CELLULAR MANUFACTURING

Assoc. Prof. Dr. Muhamad Zameri b. Mat Saman

Introduction

2. Cell is a product centered grouping of machines and workers with all the resources to meet defined objectives
How to form a cells?
a. Cell formed around a whole process flow chart b. Cell formed around a convenient part of a process flow chart
c. Single product cells
d. Multi product cell - to make products sharing a substantially similar product route (group technology)
e. Dedicated customer cell
f. High volume/low variety cell
g. Low volume/high variety cell
h. Prototype cell

Introduction

Most common: flow concept - get material in, through and out in shortest possible time
Engineering elements required:
Product Equipment Workflow

Introduction

2. The characteristics of cells
3. Self contained (with all the resources needed to make the cells products)
4. Close proximity of equipment, simple material routing and handling
5. Centralised functions such as maintenance, manufacturing engineering and quality control carried out within the cell
6. Job flexibility, multi-skilling, team working, responsibility for quality, ownership of problems and their solutions
7. Customer - supplier links between cells
8. Continuous improvement ethos
9. Flexibility and responsiveness to customer needs through small batch, short lead-time capability

Defining Cells

5.) Machines, tasks, processes and products can be grouped together by a number of different methods
5.) Single Product - high volume and flow line
2). Product Flow Analysis (PFA)

- Technique which examines the existing product flow routes under a process layout organisation
- Looks for similarity of process route as a basis for machine group and product families
- King's Method

Defining Cells

5.) Product Flow Analysis (PFA)

- Example:

Product	Volume	Process Routing (Machine Sequence)
T	12000	A - B - C
U	9500	C - B - A
V	8000	E - D
W	6000	D - E
X	2400	A - B - C
Y	1000	C - A
Z	800	C - D - E

Defining Cells

2. Product Flow Analysis (PFA)

- Cells:

Cell 1

Defining Cells

2. Product Focused - formed around the product
5.) Customer focused - grouped to satisfy on individual customer eg. Rolls Royce turbine blade manufacturing cells
2.) Materials - product grouped around material properties will often have similar machining constraints and will benefit from manufacture in a cell containing similar products eg. Light alloy

Defining Cells

8.) Process Sequence Cells (PSC)

- Cells are constructed from all the machine required to perform stages of operations for all the products
- Each cell not dedicated to a product but rather to a stage in the sequence
- Enables high variety products

Defining Cells

Process Sequence Cells
 - Example:

Product	Operation Sequence (Machine)
P1	B , A D D
P2	A C , E D
P3	B C
P4	A E E B
P5	B C D E
P6	C , B
P7	B, A C C E

Defining Cells

Process Sequence Cells

- Analysis:

Product	Last but 3 operations	Last but 2 operations	Last but 1 operations	Last operation
P1		B	A	D
P2	A	C	E	D
P3			B	C
P4		A	E	B
P5	B	C	D	E
P6			C	B
P7	B	A	C	E

Defining Cells

. Process Sequence Cells - Cells:

Machine???

Techniques

King's Method 2. Process Sequence cells

Cluster Analysis (King's Method)

2. Production flow analysis (PFA) chart .) Classification of objects based on their possession
3. Based on rank order analysis developed by J. R. King (King's Method)
4. King's Method designed to generate diagonally based groupings of the PFA chart entries

King's Method

Matrix which indicates which machines operate on which parts

King's Method

Binary analysis ($64,32,16,8,4,2,1$) for rows (machine)

PARTS

King's Method

5. Column (parts)

PARTS

	A	B	C	D	E	F
LATHE	1	0	1	1	1	0
A JIG	1	0	1	0	1	0
C MILL	0	1	0	1	1	1
H LASER	0	1	0	1	0	1
N GRIND	0	1	0	1	0	0
E WELD	0	0	1	0	1	0
S EDM	0	0	0	1	0	0
Decimal	96	28	98	93	114	24
Rank	3	5	2	4	1	6

King's Method

, R) Result

King's Method

Cell 1: Parts: E, C, A Process: Jig, Weld
Cell 2: Parts: D, B, F
Process: Laser, Grind, EDM
Exceptional Element: machine needed in both cells (Lathe, Milling machine)

King's Method

King's Method

2. Practical steps for coping with exceptional element are:
a. Duplicate machines
b. Re-plan the operation to another machine in the cell
c. Sub-contract the operation d. Transfer to another cell with proper scheduling

Class Exercise

2. The following route cards describe how parts A, B, C, D, E, F and G are manufactured. By using the cluster analysis program, show how these can be assigned to manufacturing cells

Class Exercise

Operation Part A	Machine	Description
OP 10	Grind	Grind side faces
OP 20	V. Mill	Mill top face
OP 30	H/T	Harden
OP 10	Jig Bore	Bore center hole
OP 20	Drill	Drill hole
OP 30	H. Mill	Mill side faces
OP 40	Inspect	Final inspection
Part C		
OP 10	Grind	Grind top faces
OP 20	V. Mill	Mill side face
OP 30	H/T	Harden
Lean Manutacturing		Dr Zameri

Class Exercise

Operation OR	Machine	Description
OP 10	Drill	Drill holes
OP 20	Jig Bore	Bore center holes
OP 30	H. Mill	Mill top faces
OP 40	Inspect	Final Inspection
Part E		
OP 10	Grind	Grind top face
OP 20	Drill	Drill centre hole
OP 30	H/T	Harden and temper
OP 40	Inspect	Final inspection
Lean Manuracuring		Drzamei

Class Exercise

Operation Part F	Machine	Description
OP 10	Grind	Drill holes
OP 20	Jig Bore	Bore center holes
OP 30	Drill	Drill side holes
OP 40	H. Mill	Mill top face
OP 50	Inspect	Final Inspection
Part G		
OP 10	Grind	Grind top face
OP 20	V. Mill	Mill side faces
OP 30	Jig Bore	Bore centre hole
OP 40	H/T	Harden and temper
Lean Manutacturing		Dr Zameri

Process Sequence Cells

Case Study

Working condition: 1 shift, 7.5 hrs/day, 5 days/week, 48 weeks/year Annual demand for product 1, 2 and 3

Product	1	2	3
Monthly Demand	528	384	576

5.) Machine available

Machine	Number Available
Drill	2
Grind	6
Mill	4
	6

Process Sequence Cells

2. Production sequence (time in minute per piece)
2) Product 1

Raw material store

Mill
Grind
Drill
Grind
EDM
Heat Treatment (off line)
Grind
Plating Treatment
Final Inspection
22.7
13.9
3.6
2.3
11.8 (6hrs change over)

2 hrs/batch (20mins-load and 20mins-unload, batch size 30) 5.9

6 hrs/batch (subcontractor, batch size 360)
27.1

Process Sequence Cells

2. Product 2

Raw material store Mill 18.9

Mill
4.8

Grind
17.2

Drill 2.1
Drill 3.9
EDM
Heat Treatment
(off line)
Grind
Grind
Plating Treatment
Final Inspection
5.7 (6hrs change over)
$2 \mathrm{hrs} / \mathrm{batch}$ (20mins-load and
20 mins -unload, batch size 30)
4.8
5.2

6 hrs/batch (subcontractor, batch size 360)
$\begin{array}{r}360 \text { - } \\ \hline\end{array}$

Process Sequence Cells

Product 3	
Raw material store	
Grind	3.4
Mill	23.8
Grind	18
Drill	1.5
Drill	1.1
EDM	12 (6hrs change over)
EDM	6 (6hrs change over)
Grind	5.6
Heat Treatment	2 hrs/batch (20mins-load and
(off line)	20 mins-unload, batch size 30)
Grind	5.8
Plating Treatment	6 hrs/batch (subcontractor, batch size
	$360)$
Final Inspection	27.1
Lean Manulacturing	

Process Sequence Cells

Solution

Monthly output for each product

Product	1	2	3
Monthly Demand	528	384	576

2.) Time available $=7.5 \times 5 \times 4$
$=150$ hours/month/machine
2. Heat treatment and plating treatment - not consider

Process Sequence Cells

Sequence for each product

Product	Operation										
	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10	
1				M	G	D	G	E	G	F	
2		M	M	G	D	D	E	G	G	F	
3	G	M	G	D	D	E	E	G	G	F	

Process Sequence Cells

. Time required per machine for each product per month (sample calculation)
Product 1 (Milling)
Monthly output
$=528$ units
Operation time
$=22.7$ minutes
Total time
$=528 \times 22.7 / 60$
= 200 hours

Process Sequence Cells

Number of machine required (Product 1, Milling process)
= Time required/Time available
$=200 / 150=1.33=2$ machines
2) Utilisation (Product 1, Milling process)
= Time required / (No. of machine x Time available)
$=200 /(2 \times 150)=67 \%$

Process Sequence Cells

Detail results

Product	Operation									
	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10
1				$\begin{gathered} M \\ 200 \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 122 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 32 \end{gathered}$	$\begin{aligned} & \mathrm{G} \\ & 20 \end{aligned}$	$\begin{gathered} E \\ 104 \end{gathered}$	$\begin{gathered} G \\ 52 \end{gathered}$	$\begin{gathered} F \\ 238 \end{gathered}$
2		$\begin{gathered} \mathrm{M} \\ 121 \end{gathered}$	$\begin{aligned} & \mathrm{M} \\ & 31 \end{aligned}$	$\begin{gathered} \mathrm{G} \\ 110 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 25 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 36 \end{gathered}$	$\begin{aligned} & \mathrm{G} \\ & 31 \end{aligned}$	$\begin{gathered} \mathrm{G} \\ 33 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 173 \end{gathered}$
3	$\begin{gathered} \mathrm{G} \\ 33 \end{gathered}$	$\begin{gathered} \hline M \\ 228 \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 173 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ 115 \end{gathered}$	$\begin{gathered} E \\ 58 \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 54 \end{gathered}$	$\begin{gathered} \mathrm{G} \\ 56 \end{gathered}$	$\begin{gathered} F \\ 260 \end{gathered}$
Total time Per machine	G 33	M 349	${ }_{\text {M }}^{\text {G } 173}$	$\begin{aligned} & \mathrm{M} 200 \\ & \text { G } 110 \\ & \text { D } 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { D } 24 \\ & G 122 \end{aligned}$	$\begin{gathered} \text { D } 57 \\ \text { E } 115 \end{gathered}$	G $\begin{gathered}\text { G } 20 \\ \text { 74 }\end{gathered}$	E ${ }_{\text {E }}^{\text {G }} 104$	G 141	F 672
No. of m/c req	G 1	м 3	M 11 G 2	$\begin{aligned} & \text { M2 } \\ & Q_{1} \\ & D_{1} \end{aligned}$	D 11 G1	D 11 E1	G 1 E1	E1 ${ }_{\text {G } 1}$	G 1	F5
Utilise (\%)	G 22	M 78	M 20 G 58	$\begin{aligned} & \text { M } 67 \\ & \text { G73 } \\ & \text { D } 10 \end{aligned}$	D 16	D 38 E77	¢ ${ }_{\text {G } 14}^{\text {E } 49}$	E69 ${ }_{\text {G }}^{6}$	G 94	F 90

Process Sequence Cells

2. From results, machine required a. Milling $=6$ machines
b. Grinding $=7$ machines
c. Drilling $=3$ machines
d. EDM $=3$ machines
,): Machine available
a. Milling $=4$ machines
b. Grinding $=6$ machines
c. Drilling $=2$ machines
d. EDM $=6$ machines

Process Sequence Cells

Cells determination

Product	Operation									
	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10
1			$\begin{aligned} & \mathrm{M} \\ & \mathrm{G} \end{aligned}$		D			G	G	F
2			$\begin{aligned} & \hline M \\ & M \\ & G \end{aligned}$		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$		E		$\begin{aligned} & \mathrm{G} \\ & \mathrm{G} \end{aligned}$	F
3			$\begin{aligned} & \mathrm{G} \\ & \mathrm{M} \\ & \mathrm{G} \end{aligned}$		$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$		$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	G	G	F
Total time Per machine			M 5880 G 438		D 95		E 209	E 104	G 172	F 672
No. of m/c req			M 4 G 3		D 1		E2	E1	G 2	F5
Utilise (\%)			M 97 G 97		D 64		E70	E69 ${ }_{\text {G } 46}$	G 57	F 90
Cell			1		2		3	4	5	6

Process Sequence Cells

5.) Number of machines required a. Milling $=4$ machines
b. Grinding $=6$ machines
c. Drilling $=1$ machines
d. EDM $=3$ machines
e. Inspection = 5 operators

Nagare Cells

, One piece flow production system , U shape layout

