

$$
\begin{aligned}
& \text { H-y } \rightarrow+\infty \\
& 3, j 4 m=3 i \pi y
\end{aligned}
$$

$$
\begin{aligned}
& \text { 二小心 }
\end{aligned}
$$

$$
\begin{aligned}
& d^{2}+5-2=0 \\
& \text { Le: } 5 \\
& \text { the to } \\
& \text { Y) } \\
& \text { d. H2… } 4
\end{aligned}
$$

فهر ست عناوين شيهم عمو می

19 ــنظريدهاى اسيد و باز
I IV تعادل يونى، بخشى I IV
II ا ـ تعادل يونى، بخشـ، 19 19 ـ ـ مبانى ترموديناميك شيهيميايى . Yo

$$
\begin{aligned}
& \text { ـ ش } \\
& \text { YA ـ Y ـ شيمى آلى } \\
& \text { - }
\end{aligned}
$$

1- مقدهـهـ

¢ ـ ـ ساختار الكترونى اتمها
V

ا 1
11
| 1 ـ محاكلولها

10 ـ تعادل شيميايی

فهر ست محالب

$$
\begin{aligned}
& \text { r_r } \\
& \text { * } \\
& \text { O_r }
\end{aligned}
$$

$$
\begin{aligned}
& \text { I_Y ir }
\end{aligned}
$$

$$
\begin{aligned}
& \text { O_F is } \\
& \text { | } 9 \text { - F }
\end{aligned}
$$

$$
\begin{aligned}
& 19
\end{aligned}
$$

ت ا-1
r-1
r-1

جكيدة مطالب
مفاهيمكلبدى
مسسائل

نظريةُ اتمى دالتون
r-r
بُ بروتون
F_r

S Y Y
علد اتمى و جلدول تناوبى V-Y
A-r
Q
حكيدة عطالب
مفاهيم كليدى
مسائل

مولكولهاو يونها
فرمول تجربى \quad r-r

$$
p \pi-d \pi \text { بیبوند } \quad 9
$$

or Vr

Lojor ． 10
r－1。
r－10

V－10
A＿lo

$$
\text { هـ ـ ا } 11 \text { سرعتهاي عولكولمى }
$$

ها مابع شدن كاز ها
چجكده: مططالب
مفاهنمر كليلدى
مسائل

I I I I 11
Y_ll بيوند هيلدروزّنى
r－ 11
F－11
فـتـار بخار
9－11
V＿11
A－ 11

11 10 － 11

X X 11
1Y－ 11
10ـ11 10 بلورهأى يونى

AV
Y- Y اندازة اتمها
انرزیى يونش
r_V الكترون خواهى
Y-V Yبيوند يونى
O_Y انرئى شبكه
Y_V انواع يونها

خ．Y

نامُخذارى تركيبات يونى
مساهكيدهُ مطالبى
A• بيوند كووالانسى

$$
\begin{aligned}
& \text { r-9 } \\
& \text { (- - } 9 \\
& \text { P-9 } \\
& \text { O- } 9
\end{aligned}
$$

ryy		
HYY		
YYQ	(I- If	l/f
Ho	غ غ Y IF	1A9
rry	\%_1F	INV
TrY		1×1
rro	(O_ \|	119
rre	A. If	19.
rra		14.
Y41		19\%
YY\%		
THF	\%	195
r40	مفاهيمكليدى	191
	مسائل	194
		194
rfa	chanmi Joks . 10	Yoo
Y*4	10 10 ـ ا 10	Y01
Y01		YO1
YOF	K_{p} ¢ ${ }_{\text {H }}$ Y-10 10	
ros	F-10 اص- 10	rod
ron	\%	roos
ros		Tor
ron		Yoq
		Yir
T9\%		Yik
rve		Y10
ras		ris
\bigcirc ¢	g'	HA
+91	فا	r19
		Heor
		ryo

يادواشت متر.

غيرشيمبا يى بيان شلده است.

 ويزّاى شده است.

 تقسيم شدداند.

مسائل و ارجاع در كارهأى بعدى مفيد است.

 مشخص شدهاند.

 مسائل فرد در هيرست آخر كتاب آمده است.

 انززىى بيرندهاست. جارلز مورتيمر

003040

 فرورانى يانتـنـد:
 جهار عنعر (خاك، باد، آتش، و آب) با نسبتـهاي هـتفاوت تشكـيل

1. Leucippus
2. Democritus
3. Plato
4. Transmutation
5. Aristotle

 تغييرات شُـيميايي است.

ـ مى توان تقسيم كرد:

1 ـ ـدورة هنرهاى تجربى (از روزكار باستان تان سا سال

أتوان لاوازية (IVFT- IVAF)

د

 19 ا

草
和
2. Alchemy
4. miksit (elcui)
6. latrochemistry
8. The Sceptical Chymist 10. Georg Ernst Stahl

 آنها را به وجود آَورد.)

> نمرنها تشقطير، تبلور، و تصعيل) هستند.

[^0]

 ب - شـيمى معلدنى. شيمى آـمام عـنا

 استخرإ هستند.

 go "L. 2 تبديل هاى شيميايى،

 ليرو S

1. Calcination
2. Antone Lavoisier

2. Calx

5. Inertia
براساس نظريه فلوزيستون، گخين بود
فلوزيستون (خارج شَمله با هو!) + خحاكستر

 در هوا ارا تكليبى مىناميدنـن.

نالوزيستون (خارج ثـبـه با هو ا) + كالكـس

بهدست أَورد:

كا كاز كربن مونوكسيل + فلز
 فلوزَيستون از دست رفته در اثر تكليس را جايكُزين كثند:
فلز

 شيميايى بهر

 به دست مى آمد و در آن صر درت، فراوانترين

كل جهان را تشكيل مىديدهد.

\author{

1. Ether
 3. Chemical Symbol
 5. Stickstoff
}
2. Quintessence
3. Azote
4. Wolfram

 .

 اكنون
 (V - TV

 اغلب نمادها به نام انگلينى عنا

 r- ا 10

s. 1

1. Law of Definite proportions
2. Joseph Proust
3. Mixture
4. Homogeneous mixture
5. Pure Substance
6. Heterogeneus mixture
7. solution
8. phase

Le Système International d' Unitès SI . q

$$
\begin{aligned}
& \text { طلِّع زمبن در انق ماه. عكـس از سفبنئ مهنورد آبولو ها هـ هيدرورئن، فراوانترين }
\end{aligned}
$$

 كانهدايشان انست.

 , شـاخته شده است، و تعداد تركيبات آلى سنتز شـده يا استخرامج شُده از از
 عنامبر تشكيل دهندهُ آنها تفاوت تدارد.

نام واحد اصلى به دست آمده است:
$1 \mathrm{~km}=1 \ldots 0 \mathrm{~m}$
(1-i)

$$
\begin{equation*}
1 \mathrm{~cm}=0,0 \backslash \mathrm{~lm} \tag{r-1}
\end{equation*}
$$

 ST براى حجم كه متر هكعبـ

 :
 () (

$$
\begin{equation*}
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{4} \tag{r-1}
\end{equation*}
$$

1. Sévres

و تا سه رقِم با بعنىي خْواهد بوّد.

 نيست. هقدار تعيين شده:

ماست
 ;

 برابر با

$$
r \mathrm{~cm}=0,0 r \mathrm{~m}
$$

براى مشخصى كردن هحمل مميز اضافه شلدهاند.

[^1]

- 0	shi	12, 4
$1,000,000,009,000 \times 10^{1 Y}$	T-	tera - $\quad-1$,
$1,000,000,000 \times 10^{9}$	G-	giga - - اگ\%
$1,000,00 \times 10^{9}$	M -	mega - -
$1000 x \leqslant 10^{r}$	k-	kilo - - كيبلو
$100 \times 10{ }^{1}$	h-	hecto - هكتو
$10 x$ 10	da-	deka - - 52
$0,1 \times 10^{-1}$	d-	deci - -
$0 \cdot 01 \times 10^{-r}$	c-	centi - -
$0,001 \times 10^{-r}$	m-	milli -
- $, 0000,001 \times 6.10^{-9}$	μ	micro - -
- , 0000,000,001 \times L 10^{-4}	n-	nano - -
$0,000,000,000,001 \times L 0^{-1 r}$	p-	pico - -
- $2000,000,000,000,001 \times 10^{-10}$	f-	femto - jisi
$0,000,000,000,000,000,001 \times!10^{-1 /}$	a-	atto - آتو

 SI
ضرورت دارد.

1 - 1

 مى دهند. ارقام مربرط بـ يك اندازمن

 با

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 和. } \\
& \text { 0. } \\
& \text { 和 }
\end{aligned}
$$

دليل اين ووش اختبارى اينز است كه بـه طـور مـيانگين، مـقادير الفزوده شده و معادير حذف شـده برابر شبوند．

 عمل جهع انـر

$$
\begin{gathered}
191,0 \mathrm{H} \\
0,9 \\
\frac{r r, 40 \mathrm{H}}{199,0 \mathrm{AHF}}
\end{gathered}
$$

 مميز دارد．

 عمل ضرب زير

$124,0 \% \times 0,{ }^{44}=r 9, * 94 *$

 اتصال به باير

$$
\begin{aligned}
& \text { (} 9,9,0 \times 10^{9} \\
& \text { (يكى رقم با باes) } \times \times 10^{r}
\end{aligned}
$$

$$
\begin{aligned}
& \text {. } \\
& \text { 楊 } \\
& \text {. }
\end{aligned}
$$

 كتاب بده كار میرود（به ويئه براي ثبت دما ما

$$
\begin{align*}
& \text { با جنّل اينج است را به صورت زير حل محكنيم: } \tag{بادورقمبامعنى}
\end{align*}
$$

داده است.

 مى خواهيم

$$
\begin{equation*}
r \Delta \psi_{\mathrm{cm}}=1,00 \text { in } \tag{f-1}
\end{equation*}
$$

اكر دو طرف اين تساوى را بر in in 1 اتقسيم كنيم، خواهيم داثشت

$$
\begin{equation*}
\frac{r, \Delta F \mathrm{~cm}}{1,00 \mathrm{in}}=1 \tag{0-1}
\end{equation*}
$$

 كسر برابرند. مسئله هورد نظر را مى توان به صررت زير بياذ كرد:

$$
\mathrm{scm}=0, \ldots \text { in }
$$

با ضرب كردن در ضريب تبديل بـه دست آمده مى توان مسئله را حل كرد:

$$
? \mathrm{~cm}=0,0, \operatorname{in}\left(\frac{r, \Delta r \mathrm{~cm}}{1,00 \text { in }}\right)=1 r, \mathrm{Vcm}
$$

جرن ضريب تبديل برابر \mid است، اين عمل تغييرى در مقدار كميت داده

 تبديل ديگرى نيز مى تو ان از رابطله بـ دست آورد.

$$
r, \Delta F \mathrm{~cm}=1, \ldots \mathrm{in}
$$

$$
\begin{equation*}
1=\frac{1,00 \mathrm{~m}}{r, 0 \gamma \mathrm{~cm}} \tag{v-1}
\end{equation*}
$$

 تبديل سانتى متر بهابنج به كار مى دود. براي همالـ،
 زير را براى اينز آليازٌ مس - نيكل به دست آَورد:

$$
\begin{align*}
& 1.0 \rho \circ \mathrm{~g} \text { gik } \tag{11-1}\\
& 10.00 \mathrm{~g} \text { g } \tag{1T-1}\\
& \text { VO, } \circ \mathrm{g} \mathrm{~g}_{\mathrm{m}} \approx \mathrm{O}=\mathrm{O} \cdot \mathrm{~g} \mathrm{Ni} \tag{1T-1}
\end{align*}
$$

r-

 هثال ا ـ الابـب دست آين؟

ح
براى ييدا كردن هـقدار تبكل لازم، بايد عبازت
 صورت) رابهـ

بثال
نتر: استرلينگ، آليازیى شامل از ز

ح

1. Captain Nemo

جلدول 1-0 رابطة بين برخي واحدهاى انگليسى و مترى
طول
الينج

م
اكرارت (0ات آتربكا) =

جرم
ا بوند

ابتدا فرسنـگ را به متر تبديل میكتيم. اين تبديل با استفاده زاز دو ضريب حاصل از دادههاى مسئله صورت میگيرد:
 $=1,11 \times 1 .{ }^{\wedge} \mathrm{m}$

$8 \mathrm{Mm}=1,11 \times 10^{\circ}$ 任 $\left(\frac{1 \mathrm{Mm}}{10^{5} 9 \mathrm{~m}}\right)=1,11 \times 10^{\top} \mathrm{Mm}=111 \mathrm{Mm}^{*}$
 زمين تقريباً

.

 مى تواذ به دست آبردر.
 واحد جوم از ألّاز رُ را براى استخراج ضرايب

ساعت تبديل كنمب. ضريب مورد نياز ما از:

$$
g \cdot \mathrm{~min}=1 \mathrm{hr}
$$

 زير مل خراهد شلد.

 حجم به كار رفته در اينجا، يعنى سانتى متر مكيب (

 كرم در ميلمليتر (g/mL) است. روابط زير در مورد ليتر، طبنـ، تعريفـ، دقين هستند:

$$
\left\{\begin{array}{l}
1 L=1 \ldots \rho \mathrm{~cm}^{r} \\
1 L=100 \% \mathrm{~mL}
\end{array}\right.
$$

در نتيجه،

$$
\mathrm{mL}=\mathrm{cm}^{-1}(\underset{H}{ }
$$

g/mi $\mathrm{g} / \mathrm{cm}^{\top}$ "
 *ى

مثال 1

 فرض كنيد كي وزن ت-ا

[^2]
2. Eureka, Eureka

بددست آورد. جون نقره استرلينگ شامل هر هو \% جرمى نقره است،
100.0kg
= r,rץkg استرلبنـق

ساعت عبارتست از $0 . \mathrm{km} / 7$ hr صورت و مخرج اين نسبت هم ارزند:

$$
\begin{equation*}
\theta \cdot \mathrm{km} \approx \mathrm{hr} \tag{1F-1}
\end{equation*}
$$

در نتيجه، اين نسبتها را میىترانٌ به عنوان ضريب تبديل ـ به صورت
 . بـه كار گرفت - ($\mathrm{l} \mathrm{hr} / \Delta \cdot \mathrm{km}$)

 دلخواه در آيد.

F-1 F مثال
 جقدر است؟

$$
\frac{\left.\frac{9 \mathrm{~km}}{1 \mathrm{hr}}=\left(\frac{19 \mathrm{~km}}{1 \mathrm{~m}_{\mathrm{min}}}\right), ~\right)}{}
$$

توجه كنيدكه واحلدهاى موجود در مخرج اين ضريب را بايد از دقيتهه به

مثال 1-9
جرم زمين جاگالى ميانگين زمين را برحسب گرم ير سانتى مترمكعب محاسب، كنيد.
 حل میكنبه:

$$
\frac{\rho g}{1 \mathrm{~cm}^{r}}=\left(\frac{0,9 v 9 \times 10^{r \mid} \mathrm{kg}^{1,0}}{1, \Delta r \times 10^{K 1} \mathrm{~m}^{r}}\right)
$$

 برقرار كنيم. با حذن توان سوم هر دو طرف معادله، داريم.

$$
100 \mathrm{~cm}=1 \mathrm{~m}
$$

در نتيجه،

$$
\begin{gathered}
\left.10^{r} \mathrm{~cm}\right)^{r}=(1 \mathrm{~m})^{r} \\
10^{〔} \mathrm{~cm}^{r}=1 \mathrm{~m}^{r}
\end{gathered}
$$

 تبديل

$$
1 .{ }^{\circ} \mathrm{g}=1 \mathrm{~kg}
$$

(اللف) چِحالى تاج رابا استفاده از معادلئ زير به دست مى آوريم.

$$
\begin{align*}
\sqrt{N E_{\pi}} & =\frac{\rho \pi}{\Gamma+\infty} \tag{10-1}\\
& =\frac{1 r r 0,0 \mathrm{~g}}{1 r 4, \cdot \mathrm{~cm}^{r}} \\
& =10,99 \mathrm{~g} \mathrm{~cm}^{r}
\end{align*}
$$

 شـده بود.
 بهدست آوريد. اكر مقدار مورد نظر يكى نسبت باشدل:

 (براى مثال، زمان / ناصله) و قابل استخراج از دادهـهـاى مسـئله را بنويسيد.

 حذذ خوراهند شد.
 رابا واحدهاى خواستهشده به دست وَرْريد.

روش ضريب تبديل در حل مستمُله
اكگر مقدار مورد نظر يكى نسبت نباشلد:

مسئله داده شده و حل مسئله بر آن استوار است است را بنويسيد.
r - r
 داده شده در مسينله يا الز تعريف يكى واحد به دست آوردي

 صررت ضريب تبديل بيان خو اهل شد.
\&

 همان واحد مورد نظر باشـد.

حجم ماه جقلـر است؟

$$
9 \mathrm{~cm}^{+}=v, r 0 \cdot \times 10^{r \theta_{\mathrm{g}}}\left(\frac{1 \mathrm{~cm}^{r}}{r, \mu+1 \mathrm{~g}}\right)=r, r \ldots \times 10^{r \Delta} \mathrm{~cm}^{r *}
$$

 به كار ميرو2 2 دستگاه بين المللى واحدها (به مصورت

 را مـىتوان با استغلاده أز خرايب نبديل انحجام داد.
 مشنخص با بكد بيكر تركيب شـدهاندا
 Matter

 مهحلوط (بخش Mixture

Phase

. با كار مسرو2 (Le système International d' Unitès) ارتام بامعنى (Significant figures

 Solution يكنواخت (ممشگ) بائشد.

$$
\begin{aligned}
\frac{\rho_{\mathrm{g}}}{1 \mathrm{~cm}^{r}} & =\left(\frac{0,9 v \xi \times 10^{r \varphi} \mathrm{~kg}}{1,0 \wedge \lambda^{r} \times 10^{r 1} \mathrm{~m}^{r}}\right)\left(\frac{10^{r} \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(\frac{10^{-9} \mathrm{~m}^{r}}{1 \mathrm{~cm}^{\mu}}\right) \\
& =\left(\frac{0, \Delta 1 \mathrm{gg}}{1 \mathrm{~cm}^{r}}\right)=0, \Delta 1 \wedge \mathrm{~g} / \mathrm{cm}^{r}
\end{aligned}
$$

 (1 , $0 \cdot \mathrm{~g} / \mathrm{cm}^{\varphi}$

$$
\text { ا } 1 \text { است مقا يسه كنيد.) }
$$

چچالى متوسط ماه

R-I مثال

或

Weight جسم وارد ميتّتود．

Substance خراص لـ تركيب ثابتاتنـ．

$$
\therefore 0,000.9 \mathrm{~mm}(j) 59 r_{0,000,000 \mathrm{~kg}}^{(\rho)}
$$

 $1, V \times 10^{-\pi r} g(j): 0,00090 \mathrm{Mg}(\jmath): r g, 000 \mathrm{pm}(0)$ （ IV＿ 1

 S裉 و （19＝1

 PGunt

己位 ．

 تن تنا هتر هكمب است ～ أست．（الفی）
 J－
 J
هث:

行

 بر

 ， ¢

．

 ，تم

 （
$\mathrm{Pb}(3): \mathrm{Li}(A): \mathrm{Mn}(3): \mathrm{Mg}(\rightarrow): \mathrm{Cr}(-): \mathrm{Cl}(\mathrm{el})$
：
 ：

 ：N
 fices adi ：

：

 ，I I

：$\left(9,0 r \times 10^{-r}\right)-\left(r, 09 \times 10^{-r}\right)(0) \cdot\left(1, r \Delta \times 10^{5}\right)+\left(1, r \vee r \times 10^{0}\right)\left(-\omega^{-}\right)$ $:\left(0,0 \times 10^{-9}\right)^{r}(0) \div\left(1, \Delta 0 r \times 1 e^{-T}\right) /\left(1,5 \times 10^{r}\right)(\tau)$ $\left(v, f \mid r \times 10^{s}\right)\left(1,0 \cdot T r \times 10^{-r}\right)(\rightarrow)$

 $\left(1,90 \times 10^{5}\right)+\left(5 \mathrm{NT} \times 10^{\mathrm{V}}\right)(2)$
 \ldots ．．．
 U

 jو，01， 96 ．

 ساعت و متر بر ثانيد جقلدر است

 بح

 كرافيث حه محميى را الشعال مىكند؟

层 1
行

 كه ير باشـد هیفدر است؟ ـ 1 loookg （ c g／mL
尾 $\mathrm{g} / \mathrm{cm}^{\top}$

 و

 ．الست $1,0 \mathrm{~g} / \mathrm{cm}^{*}$
社

 است

共
 أكَإِى （ 1 ا ا ا 1

 تهبة

 ＿ 1

 190 ا 190 － 1

 Y0，\％Yo－ 1
 （ب）هتر به كانيه هِقدر انـت

 ا 1

 ＿ا

 نقطهاي بر روى خط استوا در حول محور زمين را بر حسبب منر در ثانبه د مبل

مقدمهاى بر نظريهُ اتمى

يك نوع اتم با جرم ميانگين در نظر مر مرفت.
 شيميايـي استخراج كرد:

 كُروْبنـى اتمها، ثابات است

 موجود در آنَ جسم ثابت است است

2. Principia
3. Opriks
4. John Dalton

 YV (شنيمى هستهاى)، الين مبحث را گسترش خو اهيم داد.

 عنصر است. نوع اتمهاي مرجود در يكى تركيب و نسبت آنيا هـميشه

نتيجه رساند كا اين برتوها جرياني از ذرات سريع السير دارايى بار منفى

 كار رفته به هنو ان كاتاتد، يكساناناند.

 ثأنع

 افزايش q انزايش مى يابد.

 الكترون در يكا صنحه قرالر میكيرندنـد

 مقدار

$$
q / m=-1.7588 \times 10^{8} \mathrm{C} / \mathrm{g}
$$

كولن

بار الكترون نخـتين اندازْ

2. Humphry Davy
3. George J. Stoney
2. Michael Faraday
5. Joseph J. Thomson
4. Julius Plücker
7. Robert A. Millikan

جالن دالتون (VF\& - 1NFF)

جرم ثابتى از كربن داراي نسبت ب بـه ا الست. بـروسى تـجربى قـانون

> T-Y T T التترون

شـده:بود.

 الكتريكى استـ.

 ع. ع. استرنى

$$
q=-e=-1.6022 \times 10^{-19} \mathrm{C}
$$

 .3)

$$
m=\frac{q}{q / m}=\frac{-1.6022 \times 10^{-19} \mathrm{C}}{-1.7588 \times 10^{8} \mathrm{C} / \mathrm{g}}=9.1096 \times 10^{-28} \mathrm{~g}
$$

- +

 شـو2، يك بون

عكس (يعنى به سوى الكترود مشبث) میروند.

 . ميدان الكتريكي.

 يكى قطره با اندازم كيرى سرعت سقر ط آن معين مى ششود.

توضيح داد.
的 هستَ اتم

راديواكتيويتهُ طبيعى

مشُخص میشوند.

1 ـ تابش آلفا مركب از ذراتى است كه هر يكى بار با بـو بو جرمي در

1. Ernest Rutherford
2. James Chadwick
3. Henri Becqurel

تامسون (1909) مطالعه شلد. مقادير m/m بـا استفاده الز هـمانْ روش
 هنگام استفاده از

 خو/هد داشت.

$$
q / m=+9.5791 \times 10^{4} \mathrm{C} / \mathrm{g}
$$

 با بار الكترون اما با علامت مسالف است است

$$
q=+e=+1.6022 \times 10^{-19} \mathrm{C}
$$

$$
m==\frac{q}{q / m}=\frac{+1,8, Y Y \times 10^{-19} \mathrm{C}}{+9,0 \vee q) \times 10^{4} \mathrm{C} / \mathrm{g}}=1,5 \mathrm{VrF} \times 10^{-r r}
$$

آ r

ارنست رادرنور2 (|AV| - | \mid (

范

 حو
أـمار بروتونها

 ，r

$$
\begin{align*}
& A=\text { = } \tag{r-r}
\end{align*}
$$

Lه

 بالاى سمت حیب آنَ قراز داده میشود （1）

بار يك جزء	تركيب اجزاء	دli	برت
Y＋		α	｜iT
－	الكتزون	β	¢
－		γ	45

促多 در berer

$$
\text { تقريبي } 1 \text { (تقر يباً Fر ه مسرعت نور) سير مى كنتن. }
$$

> الگُوى اتمى رادرفورد

 آلفا به ورقئ بسيار بازكى（با ضهامت تقريبى

 (الف)

$$
\begin{equation*}
\text { 准 = }=Z \text { بار بروتو } \tag{1-r}
\end{equation*}
$$

$$
=I K
$$

$$
\begin{equation*}
=r v-1 r=1 \% \tag{r-Y}
\end{equation*}
$$

 ه ا الكترون است. تو جه داشته باشيد كه:

در نتيجه،

$$
\text { تعداد الكترونمما = }=1 T-r=1 \text {. }
$$

 بيرون هسته است
.

$$
\begin{equation*}
=19 \tag{1-r}
\end{equation*}
$$

W0 نا

$$
=r r-14=15
$$

 الكترونها را نيز بهد دست آورد:

$$
\begin{aligned}
& \text { بار بيرن - نعداد برونونها } \\
& =19-(Y-)=19+Y=1 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (V Y) }
\end{aligned}
$$

$$
\begin{align*}
& \text { باركل الكترونها + بإركل يروتونها = بار يون } \tag{0-Y}
\end{align*}
$$

$$
\begin{aligned}
& \text { (} \quad \text { - r) } \\
& \text { تو جه كنيد كـ شهار بروتونها برابر با عدد اتمي Z اسـت. }
\end{aligned}
$$

A
g (Z) (Z نماد
 ITr Na حير/مون هسته است.

1- بشال در اتم

ح عدد أتمى (Z=Y) (Z نشاندهندة: (Cu ع

$$
\begin{equation*}
\text { = نعلداد نوترونها }=A-Z \tag{r-r}
\end{equation*}
$$

$$
=q r-Y q=r Y
$$

 Qه الكترون نيز در بيرون هـسته و جود دارند.

ror ror

 .را بنو يسيد.

هروتوذها و تعلداد نوترونهاستا:

$$
\begin{aligned}
& A=\text { تعداد نوترونها + تعداد بروتونها } \\
& =1 q+r Y=Y 1 \\
& \text { به اين توتيب نماد عتصر تتاسـيم K K }
\end{aligned}
$$

 . بالإي سسهت راسـت تماد يون میا آورند.
معادلمهاى زير در تفسير بار يك يون يكى اتمى اهمميت دارند:
بار منغى كال + بار مثبت كل = بار بون

 ,

 اتهـ

 تناوبى به ثرار زير است:

 (Z=1،H) ا جالو

 (S شا شامل

 Aا الكترون در خخارج از آن الست.

H. r re

 در خارج از هسته باشد را بنو يسيلد.

$$
\begin{aligned}
Z & =\text { تعلاد بروتونها } \\
& =9
\end{aligned}
$$

$A=$ = تعداد نوترونها +

$$
\begin{equation*}
=9+10=14 \tag{Y-r}
\end{equation*}
$$

باركل الكترونها + باركل برونونها = بار بين
به اين ترتيب، نماد اين يون
(ب)

$$
\begin{aligned}
Z & =\text { تعداد بروتونها } \\
& =\text { rf }
\end{aligned}
$$

$$
\begin{align*}
A & =\text { تعداد نوترونا } \tag{r-Y}\\
& =Y \hat{U}+r_{0}=\Delta g
\end{align*}
$$

تعداد چِروتونهاى اين يونه، نتيجه بار آن، +r اسيت. با،

$$
\begin{align*}
& \text { باركل الكترونها + باركل } \tag{0-Y}\\
& =(Y Y+)+(Y Y-)=Y+
\end{align*}
$$

نهاد ايز بون

	^1 نوتردن	V
-	O	

" ${ }^{\text {POCICI }}$

 فلوئور). ولى اغلب عناصر داراى بيش از يك ايزوتوت هستند (تلى، ها 1 ايزوتوت

 باردار، ضمن كذشتن از ميدان مغناطيسى، از مسيبر مستقيم خور منخرف

 جرم آن، يعني

1. Mass spectrometer
(Z $=0 V$ ILa)

 استاتين (At) هستنـد.

- Y

خواصى شيميايیى فلزات با خور اص شيميايمى نافلزات تغاوت دارد.)
 جلول تناوبى نها يشكر موز تقريمى بين فلزات و نافلزات است. نافلزات

W-

هر مقياس جرم اتمى نسبى بايل مبتنى بر گماردن اختيارى مند ارى

 امروزه بهك كار میرودد، اتم دارم) به صورت بكى دوازدهم جرم اتم

هستهاست. اينشتين، هم ارزى ماده و انرثى رانشان داد اد. اين تفاوت ت جرم برحسب

 (rq) 999 и ~

نسبت است وزن اتمى عنصر كلر، ميانگين وزنى جرم اتمى ايزو تو بشهاي طبيعى
 را به دست آورد. مقدار به دست آمده به ائ اين روش، در در صورتى درست

 عبارتست از هم ارز اعشارى اين درصدهاي فراونانى:

> (جر) (زراونانى)

ra, $\% \Delta \psi_{u}$

 اكسيزر بيشنهادهر كر. 2. Binding energy

> G० نماد دو ايزوترب نقره (Z نوترون و ديخرى ابونوترون دارده.

ح
هر دو ايزو توب
 میتوان به دست آورد:

$$
\begin{aligned}
& \text { تعداد نوترونها + تعداد يروتونونها } \\
& =F V+9_{0}=1 \cdot \mathrm{~V} \\
& =\varphi r+9 r=1.9
\end{aligned}
$$

در نتيجه نماد ايزونوتبياها،

 آٓب، شاملـ

 برأبر 1 میشترد.

$\mathrm{ir}^{\mathrm{Mi}} \mathrm{Mg}$	$(0, V \wedge 99)(Y Y, 99 u)=1 \wedge, 90 \mathrm{u}$
${ }_{17}^{{ }_{10} \mathrm{Mg}}$	$(0,1000)(r r, 94 u)=r, 0 . u$
${ }_{r} \mathrm{Mg}$	$(0,1) 01)(r 0,9 \wedge u)=r, \lambda s u$

rF, TIU

V-r r

كربن طبيعى، سخلوطى از ولr

معادلة تعيين وزن اتمىى كربن به صورت زير است:
${ }^{14}{ }_{8}^{1 T} \mathrm{C}$
اكر فراوانى خوراهل بود. در نتيجه،
$(x) \mid r, 000)+(1-x)\left(\mid r_{j} 00 r\right)=|r, 0| \mid$
$1 r, 000 x+1 r, 00 r^{r}-1 r, 00 r x=1 r, 011$

$$
\begin{aligned}
-1,0.5 x & =-0,99 r \\
x & =0,9 \wedge 9
\end{aligned}
$$

اتمهاى

 صرفـنظر كرد.

(يونهاكي مشَبت) اسـت.

 (6رقَ

مقذأر يذيرفته شلده براى كلر،

 مثال، تعدلاد اتمهالى مو جود در يكى قطر0: جهان است.
 هستند. وزن اتمى چجنين عناصرى، يكى مقلار ميانگين است كه بيانگر ججرم تمام اتمها و فراواتى طبيعى آنهاست.

 اوزان اتمىى، در يكى بجلول الفبايى عناصر در داخل جلم جلد كتاب نمايش داده شـده الست.

 استـ.

اتم C

 Law of multiple proportions

 برثرار است.
Mass number, A الضاقه Wass spectrometer

 Metal

 Metalloid, semimetal

 Foble gases

 (Rn)

 Nucleon بافت میشَوند.

 Period
جـول تناوبى قرار دارند.

Periodic law
عناصر، تابع تناوبى آنهاست

 Radioactivity

 Dا وا

 (($Z=\wedge 9$ (Y) Alkall metals

 د 2层 1) Atom
 Laار Atomic mass unit, u . Atomic number Z
 نتّ برابر است Atomic weight عنصر نسبـت به جرم بك امه آم Beta particle , β
راديو اكتيو معينز.

Binding energy
 بين هجهوع جر

بسسيار بإيبن.

Electron
 قرار 2ارد. تابش گامام، Gamma radiation, γ
 S Sronp, family
بك ستون عمودى در جـول تناربـى ترار داريند.

 Iom

 الكترون) باشد.
I Isotopes

 (V - Y) Lanthanoids, lanthanoids

 Law of conservation of mass

S

 IV _ Y

:

 $r,{ }_{\rho}, \mathrm{Se}^{\uparrow-}$
 P, ${ }_{\text {ghan }} \mathrm{F}^{-}$

جدول تناوبى

 (ا Y - Y

$\mathrm{Br}(\rho): \mathrm{Bi}(\tau): \mathrm{Ba}(ب)!\mathrm{B}(\boldsymbol{\mathrm { C }})$
ايزوتوپ، وزن اتمى اتم

 رنبه

俍 الست در بيبست آلخر كتاب آمده است الست.

نظريهُ دالتون، قوانين تركيب شيميايى
 جـ...
 S . تركيب

 (Y Y

ذرات بنيادى

 رو A - Y
 بهدست دهـب؟

 .

仿 $\times 10^{-14} \mathrm{C}$

(1 ـ r r

 ر با ار أست؟ (1) (Y _ Y Y Y
 . $V=\pi / r \pi r^{r}$

 شيمبايـي ششابه Cu باشندئ (ب) Y Y Y (ب) هس مو مو بون توليد میكتد: الكترون دارنده
.
 C. .

 , Y^ - Y دi .
درصد ثراوانى هر بك أز اين دو ايزونوب جـقدر است

مسائل طبقهبتدىنشـد
q/m إ q/m شرونون (

استوكيومترى، بخش I : فرمول هاى شيميايى

متصل شدوانت. دز فرابندهاىي فيزيكى و شـيميا بيى، مر لكولنها بهصورت

 داده شده است

1. Afred North Whitehead
2. Stoichiomerry
3. Stoicheion
4. Metron

 اتمى مادْ، مبناى اين مطالعه را تشكيل ميدهد.

 e

مولكولهها

O_{+}		CO $\mathrm{O}_{\text {+ }}$
$\mathrm{H}_{\mathrm{r}} \mathrm{O}$.0	NH\% Tr	CH_{4}

$\mathrm{NH}_{\mathrm{T}} \times \mathrm{C}$
CH_{e},

道 سولفات،

 دز بلور سديم كلرين، به ازاي هر يون

توليذ اين بلور است.

 يورنها در بلوز بلو رهاى

$$
\begin{aligned}
& \text { مثال سـا - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { و (ج) يون }
\end{aligned}
$$

باششد. فرمول Na ا اسيت.

أت CaO ,

 (9-

جلول

 نتُان داده شده است.

يونها

 اخ F^{-}, $\mathrm{Fe}^{\text {Y+ }}$ ، $\mathrm{S}^{\text {r- }}$ ، $\mathrm{All}^{\text {rt }}$

r-r

 , . $\mathrm{C}_{\varphi} \mathrm{H}_{\wedge}$ ،

$>$

 (الف) براى (CY

فرمول تجربي، "CH است

بخش يذيرند. فرمول تجريبى،

 . ${ }^{\text {Cr }}$
 تحربى،

فرمول يك تركيب يوني (مـانتد

از

 كاهشي داد.

و

ساير فرمها

 مولكول بسيار بزرگ به حساب آَورد. تركيبات ديگرى نيز (براي مثال،

اتمهاي موجود در جسم الست.
"

 فرمول تجربيى آن HO

اطالاعات بيشترى نباز داريمر. براى بعضى تركيبات موى لكولى، فرمول مولكولى و فرمول تحربى يكسـاناند، براى مثالا:

$\begin{array}{llll}\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{SO}_{4} & \mathrm{CO}_{2} & \mathrm{NH}_{3}\end{array}$

$\mathrm{N}_{2} \mathrm{H}_{4} \quad \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6} \quad \mathrm{C}_{6} \mathrm{H}_{6}$
به فرمولهماى تجربى زير مريوط است.

$\mathrm{NH}_{2} \quad \mathrm{BNH}_{2} \quad \mathrm{CH}$

شـدهانست:

$9,0 r r o \Delta \times 10^{r r}$

مفـلاري از جـسم كـ تعداد واحدهاى بنيادى آن برأبر با عدد آَوركادرو

 تعريف مى شود كه تعداد اجزاءى بتيادى آن برابر با تعدلاد اتمهالى موجود .

 بريلـم
$8,01 \mathrm{H} / \mathrm{Mg} \mathrm{Be}=1 \mathrm{moll} \mathrm{Be}=9,0 \mathrm{rr} \cdot 0 \times 10^{\text {rT }} \mathrm{Be} \mathrm{F}$

 ?

$$
1 \mathrm{~N}_{j} \cdot \mathrm{rg} \mathrm{H}_{Y} \mathrm{O}=1 \text { mol H} \mathrm{H} \mathrm{O}=9,0 \mathrm{YY} \times 10{ }^{T r} \mathrm{H}_{Y} \mathrm{O} \mathrm{O}
$$

 2. Avogadro's number

国 35 . BaCl_{4}居

> =

r-r rer rer

j

$$
\begin{aligned}
& r(A 1 \text { Al } \\
& r(S \text { S تات }
\end{aligned}
$$

 जि Al :
رابه صروت انـبر بـان هـكتّم:
$\uparrow \mathrm{mol} \mathrm{Al}=\uparrow \operatorname{rog} \mathrm{Al}$

 $1 \mathrm{~mol} \mathrm{Al}=\mathrm{r}, \mathrm{g}, \mathrm{gal}$
 اين واحـد بايل حذف شوبد:
$\varsigma \mathrm{mal} \mathrm{Al}=\left\lvert\, \operatorname{rag~Al}\left(\frac{Y \mathrm{~mol} \mathrm{Al}}{Y \mathrm{~V}, \circ \mathrm{~g} \mathrm{Al}}\right)=r\right., f r \mathrm{~mol} \mathrm{Al}$

مثال
 \downarrow پاستخ مسئله بايد با جهار رقم بامعنى بيان شود. مسئله را بـه صورت زير بيان مىكنـه:

$$
? \mathrm{gH}_{r} \mathrm{SO}_{\mathrm{f}}=0, \mathrm{r} 0.0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{Y} \mathrm{SO}_{f}
$$

وزن فرمولى

$$
1 \mathrm{molH}_{Y} \mathrm{SO}_{\psi}=4 \lambda, \cdot \wedge \mathrm{~g} \mathrm{H}_{Y} \mathrm{SO}_{\psi}
$$

واح بـا با د

J

 قيراط كه تهار رقم باممعنى دارد، محدود مى ششود. بـا اين ترتيب، هسئله به صورت زير در مىآيد:

ضريب تبديلى را بر مبناى وزن اتمى C (با جهار رقم بامعنى) بددست **

مشتخص شود. يكـ مول از اتمهاي H شامل

1 mol $\mathrm{F}=9,0 \cdot \mathrm{r} \times 10^{\text {TT }} \mathrm{F}$ م

 BaCl

 شامل هعادير زير است.

 كه در جمع آنها، میشود

اوزان اتمى به كار رفته در حل يكي مسثّله را بايد با ارقام با مـنىى

 بايد نشان دهندة اين دقت باشـدر.
 مى توان به سه شيوه بيان كرد.

 سـيم در واحد جرم اتمي است: r-

سـديم است: rrs9^9vvgmol

ح

ree n-r مثال

 نيكر تين را بهدست آوريد.
J
 هر يكى از عناصر را در
 إرسيلـ،
$S_{B C}=\varphi_{\gamma} \mathrm{VAg} \mathrm{CO}_{Y}$

$$
1 \mathrm{Yg} \mathrm{C}=44 \rho \circ \mathrm{~g} \mathrm{CO}{ }_{Y}
$$

 وجود دارد، در نتيجه:

 .
مقدار ثر يكا عناصر در تمونه نيكوتين بـكار مكيريم:

$1 \mathrm{molC}=1 \mathrm{r}, \mathrm{ol} \mathrm{g} \mathrm{C}$
كه با دأشتن واحد C و و م مخرج باعث حذذ اين واحد شود: $\rho \mathrm{CC}$

 تبديلى از فرمول زير به دست مى آوربي:

$$
1 \mathrm{~mol} \mathrm{C}=8, \mathrm{ort} \times 1 .{ }^{\text {Tr }} \mathrm{C}
$$

با قرار دانشتن واحد ضر بكردن در اين ضريب، حل مسئله كامل مى شورد:

د

v-r

درصـل Fe در حك

$$
\begin{aligned}
& r \mathrm{~mol} \mathrm{Fe}=r(00, \Lambda) \mathrm{g} \mathrm{Fe}=111,9 \mathrm{~g} \mathrm{Fe} \\
& r_{\mathrm{mol} \mathrm{O}}^{\mathrm{m}}=r(19,0) \mathrm{gO}=\frac{r \lambda, 0 \mathrm{gO}}{109,9 \mathrm{~g}}
\end{aligned}
$$

Fe مجمبع جرمها، يعنى

$$
\frac{111,9 g \mathrm{Fe}}{109,9 \mathrm{Fe} \mathrm{Fe}_{r}} \times \% 1,00=1,99,9 \mathrm{FFe} \quad \mathrm{Fe}_{Y} \mathrm{O}_{Y} \mu
$$

مثال 10 -

فرمون تجربى تركيبى شامل P \& P

مبناى درصد اجزاى أين نمورنـ شامل فـل

$$
\text { تا سه رقم بامعنى، به ترتيب؛ 0, آبّ } 9 \text { ا المت: }
$$

$\oint \mathrm{mol} O=09, \mathrm{tg} O\left(\frac{1 \mathrm{~mol} \mathrm{O}}{19, \mathrm{gO}}\right)=r, 0 \mathrm{mmolo}$

$$
\frac{r j, r}{1, j 1}=r, 00 \quad 0 \quad \frac{1, r \mid}{1, * 1}=1,00 \quad P \quad P \quad s_{r}, r
$$

11-r

تجربى كافئين را به دست آوريد.

J

 نسبت جرمى را مىتوان به نسبت مولى.تّبيل كرد و به اين صـروت،

$\S \mathrm{mol} \mathrm{C}=0, g \mathrm{HKg}_{\mathrm{K}} \mathrm{C}\left(\frac{1 \mathrm{~mol} \mathrm{C}}{1 r, 0 \mathrm{CC}}\right)=0,0 \Delta \mathrm{r}_{\mathrm{mol} \mathrm{C}}$
$\varrho \mathrm{molH}=0,090 \mathrm{gH}\left(\frac{1 \mathrm{~mol} \mathrm{H}}{1,0 \mathrm{gH}}\right)=0,090 \mathrm{~mol} \mathrm{H}$
$f \operatorname{mol} N=0, \mu g 4 g N\left(\frac{\mid \operatorname{mol} N}{14, \circ g N}\right)=0,0 ヶ 40 \operatorname{mol} N$
$巳 \mathrm{molO} O=., \mathrm{T} \cdot \mathrm{AgO}\left(\frac{1 \mathrm{molO} \mathrm{O}}{15, \operatorname{cgO}}\right)=0,01 \mathrm{romol} \mathrm{O}$
4.r.

بسنـه را مىتوانذ به صورت زير بيانكرد:
 Ag\% S بومى آيد): امّا عد اند

$$
V_{0}, 000 \mathrm{Ag}_{\mathrm{y}} 5 \approx \operatorname{loog} \approx \mathrm{~s}
$$

و ضريب (كاند

 Ag Ag

$$
\begin{aligned}
\mathrm{rmol} \mathrm{Ag}_{\mathrm{g}} & \approx 1 \text { mol } \mathrm{Ag}_{\gamma} \mathrm{S} \\
\mathrm{r}(1, \mathrm{~V}, 9) \mathrm{g} \mathrm{Ag} & =r+V, 4 g \mathrm{Ag}_{\gamma} \mathrm{S} \\
\mathrm{r} 10, \mathrm{Ag} \mathrm{Ag} & \approx Y 4 V, 4 \mathrm{~g} \mathrm{Ag}_{\gamma} \mathrm{S}
\end{aligned}
$$

بنابراين،

ا

R

 است. فرهول مو لكو لى كافئين وا بهدست آوريدي

وزن فرْ فرلى بوابر الين مقدالر مى.

14-r

俍 هو لكو لمى كلوكز را به دست آَوريد.

 ضريب (گُلوكز (

 $\bigcirc \mathrm{molC}=V r, \operatorname{lgC}\left(\frac{1 \mathrm{molC}}{1 r, \circ \mathrm{gC}}\right)=9,0 \mathrm{~mol} \mathrm{C}$
 $\uparrow \operatorname{mol} O=9,9,0 \mathrm{gO}\left(\frac{1 \mathrm{molO} O}{19,0 \mathrm{gO}}\right)=9,0 \mathrm{~mol} \mathrm{C}$

 مو انكو, لمى كلوك

 نسبت زبر را به دست خر اهـل داد
$\mathrm{Fmol} \mathrm{C}_{\mathrm{m}}: 0 \mathrm{~mol} H: Y \mathrm{~mol} N=1 \mathrm{~mol} 0$

范

 .
K

 هـى توان الز فرمول تجوربى به دست آورد.
rer rer rer

 باشـلـ، بيلدا كنيد.

$$
\frac{r \Lambda F}{1 H Y}=r
$$

 كه وزن مولكولى تركبب هعلوم باشدلد.

جكيدهٔ مطالب
استوكيومترى يك تركيب ثيمبابيى بر فرمول شيمبابيى آلن نركيب استو ار استات.

 بلور تركيب مى توان نونئست.

مفاهيمر كليالى
عدد آوروكّادرد.
Molecular formula

 Molecular weight وزذ مولكولى (بخئ 「 انمهاى تشكيل دهنـدُ يكى بولكونا Molecule
 Monoatomic ion كا اتمr.
 حند اتمه

 Structural formula

 داده مـتشود.
 . $\mathrm{Fe}^{\mathrm{r}+}$, III با
 Cr ${ }^{\text {r+ }}$, (III)
"T ـ ـ ${ }^{\text {ـ }}$

 نعيبين كـنـيد: . $\mathrm{P}_{\mathrm{T}} \mathrm{N}_{\mathrm{T}} \mathrm{Cl}_{\bar{\gamma}}(\omega)$ مول، عدد آووكّادرو

كناب آمده: استا

Anion

Cation Chemical formula
 در يكا تركيبـ Diatomic molecule اتم تشكيل شـله بائسد.

 Formula weight اتمهاى مرجرد در يكى ثرمولا

 Mole

فرمولّها، مولكولها و يونها

 الت $\cdot \mathrm{Ba}(\mathrm{OH})_{\gamma}(\Omega): \mathrm{CuSO}_{\psi}(\tau): \mathrm{CrCl}_{\Gamma}(ب)!\mathrm{Na}_{\Gamma} \mathrm{O}$ (الض) (رr r

$$
\mathrm{KOH}(\Omega): \mathrm{Na}_{\Gamma} \mathrm{CO}_{r}(\tau): \mathrm{Ca}^{(}\left(\mathrm{PO}_{\mu}\right)_{\Gamma}(ب): \mathrm{ZnCl}_{\Gamma}(\mathrm{dl})
$$

 PO ${ }_{7}^{+-}$- (3
 نظرى＇لاز است؟ （لr لازم است؟

 （ $\mathrm{H}_{r} \mathrm{O}$ rjofg， $\mathrm{CO}_{r} 19,4 q_{g}$ جثلن است؟

 جقلر انست؟

 $\uparrow=\mathrm{Fe}_{\mu} \mathrm{O}_{\mu}$度
 سرلفات به صورت

تعيين فرمول

 $.1 \mathrm{~T}_{0}, 10, \mathrm{C}_{\mathrm{r}} \mathrm{NH}_{T}(\infty): 49,01 \cdot \mathrm{NO}_{r}(0): \mathrm{V}_{0}, 10, \mathrm{CH}_{\mathrm{T}}(r)$ نز ． $\mathrm{PN}_{\Gamma} \mathrm{H}_{4}(\mathrm{C})!11 \wedge$ ） 99 ， sOCl_{T}（
 ن

俍 ج花

压 وانبلبن چبـرت

 EDTA
怲 ，\quad w， $5,5 \% / 1 V, 0$ ．
（

$$
\mathrm{CCl}_{\varphi}(\mathrm{r}): \mathrm{HCl}(ب): \mathrm{Cl}_{Y}(\mathrm{e})
$$

F
 وجود
（ا 10 ـ جرم（ 10 ـر

（الف ا
 S اV ـ F
 （ اA ـ r

 ايزوتوب Y ا Y ，Pt Pt ل

 و

الزاى هر اتم Cu

 تعيين كنيد．

 M

تركيب درصد تركيبات التر TV－Y
 （الم

$$
\text { . } \mathrm{NH}_{r} \mathrm{NO}_{\mu}(\rho): \mathrm{NO}_{\gamma}(\zeta): \mathrm{NH}_{r}(ب): \mathrm{NaNO}_{r}(ا)
$$

（آ

 ． با صورت نظرى جثـثر است

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

KCN
, 90 - r
و ومامل
(9 -
S.
GV_r
تبديل شود، جه متلار
ت 94 ـ 9 نرمول تجربى تركيبى

> (ا four
> مولك

،
原 هي

 4,9AYg وr

 شو r

 مج
" خأرج تُــــه
机

میى آب. فرمرل تجربي كروم كلريد جبـت؟؟ (90 ـ

[^0]:

[^1]: 1. Significant Figures
[^2]: 1. Archimedes
