.4					
1.60	1.6			16	1.6			1
1.80		0.18						
2.00	2.0		2.0				2.0	
2.24				20				
2.50	2.5	0.25			2.5	0.25		
2.80			2.8					
3.15	3.15			31.5				3
3.55		0.355						
4.00	4.0		4.0		4		4.0	
4.50				45				
5.00	5.0	0.5				0.5		
5.60			5.6					
6.30	6.3			63	6.3			6
7.10		0.71						
8.00	8.0		8.0				8.0	
9.00				90				
10.00	10.0		1000		10			

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES: Stepping of Speeds According to Geometric Progression **Illustrative Example** • The following speeds form a geometric progression. Find the progression ratio • and the percentage increase in the speed series. *n*₁ (rpm) *n*₂ (rpm) *n*₃ (rpm) *n*₄ (rpm) *n*₅ (rpm) *n*₆ (rpm) 18 22.4 35.2 14 28 45 Lecture 2: Basic Elements and Mechanisms Dr. Parviz Kahhal •86

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES:

Stepping of Speeds According to Geometric Progression

Solution

$$\varphi = \frac{n_2}{n_1} = \frac{18}{14} = 1.25$$

• Or

$$\varphi = \sqrt[5]{\frac{45}{14}} = 1.25$$

• The percentage increase in speed δ_n

$$\delta_n = \frac{n_2 - n_1}{n_1} = \frac{\varphi n_1 - n_1}{n_1} = (\varphi - 1) \times 100$$

$$\delta_n = (1.25 - 1) \times 100 = 25\%$$

 Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal • 87

MACHINE TOOL DRIVES: STEPPED SPEED DRIVES: Stepping of Speeds According to Geometric Progression • Illustrative Example • Given $n_1 = 2.8$ rpm, $n_2 = 31.50$ rpm, and $\varphi = 1.41$, calculate the speed range R_n and the number of speeds z. • Solution $R_n = \frac{n_z}{n_1} = \frac{31.50}{2.8} = 11.2$ $\varphi = (R_n)^{1/(z-1)}$ $z = \frac{\log R_n}{\log \varphi} + 1$ $z = \frac{\log 11.2}{\log 1.41} + 1 = 8$ • Lecture 2: Basic Elements and

MACHINE TOOL DRIVES:STEPLESS SPEED DRIVES: **Mechanical Stepless Drives: Friction Stepless Drive** • Accordingly, the drive shaft rotates at a constant speed n_1 as well as the friction roller of diameter d. • The output speed of the driven shaft rotates at a variable speed n_2 that depends the on instantaneous diameter D. Because • $n_1 d = n_2 D$ hence • $n_2 = n_1 \frac{d}{D}$ Lecture 2: Basic Elements and Dr. Parviz Kahhal • 100 Mechanisms

MACHINE TOOL DRIVES:
PLANETARY TRANSMISSION
• The principal relationship between axes speed is described by Willis formula, with $Z_2 = Z_3$ and $Z_1 = Z_4$, as follows:
$i = \frac{n_4 - n_0}{n_1 - n_0} = \frac{Z_2}{Z_4} \frac{Z_1}{Z_3} = -1$
where
i = conversion ratio
n_0 = speed of carrier rotation $n_0 =$ rotational speeds of Z and Z respectively
n_1, n_2 = rotational spectrs of Z_1 and Z_4 , respectively.
• The minus sign in the previous equation indicates that gear wheels Z_1 and Z_4 rotate in opposite direction when the carrier is stationary.
 Lecture 2: Basic Elements and Mechanisms Dr. Parviz Kahhal • 118

RECIPROCATING MECHANISMS: QUICK-RETURN MECHANISM

- Ruled flat surfaces are machined on the shaping or planing machines by the combined reciprocating motion and the side feed of the tool and WP.
- Figure 2.52 shows the quick-return mechanism of the shaper machine.
- Accordingly, the length of the stroke is controlled by the radial position of the crank pin and sliders A and B.
- The time taken for the crank pin to move through the angle corresponding to the cutting stroke a is less than that of the noncutting stroke β (the usual ratio is 2:1).
- Velocity curves for the cutting and reverse strokes are shown in Figure 2.52. The maximum speed occurs when the link is vertical.

Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal • 131

RECIPROCATING MECHANISMS: QUICK-RETURN MECHANISM

• Hence

$$v_{\rm c} = \pi n \Big[\frac{lL}{l+L/2} \Big]$$

• And

$$v_{\rm r} = \pi n \Big[\frac{lL}{l - L/2} \Big]$$

• therefore, the speed ratio, Q

$$Q = \frac{V_{\rm r}}{V_{\rm c}} = \frac{2l+L}{2l-L}$$

Dr. Parviz Kahhal • 135

 Lecture 2: Basic Elements and Mechanisms

<section-header><section-header><section-header><text><text>

RECIPROCATING MECHANISMS: WHITWORTH MECHANISM • This arrangement is shown in Figure 2.53; when AB rotates, it drives CE about D by means of the slider F so that G moves horizontally along MN. AB moves through an angle $(360^\circ - a)$ while CE moves through 180°, which is less than 360° – a. Also, the crank moves through a while CE moves through 180°, • which is greater than a. Hence, with a uniformly rotating crank, the link moves through • one-half of its revolution more quickly than the other. The angle a is used for the return stroke. Lecture 2: Basic Elements and Dr. Parviz Kahhal • 138 *A*echanisms

MATERIAL SELECTION AND HEAT TREATMENT

OF MACHINE TOOL COMPONENTS: CAST IRON

TABLE 2.9

Grades of Gray CI According to DIN 1691, American Iron and Steel Institute (AISI), Society of Automotive Engineers/American Society for Testing and Materials (SAE/ASTM)

DIN 1691	AISI, SAE/ASTM	C (%)	Brinell Hardness Number (BHN) (kg/mm²)	Applications	Approximate Composition (%)
GG 12	A48-20B	3.5	160	No acceptance test for parts of no special requirements	C = 3.2-3.6, Si = 1.7-3, Mn = 0.5, P = 0.5, S = 0.12
GG 14	A48-26B	3.4	180		
GG 18	A48-30B	3.3	200		
GG 22	A48-30B	3.3	210	Machine parts and frames	
GG 26	A48-40B	3.2	230	to withstand high stresses	
GG 30	A48-50B	2.8	240	Machine parts and frames of special quality	$\begin{split} C &= 2.83.0, \text{Si} = 1.51.7, \\ Mn &= 0.81.8, \text{P} = 0.3, \\ \text{S} &= 0.12 \end{split}$
•	Lecture 2: Bas Mechanisms	ic Elemen	ts and		Dr. Parviz Kahhal 🛚 145

OF MACHINE TOOL COMPONENTS: STEELS

- The majority of machine tool components, such as spindles, guides, shafts, springs, keys, forks, and levers, are generally made of steels.
- Since the Young's modulus of various types of steels cannot vary by more than ±3%, the use of the alloy steels for machine tool components does not provide any advantages unless their application is dedicated by other requirements.
- Tables 2.10 and 2.11 show the different types of structural and alloy steels frequently used in machine tools.
- Structural steels are used when no special requirements are needed.
- Case hardening steels of carbon content <0.25%, phosphorous (P) or sulfur (S) should not exceed 0.40% are used when the surface hardness of the component should be very high while the core remains tough.

• Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal • 147

	Mechanical Prop					Hardening			
DIN 17100	AISI, SAE/ASTM	C (%)	σ _u (kg/mm²)	$\sigma_{ m e}$ (kg/mm ²)	δ_5 (%)	Temperature (°C)	Properties	Applications	
St 34	—	0.17	34-42	18	30	920	Case hardenable and weldable	Case hardened parts	
St 37	_	0.20	37-45	_	25	920	Low grade, low weldability T [*] or M [*]	General machine constructions	
St 42	_	0.25	42–50	23	25	880-900	Case hardenable, hard core, machinable, not weldable	Machine elements ar shafts withstanding variable loads	
St 50	A570Cr50	0.35	50-60	27	22	820-850	Not case hardenable, not weldable, may be hardened, machinable	Machine elements an shafts withstanding heavy loads, not hardened gears	
St 52	_	0.17	52–64	35	22	920	High strength, weldable	Welded steel construction in bridges and automotives	
St 60	_	0.45	60-70	30	17	800-820	Can be hardened and toughened	Same applications lil St 50 but for higher loads, keys, gears, worms	
St 70	_	0.60	70-85	35	12	780-800	Can be hardened and toughened	For parts in which wear resistance is recommended	
Note:	T, Thomas; M	, Marti	n.						

		AISI		Compositio	on (%)		Mechai	nical Prope		
DIN 17210	Quenching	SAE/ ASTM	с	Mn	Cr	Ni	$\sigma_{\rm u}$ (kg/mm)	$\sigma_{ m e}$ (kg/mm ²)	δ ₅ (%)	Applications
C 10	Water	1010	0.06-0.12	0.25-0.5	_	_	50	29	_	Typewriter parts
C 15		1015	0.12-0.18	0.25-0.5	_	_	55	35	_	Levers, bolts, sleeve
CK 10*		1010	0.06-0.12	0.25-0.5	_	_	50	30	20	Levers, bolts, pins o
CK 15*		1015	0.12-0.18	0.25-0.5	_		55-60	35	15	good surface finish
15Cr3		_	0.12-0.18	0.4–0.6	0.5-0.8	_	70–90	49	12	Spindles, cam shafts piston pins, bolts, measuring tools
16MnCr3	Oil	5115	0.14-0.19	1-1.3	0.8-1.1	_	85-110	60	20-10	Pinions, automotive shafts, machine shaft
15CrNi6		—	0.12-0.17	0.4–0.6	1.4–1.7	1.4–1.7	95-120	70–90	15-6	Highly stressed sma gears
20MnCr5		5120	0.17-0.22	1.1–1.4	1.0–1.3	_	110–145	75	12–7	Medium-size gears, automotive shafts, machine shafts
18CrNi8		_	0.15-0.22	0.4–0.6	1.8-2.1	1.8-2.1	120-145	90-110	14–7	Highly stressed gear shafts, spindles, differential gears
41Cr4	Су	5140	0.38-0.40	0.5-0.8	0.9-1.2	_	160-190	130-140	12-7	Cyanided gears

0	F MAC	HIN	Е ТО	OL (CON	1P(ONEN	TS:	STEE	LS	
TABLE 2.12											
Tempered S	teels According to	DIN 1710	0, AISI, SAE	ASTM							
			Mechanical Properties								
DIN 17100	AISI, SAE/ASTM	с	Si	Mn	Cr	Мо	Others	BHN	σ_{u} (kg/mm ²)	σ_{e} (kg/mm ²)	δ ₅ (%
C22	1020	0.18-0.25	0.15-0.36	0.3-0.6	_	_	_	155	50-60	30	22
C35	1035	0.32-0.40	0.15-0.36	0.4-0.7	_	_	_	172	60-72	37	18
C45	1045	0.42-0.50	0.15-0.36	0.5-0.8	_	_	_	206	65-80	40	16
C60	1060	0.57-0.65	0.15-0.36	0.5-0.8	_	_	_	243	75-90	40	14
CK22	1020-1023	0.18-0.25	0.15-0.36	0.3-0.6	_	_	_	155	50-60	30	22
CK35	1035	0.32-0.40	0.15-0.36	0.4-0.7	_	_	_	172	60-72	37	18
CK45	1045	0.42-0.50	0.15-0.36	0.5-0.8	_	_	_	206	65-80	49	16
CK60	1055	0.57-0.65	0.15-0.36	0.5-0.8	_		_	243	75-90	40	14
40Mn4	1039	0.36-0.44	0.25-0.50	0.8-1.1	_	_	_	217	80-95	55	14
30Mn5	1330	0.27-0.34	0.15-0.35	1.2-1.5		_	_	217	88-95	55	14
37MnSi5	_	0.38-0.41	1.1-1.4	1.1 - 1.4	_	_	_	217	90-105	56	12
42MnV7	_	0.38-0.45	0.15-0.35	1.6-1.9	_	_	0.07-0.12 V	217	100-120	80	11
34Cr4	_	0.30-0.37	0.15-0.55	0.5-0.8	0.9-1.2	_	_	217	90-105	65	12
41Cr4, 42Cr4	5140	0.38-0.44	0.15-0.55	0.5-0.8	0.9 - 1.2	_	_	217	90-105	65	12
25CrMo4	4130	0.22-0.29	0.15-0.55	0.5-0.8	0.9 - 1.2		_	217	80-95	55	14
34CrMo4	4135-4137	0.30-0.37	0.15-0.55	0.5-0.8	0.5-0.15	0.2	_	217	90-105	65	12
42CrMo4	4140-4142	0.38-0.45	0.15-0.55	0.5-0.8	0.9 - 1.2	7	_	217	100-120	80	11
50CrMo4	4150	0.46-0.54	0.15-0.55	0.5 - 0.8	0.9 - 1.2	0.	_	235	110-130	90	10
30CrMoV9	_	0.26-0.34	0.15-0.55	0.4-0.7	2.3-2.7		0.1-0.2 V	248	125-145	105	9
36CrNiMo4	9840	0.32-0.40	0.15-0.55	0.5 - 0.8	0.9 - 1.2		0.9-1.2 Ni	217	100-120	80	11
34CrNiMo6	4340	0.30-0.38	0.15-0.55	0.4 - 0.7	1.4-1.7		1.4-1.7 Ni	235	110-130	90	10
30CrNiMo8	—	0.26-0.34	0.15-0.55	0.3-0.6	1.8-2.1		1.8-2.1 Ni	248	125-145	105	9
27NiCrV4	_	0.24-0.30	0.15-0.55	1.0-1.3	0.6-0.9	_	0.07-0.12 V	217	80-95	55	14
36Cr6	_	0.32-0.40	0.15-0.55	0.3-0.6	1.4-1.7		_	217	100-105	65	12
42CrV6	_	0.38-0.46	0.15-0.55	0.5-0.8	1.4-1.7		0.07-0.12 V	217	100-120	80	11
50CrV4	6150	0.47 - 0.56	0.15-0.55	0.8 - 1.1	0.9 - 1.12		0.07-0.12 V	235	110-130	90	10

MATERIAL SELECTION AND HEAT TREATMENT

OF MACHINE TOOL COMPONENTS: STEELS

TABLE 2.13 Nitriding Steels

Nint			Composition (%)					ical Propert			
Not Specified in DIN	AISI, SAE/ASTM	с	Cr	Al	Mn	Others	$\sigma_{ m u}$ (kg/mm ²)	$\sigma_{ m e}^{}$ (kg/mm ²)	δ ₅ (%)	Applications	
27CrAl6	_	0.27	1.5	1.1	0.6	_	85-80	45	16	Valve stems	
34CrAl6	A355Cl.D	0.34	1.5	1.1	0.6	—	80–100	60	12	Shafts, measuring instruments	
32AlCrMo4	—	0.32	1.1	1.1	0.6	0.2 Mo	80–95	60	12	Steam machinery shafts	
32AlNi7	_	0.33	0.7	1.7	0.5	1.0 Ni	88-100	60	14	Piston rods, shafts	
31CrMoV9	—	0.31	2.3	_	0.6	0.15Mo/0.1Ni	90–115	75	12	Cam- and crankshaft	
30CrAlNi7	—	0.30	0.3	0.9	0.5	0.5 Ni	65-80	45	14	Spindles and shafts	
• Leci Med	ture 2: Basic Ele chanisms	ements	and						Dr. Po	arviz Kahhal • 153	

Mechanisms

MAINTENANCE OF MACHINE TOOLS: PREVENTIVE MAINTENANCE

- Preventative maintenance is mainly carried out to reduce wear and prevent disruption of the production program.
- Lubrication of all the moving parts that are subjected to sliding or rolling friction is essential.
- A regular planned preventive maintenance consists of minor and medium repairs as well as major overhaul.
- The features of a well-conceived preventive maintenance scheme include
- 1. adequate records covering the volume of work,
- 2. inspection frequency schedule,
- 3. identification of all items to be included in the maintenance program,
- 4. well-qualified personnel.
- Preventive maintenance of machine tools ensures reliability, safety, and the availability of the right machine at the right time.

 Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal • 159

REVIEW QUESTIONS

- 1. State the main requirements of a machine tool.
- 2. Give examples for open and closed machine tool structures.
- 3. Explain why closed box elements are best suited for machine tool structures.
- 4. Sketch the different types of ribbing systems used in machine tool frames.
- 5. Explain what is meant by light- and heavyweight construction in machine tools.
- 6. Sketch the different types of machine tool guideways.
- 7. Show how wear is compensated for in machine tool guideways.
- 8. Differentiate between cast and welded structures.

• Lecture 2: Basic Elements and Mechanisms

Dr. Parviz Kahhal • 163

REVIEW QUESTIONS
Distinguish among the kinematic, structural, and speed diagrams of gearboxes.
10. Show an example of externally pressurized and rolling friction auideways.
11. Show the different schemes of spindle mounting in machine tools.
12. What are the main applications of pick-off gears, feed gearboxes with a sliding gear, and Norton gearboxes?
13. Compare between toroidal and disk-type stepless speed mechanisms.
14. Give examples for speed-reversing mechanisms in machine tools.
15. Derive the relationship between the cutting and the reverse speeds of the quick-return mechanism used in the mechanical shaper.
16. State the main objectives behind machine tool testing.
 Compare between corrective and preventive maintenance of machine tools.
Lecture 2: Basic Elements and Dr. Parviz Kahhal 164 Dr. Parviz Kahhal 164