CELLULAR MANUFACTURING

Assoc. Prof. Dr. Muhamad Zameri b. Mat Saman

Dr Zameri

I

Introduction

- Cell is a product centered grouping of machines and workers with all the resources to meet defined objectives
- How to form a cells?
 - a. Cell formed around a whole process flow chart
 - b. Cell formed around a convenient part of a process flow chart
 - c. Single product cells
 - d. Multi product cell to make products sharing a substantially similar product route (group technology)
 - e. Dedicated customer cell
 - f. High volume/low variety cell
 - g. Low volume/high variety cell
 - h. Prototype cell

Introduction

Most common: flow concept – get material in, through and out in shortest possible time

Engineering elements required: Product Equipment Workflow

Introduction

- The characteristics of cells
- 1. Self contained (with all the resources needed to make the cells products)
- 2. Close proximity of equipment, simple material routing and handling
- 3. Centralised functions such as maintenance, manufacturing engineering and quality control carried out within the cell
- 4. Job flexibility, multi-skilling, team working, responsibility for quality, ownership of problems and their solutions
- 5. Customer supplier links between cells
- 6. Continuous improvement ethos
- 7. Flexibility and responsiveness to customer needs through small batch, short lead-time capability

Machines, tasks, processes and products can be grouped together by a number of different methods

- Single Product high volume and flow lineProduct Flow Analysis (PFA)
 - Technique which examines the existing product flow routes under a process layout organisation
 - Looks for similarity of process route as a basis for machine group and product families
 - King's Method

Lean Manufacturing

Product Flow Analysis (PFA)

- Example:

Product	Volume	Process Routing (Machine Sequence)
Т	12000	A – B – C
U	9500	C – B – A
V	8000	E – D
W	6000	D – E
Х	2400	A – B – C
Y	1000	C – A
Z	800	C – D – E

Product Flow Analysis (PFA)

Exceptional machine

- Product Focused formed around the product
- Customer focused grouped to satisfy on individual customer eg. Rolls Royce turbine blade manufacturing cells
- Materials product grouped around material properties will often have similar machining constraints and will benefit from manufacture in a cell containing similar products eg. Light alloy

Process Sequence Cells (PSC)

- Cells are constructed from all the machine required to perform stages of operations for all the products
- Each cell not dedicated to a product but rather to a stage in the sequence
- Enables high variety products

Process Sequence Cells

- Example:

Product	Operation Sequence (Machine)
P1	B, A, D
P2	A, C, E, D
P3	B, C
P4	A, E, B
P5	B, C, D, E
P6	С, В
P7	B, A, C, E

10

Lean Manufacturing

Dr Zameri

Process Sequence Cells

- Analysis:

Product	Last but 3 operations	Last but 2 operations	Last but 1 operations	Last operation
P1		В	А	D
P2	А	С	E	D
P3			В	С
P4		А	Е	В
P5	В	С	D	E
P6			С	В
P7	В	А	С	E

Dr Zameri

Process Sequence Cells

- Cells:

Machine???

Techniques

King's MethodProcess Sequence cells

Cluster Analysis (King's Method)

- Production flow analysis (PFA) chart
- Classification of objects based on their possession
- Based on rank order analysis developed by J. R. King (King's Method)
- King's Method designed to generate diagonally based groupings of the PFA chart entries

Matrix which indicates which machines operate on which parts

Lean Manufacturing

Dr Zameri

Binary analysis (64,32,16,8,4,2,1) for rows (machine)

Column (parts)

17

Dr Zameri

Result

 Cell 1: Parts: E, C, A Process: Jig, Weld
 Cell 2: Parts: D, B, F Process: Laser, Grind, EDM
 Exceptional Element: machine needed in both cells (Lathe, Milling machine)

- Practical steps for coping with exceptional element are:
- a. Duplicate machines
- Re-plan the operation to another machine in the cell
- c. Sub-contract the operation
- d. Transfer to another cell with proper scheduling

The following route cards describe how parts A, B, C, D, E, F and G are manufactured. By using the cluster analysis program, show how these can be assigned to manufacturing cells

Operation Part A	Machine	Description
OP 10	Grind	Grind side faces
OP 20	V. Mill	Mill top face
OP 30	H/T	Harden
🔊 Part B		
OP 10	Jig Bore	Bore center hole
OP 20	Drill	Drill hole
OP 30	H. Mill	Mill side faces
OP 40	Inspect	Final inspection
Dart C		
OP 10	Grind	Grind top faces
OP 20	V. Mill	Mill side face
OP 30	H/T	Harden

Operation Part D	Machine	Description
OP 10	Drill	Drill holes
OP 20	Jig Bore	Bore center holes
OP 30	H. Mill	Mill top faces
OP 40	Inspect	Final Inspection
Part E		
OP 10	Grind	Grind top face
OP 20	Drill	Drill centre hole
OP 30	H/T	Harden and tempe
OP 40	Inspect	Final inspection

Operation Ø Part F	Machine	Description
OP 10	Grind	Drill holes
OP 20	Jig Bore	Bore center holes
OP 30	Drill	Drill side holes
OP 40	H. Mill	Mill top face
OP 50	Inspect	Final Inspection
🔊 Part G		
OP 10	Grind	Grind top face
OP 20	V. Mill	Mill side faces
OP 30	Jig Bore	Bore centre hole
OP 40	H/T	Harden and temper

Case Study

Working condition: 1 shift, 7.5 hrs/day, 5 days/week, 48 weeks/year

Annual demand for product 1, 2 and 3

Product	1	2	3	
Monthly Demand	528	384	576	

Machine available

	Machine	Number Available
	Drill	2
	Grind	6
	Mill	4
ean Manufactu	EDM	6

Production sequence (time in minute per piece)

Product 1
Raw material store

Mill	22.7
Grind	13.9
Drill	3.6
Grind	2.3
EDM	11.8 (6hrs change over)
Heat Treatment	2 hrs/batch (20mins-load and
(off line)	20mins-unload, batch size 30)
Grind	5.9
Plating Treatment	6 hrs/batch (subcontractor, bat
	360)
The second se	

27.1

ctor, batch size

Final Inspection

18.9

Product 2 Raw material store Mill Mill Grind Drill

Drill Drill EDM Heat Treatment (off line) Grind Grind Plating Treatment

Final Inspection

4.8
17.2
2.1
3.9
5.7 (6hrs change over)
2 hrs/batch (20mins-load and 20mins-unload, batch size 30)
4.8
5.2
6 hrs/batch (subcontractor, batch size 360)
27.1

Product 3 Raw material store Grind 3.4 Mill 23.8 Grind 18 Drill 1.5 Drill 1.1 **EDM** EDM Grind 5.6 Heat Treatment (off line) Grind 5.8 Plating Treatment

Final Inspection

Lean Manufacturing

18
1.5
1.1
12 (6hrs change over)
6 (6hrs change over)
5.6
2 hrs/batch (20mins-load and 20mins-unload, batch size 30)
5.8
6 hrs/batch (subcontractor, batch size 360)
27.1

Solution

Monthly output for each product

Product	1	2	3	
Monthly Demand	528	384	576	

Time available = $7.5 \times 5 \times 4$

= 150 hours/month/machine

Heat treatment and plating treatment – not consider

Sequence for each product

Product	Operation									
	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10
1				М	G	D	G	Е	G	F
2		М	М	G	D	D	Е	G	G	F
3	G	М	G	D	D	Е	Е	G	G	F

Time required per machine for each product per month (sample calculation) Product 1 (Milling) Monthly output = 528 units **Operation time** = 22.7 minutes **Total time** $= 528 \times 22.7/60$

= 200 hours

Number of machine required (Product 1, Milling process)

= Time required/Time available = 200/150 = 1.33 = 2 machines

Utilisation (Product 1, Milling process) = Time required / (No. of machine x Time available) = 200/(2x150) = 67%

Detail results

Due du st	Operation									
Product	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10
1				М	G	D	G	Е	G	F
1				200	122	32	20	104	52	238
0		Μ	Μ	G	D	D	Е	G	G	F
2		121	31	110	13	25	36	31	33	173
2	G	Μ	G	D	D	Е	Е	G	G	F
3	33	228	173	14	11	115	58	54	56	260
Total time Per machine	G 33	M 349	M 31 G 173	M 200 G 110 D 14	D 24 G 122	D 57 E 115	G 20 E 74	E 104 G 85	G 141	F 672
No. of m/c req	G 1	M 3	M 1 G 2	M 2 G 1 D 1	D 1 G 1	D 1 E 1	G 1 E 1	E 1 G 1	G 1	F 5
Utilise (%)	G 22	M 78	M 20 G 58	M 67 G 73 D 10	D 16 G 82	D 38 E 77	G 14 E 49	E 69 G 56	G 94	F 90
Lean Manufacturing Dr Zameri 34										

_ean manulactur

Dr Zameri

From results, machine required

- a. Millingb. Grindingc. Drillingd. EDM
- = 6 machines
- b. Grinding = 7 machines
 - = 3 machines
 - = 3 machines

Machine available

a. Millingb. Grindingc. Drillingd. EDM

- = 4 machines
- = 6 machines
- = 2 machines
- = 6 machines

Cells determination

Product	Operation									
	OP1	OP2	OP3	OP4	OP5	OP6	OP7	OP8	OP9	OP10
1			M G		D			G E	G	F
2			⊻∑G		D D		Е		G G	F
3			G ⊠ G		D D		E E	G	G	F
Total time Per machine			M 580 G 438		D 95		E 209	E 104 G 74	G 172	F 672
No. of m/c req			M 4 G 3		D 1		E 2	E 1 G 1	G 2	F 5
Utilise (%)			M 97 G 97		D 64		E 70	E 69 G 46	G 57	F 90
Cell			1		2		3	4	5	6

Number of machines required

- a. Milling = 4 machines
- b. Grinding = 6 machines
- c. Drilling = 1 machines
- d. EDM = 3 machines
- e. Inspection = 5 operators

Nagare Cells

One piece flow production systemU shape layout