$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

KCN
, 90 - r
و ومامل
(9 -
S.
GV_r
تبديل شود، جه متلار
ت 94 ـ 9 نرمول تجربى تركيبى

> (ا four
> مولك

،
原 هي

 4,9AYg وr

 شو r

 مج
" خأرج تُــــه
机

میى آب. فرمرل تجربي كروم كلريد جبـت؟؟ (90 ـ

استوكيومترى، بخش II : II معادله هاى شيميا يى

هـــن نـيــت ك، در آزمايشُگاه رخ مى دهـ.

 دی سرلفور دیكلريله، معادلة، مينويسيم،

$$
\mathrm{CS}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}
$$

 كرد. حالتهاي مهـم عبارتند از:

برای (g)
(1) براي مايع
(s)
(aq) براى محلور أبى
براى مثالل:

$$
\mathrm{CS}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{l})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})
$$

 در مورلكول لCCl

1. Reactants
2. Products
3. Balanced
4. Generalizations

 شيميايیى آن واكتنَ به دست مى آْوريم. تفسير استوكيو مترى يكـ معادلألّ شيّيميا يـي بـرمول استوار است.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 هيدروزن، آب،

 استنباط میشود.

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

مبرلكول Cl

$$
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{I})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})
$$

 هى كيرد، نه با تغيير خود فرمولها.

1-1 F F F

با عبور داوز بخال آب، ($H_{r}(g)$ مو ازنه شدهُ اين واكنشن را بنو يسيل.

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

隹

 فر $\mathrm{Fe}_{\mu} \mathrm{O}_{\psi}$ تغيير فرمول فراوردمهاياى واكنش انجام

 : فراهم ساز

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

أكنون معادله هـا موازنه شلده اسـت، بجز براي هيلنورزن كه به صـورت زير موازنه مىشوده:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

سوخت در موجاورت اكسيرُن
در فُصل r

 كربن باششد - $\mathrm{CO}_{T}(\mathrm{~g})$ توليد ميشود

 ? $\mathrm{mol} \mathrm{O}_{2}=5.00 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}\left(\frac{7 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}\right)=17.5 \mathrm{~mol} \mathrm{O}_{2}$

 ا ـ مقدار جسم داده شده در مسئله، با استفاده از فرمبول وزنى جسمه،

 كلر رالز واككنثى زير مى توان به دست آَردد:
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$
(الف) براى واكنشَ با

(الف) حل مسئله رابا نوشتن معادله زير آغاز میكنمب:

$$
? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}
$$

نــبت استوكير مترى استخراج شده لز معادلهُ شيميايمى را بر حسب مولم
 فرمولى
$? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)$

$$
1 \mathrm{~mol} \mathrm{MnO}_{2} \approx 4 \mathrm{~mol} \mathrm{HCl}
$$

كه از آن، ضريب تبدل (? $\mathrm{g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{4 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{MnO}_{2}}\right)$

 معادله زير راد ر نظر بيخيريد:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 براي توليد آب است در سطح اتمى - مولكولي، به ما ما مىكويد:
 آووكادرو (9)

$$
2 \mathrm{~mol} \mathrm{H}_{2}+1 \mathrm{~mol} \mathrm{O}_{2} \longrightarrow 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

 .

همين طر: خحرن معادلى نشان ميدهد كه،

r- بش
. معادلة واكنش به صورت زير است:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

تعلاد مرل هاي

$$
? \mathrm{~mol}_{2}=5.00 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}
$$

رابطه استوكيومترى بهدستآمده ازضرايب معادلأشيميايمى عبارتستاز:"

$$
2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \approx 7 \mathrm{~mol} \mathrm{O}_{2}
$$

از اين رابطث مىتوان ضريب تبديل مورد نياز برايى حـل مـعادله را بــ

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

 و

 و تـعيين كـنّده: مـفلار

 مسئله بايل واكتشردهندةً محدود ساز ر هششخص كنسب.
مثال F - F

 زير است:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

 تشان ميدهد: $3 \mathrm{~mol} \mathrm{Fe} \approx 4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
\frac{4.00 \mathrm{~mol} \mathrm{Fe}}{3 \mathrm{~mol} \mathrm{Fe}}=1.33
$$

$$
\frac{5.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.25
$$

 نتيجه، Hب

$? \mathrm{~g} \mathrm{HCl}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{4 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{MnO}_{2}}\right)$
$\left(\frac{36.5 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}\right)$
$=42.0 \mathrm{~g} \mathrm{HCl}$
 MnO بر MnO_{γ} رابطهُ هو لمى به دست آمده از معادلهُ شيميايـى

$$
1 \mathrm{~mol} \mathrm{MnO}_{2} \approx 1 \mathrm{~mol} \mathrm{Cl}_{2}
$$

$? \mathrm{~g} \mathrm{Cl}_{2}=25.0 \mathrm{~g} \mathrm{MnO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{MnO}_{2}}{86.9 \mathrm{~g} \mathrm{MnO}_{2}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{MnO}} 2\right)$

$$
\left(\frac{71.0 \mathrm{~g} \mathrm{Cl}_{2}}{1 \mathrm{~mol} \mathrm{Cl}_{2}}\right)
$$

$$
=20.4 \mathrm{~g} \mathrm{Cl}_{2}
$$

مقداركربن مونوكسيلمو جود دريكاًاز راباواكنشزيرمى توانتعيينكرد،

$$
\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s})+5 \mathrm{CO}(\mathrm{~g}) \longrightarrow \mathrm{I}_{2}(\mathrm{~s})+5 \mathrm{CO}_{2}(\mathrm{~g})
$$

 $5 \mathrm{molCO}=1 \mathrm{~mol} \mathrm{I}_{2}$

همتحنين، لازم است بدانيم:
$1 \mathrm{~mol} \mathrm{I}_{2}=254 \mathrm{~g} \mathrm{I}_{2}$
$1 \mathrm{~mol} \mathrm{CO}=28.0 \mathrm{~g} \mathrm{CO}$
ضرايب تبليل به دست آمده از سه رابطة باللا را براى مسئله لازم
باسخ هسئله حنين است:
$? \mathrm{~g} \mathrm{CO}=0.192 \mathrm{~g} \mathrm{I}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{I}_{2}}{254 \mathrm{~g} \mathrm{I}_{2}}\right)\left(\frac{5 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{I}_{2}}\right)\left(\frac{28.0 \mathrm{~g} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}\right)$ $=0.106 \mathrm{~g} \mathrm{CO}$
j jog

 برابي
$? \mathrm{~mol} \mathrm{NH}_{3}=4.00 \mathrm{~g} \mathrm{NH}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17.0 \mathrm{~g} \mathrm{NH}_{3}}\right)=0.235 \mathrm{~mol} \mathrm{NH}_{3}$ $? \mathrm{~mol} \mathrm{~F} 2=14.0 \mathrm{~g} \mathrm{~F}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{38.0 \mathrm{~g} \mathrm{~F}_{2}}\right)=0.368 \mathrm{~mol} \mathrm{~F}_{2}$

رإبطُّ استوكيومترى بهدست آمهـ از معادله واكنش به صورت（زير استى، $2 \mathrm{~mol} \mathrm{NH}_{3} \approx 5 \mathrm{~mol} \mathrm{~F}_{2}$
 NH بر بر بر با با

$$
\frac{0.235 \mathrm{~mol} \mathrm{NH}_{3}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=0.118
$$

 ．

$$
\frac{0.368 \mathrm{~mol} \mathrm{~F}_{2}}{5 \mathrm{~mol} \mathrm{~F}}=0.0736
$$

 مبناي مeكا رم

$$
? \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}=0.368 \mathrm{~mol} \mathrm{~F}_{2}
$$

 $5 \mathrm{~mol} \mathrm{~F}_{2} \approx 1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}$
$1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}=104 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}$
حل نهايمى مسئله به صورت زير خواهد بر د：
？ $\mathrm{g} \mathrm{N}_{2} \mathrm{~F}_{4}=0.368 \mathrm{~mol} \mathrm{~F}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}}{5 \mathrm{~mol} \mathrm{~F}_{2}}\right)\left(\frac{104 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}}\right)$

$$
=7.65 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}
$$

？ $\mathrm{mol} \mathrm{H}_{2}=5.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\left(\frac{4 \mathrm{~mol} \mathrm{H}_{2}}{4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}\right)=5.00 \mathrm{~mol} \mathrm{H}_{2}$

V－Y بثال
和
تهيه كرد؟ هعlدلة شيميايمى واكثش به صورت زير است::

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{~g})
$$

$$
\begin{aligned}
& \text { محاسبات شيميا ابى بر اساسى معادلههاى شيميايى }
\end{aligned}
$$

> واحد كرم)، يكا نشانه تساوى و جرم جسم داده شالـه (بر حسب كرم) را مثشخص كنيد
（مخرج）مريوط مازد．
（个－
حذف شرند．

> واكنشدهمند باشلد
> ا ـ مقدار هو يك از وإكنشدهندهمها را بر حسب مـورل، از
كينيد

 . 500 ml .

غلظت هر سه محلول بالا، M • ربَ است.

 جقَدر است؟
 - fromol NaOH $\approx 11 . \mathrm{NaOH}$ لatar تع.اد مولهاي NaOH لازم براي تهية هحالول

هحاسبه شده است. علت اين امر ممكن است عمل نكـردن بـخشى از
 متغاوتى نسبت به واكنش اصلى عمل كنتد (واكنش هالى فرعى) بالاخره

A. 4 +

 (

در نتيجه درصد بازده بـ قراز زير خو اهد بود:

$$
\frac{4.80 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}}{7.65 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}} \times 100 \%=62.7 \%
$$

共 بسبا,

俍

 : $\Gamma ; 0$ M M M

$$
\begin{aligned}
& \text { مصاسبه كرد: }
\end{aligned}
$$

$$
\text { V, M }=\text { تعداد مول هإى ماده مل نـده: }
$$

صورت mol/L
.

$$
\begin{aligned}
& =(0,0 \cdot \cdot \mathrm{~L})(9, \ldots \mathrm{~mol} / \mathrm{L}) \\
& =r, \ldots \mathrm{~mol}
\end{aligned}
$$

 در نتّيجه،

$$
\begin{equation*}
V_{1} M_{1}=V_{2} M_{2} \tag{Y-Y}
\end{equation*}
$$

 خوانهد بود با:

$$
\begin{aligned}
V_{1} M_{1} & =V_{2} M_{2} \\
(0.500 \mathrm{~L})(6.00 \mathrm{M}) & =(2.00 \mathrm{~L}) M_{2} \\
M_{2} & =1.50 \mathrm{M}
\end{aligned}
$$

 براى بيان
 براى مسائل مربوط به رثيق سازى بـ كار ميروهـ

11-4

 بايد به كار رود؟

$=0, \circ \mathrm{~V} 0 \cdot \mathrm{~mol} \mathrm{NaOH}$

f. $\because \circ \mathrm{g} \mathrm{NaOH}=1 \mathrm{~mol} \mathrm{NaOH}$
$\S_{\mathrm{g}} \mathrm{NaOH}=0, \circ \vee \Delta m o l \mathrm{NaOH}\left(\frac{\mu_{0}, \circ \mathrm{~g} \mathrm{NaOH}}{m_{\mathrm{mol} \mathrm{NaOH}}}\right)=r_{, 0 \circ \mathrm{~g} \mathrm{NaOH}}$
 $=r, \circ \circ \mathrm{NaOH}$

$$
\begin{aligned}
& \text { 10. F F F } \\
& \text { (الفن) } \\
& \text { وجرد دارد؟ } \mathrm{AgNO}_{r}
\end{aligned}
$$

(الف) حل مسئله رابا نوشتز تساوى زير آفاز مىكنيم:

حیون غلظت AgNO

كـ از آن، ضريب تبديل لازم براى حل كردن مسئله را به دست مى آوربم:

$=\cdot, \cdot 10 \cdot \mathrm{~mol} \mathrm{AgNO}_{\Gamma}$
(ب) همين رابطه (بد صروت معكوس) براي حل اين مسـئله

> بدكار مىرو2.

$$
=A r, r \mathrm{~mL} \mathrm{AgNO}_{r} \mathrm{Na}_{\mathrm{J}}
$$

اغلب للاز است هصلول لها وا با رمين كردن واكتشگر هاى غليظ تهيه كرد.

 تهيهُ محلرل با غلظت معطلو ب به كار برد.

$$
\begin{aligned}
& \text { = } 20.0 \mathrm{~mL} \mathrm{NaOH} \text { مسلون }
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\frac{1000 \mathrm{~mL} \mathrm{NaOH} \text { jgha }}{0.750 \mathrm{~mol} \mathrm{NaOH}}\right)=20.0 \mathrm{~mL} \mathrm{NaOH}
\end{aligned}
$$

يك قرص سودواى نعناع حاوى NaHCO
 NaHCO مو جود در هر ڤـرص را بـر
 $\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$
 $\left(\frac{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}{1 \mathrm{~mol} \mathrm{HCl}}\right) \times\left(\frac{84.0 \mathrm{~g} \mathrm{NaHCO}_{3}}{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}\right)=0.400 \mathrm{~g} \mathrm{NaHCO}_{3}$

 را بــه تــعداد مــوله الىاى

 تبديل مىكند.
 تمونهالى از محلول Ba(OH) به حجم
 ($\mathrm{Ba}(\mathrm{OH})_{\gamma}$

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

- J مو ، 1000 mL

$$
\begin{aligned}
V_{1} M_{1} & =V_{2} M_{2} \\
V_{1}(12.0 M) & =(500 \mathrm{~mL})(3.00 \mathrm{M}) \\
V_{1} & =125 \mathrm{~mL}
\end{aligned}
$$

 رسيلن به حتم 0.00 mL تهيه میكيم.

ما

 مسثلكالى نوشتن معادلهُ شيميا يمى است.

 موجرد در محلول، تعلاد مولنها را الز حجم نمونه و مرلا ملاريتئ مـحلول (تعداد مول در ليتر) به دست میآآوريم.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

ابتدا، تعداد مول هأى ${ }^{\text {ت }}$? $\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=50.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$ Uar $\left(\frac{0.150 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1000 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{sol}^{\prime} \mathrm{n}}\right)$ $=0.00750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

از معادله واكنثى، نتيجه ميگيريمك كـ
$2 \mathrm{~mol} \mathrm{NaOH} \approx 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
بنابر|ين:

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{NaOH} & =0.00750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}\left(\frac{2 \mathrm{~mol} \mathrm{NaOH}_{1}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}\right) \\
& =0.0150 \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

 :
.

$$
\times\left(\frac{0.150 \mathrm{~mol} \mathrm{HCl}}{1000 \mathrm{~mol} \mathrm{HCl} \mathrm{~J}_{\mathrm{g}} \mathrm{ma}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{HCl}}\right)
$$

$=0.112 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$

حجكيدهُ مطالب

 نوثح

مناهيمركليـى Actual yield
 Chemical equation
 Coefficient
 Concentration
 (r - Y) Limiting reactant

 Molarity

$$
\begin{align*}
& \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{ب}\\
& \mathrm{HBrO}_{3}(\mathrm{aq})+\mathrm{HBr}^{2 q} \longrightarrow \mathrm{Br}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \left.\mathrm{AuCl}(\mathrm{~s}) \longrightarrow \mathrm{AuCl}_{3}(\mathrm{qq})+\mathrm{cu}\right) \tag{د}
\end{align*}
$$

$\mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ (الف)
$\mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
 كتاب آمده أست.

> *
> 据
> (ا ـ
> $\mathrm{Al}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ (الن)
> $\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{l})+\mathrm{Cu}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Cu}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) \quad(\varphi)$ $\mathrm{WC}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{WO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad(\tau)$ $\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{CH}_{4}(\mathrm{~g}) \quad(\mathrm{o})$

$$
\begin{aligned}
& \left.\mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{HCl}(\mathrm{~g}) \text { (} \mathrm{L}^{\text {al }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& \text { را كامل فرض كنيد. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NH (g) ץ \%oog } \\
& \mathrm{CS}_{2}(\mathrm{I})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{SCN}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { تهيه كرد جقعلد المت؟ NaOH } \\
& \mathrm{OF}_{2}(\mathrm{~g})+2 \mathrm{NaF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
3 \mathrm{SCl}_{2}(\mathrm{~g})+4 \mathrm{NaF}(\mathrm{~s}) \xrightarrow[\mathrm{SF}_{4}(\mathrm{~g})]{ }+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+4 \mathrm{NaCl}(\mathrm{~s})
$$

$$
3 \mathrm{NaBH}_{4}(\mathrm{~s})+4 \mathrm{BF}_{3}(\mathrm{~g}) \longrightarrow 3 \mathrm{NaBF}_{4}(\mathrm{~s})+2 \mathrm{~B}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

 زير است؛：
$3 \mathrm{LiBH}_{4}(\mathrm{~s})+3 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \longrightarrow$

$$
\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}(\mathrm{l})+9 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{LiCl}(\mathrm{~s})
$$

9
al
：

$$
\mathrm{Ca}_{3} \mathrm{P}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{PH}_{3}(\mathrm{~g})
$$

$$
\begin{aligned}
\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})
\end{aligned}
$$

居

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \xrightarrow[\mathrm{CaCl}_{2}(\mathrm{aq})]{\longrightarrow}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

b ，
 ． شُدهو و مخلوط（g）
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{I}_{4} \mathrm{O}_{9}(\mathrm{~s}) \longrightarrow \mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
（ τ
$\mathrm{Ba}_{3} \mathrm{~N}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{~g})(\mathrm{s})$ ：F F F
$\mathrm{HNO}_{3}(\mathrm{l})+\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s}) \longrightarrow \mathrm{HPO}_{3}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \quad$（الفـ） $\mathrm{HNO}_{2}(\mathrm{aq}) \longrightarrow \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(ب)$
$\mathrm{Al}(\mathrm{s})+\mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{NaAl}(\mathrm{OH})_{4}(\mathrm{aq})+(\tau)$ $\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{C}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{BCl}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
 ：C ${ }_{\gamma} H_{\Lambda}(\mathrm{l}$（

$$
\left.\mathrm{C}_{\lambda} \mathrm{H}_{1 \Lambda}(\mathrm{I}) \text { ، اكتان (}\right)
$$

． $\mathrm{O}_{\mathrm{Y}}(\mathrm{g})$（ 9
 ． $\mathrm{C}_{5} \mathrm{H}_{5}(1)$ بنرّ

 ．${ }^{0} \mathrm{C}_{0} \mathrm{H}_{0} \mathrm{~N}(\mathrm{l}$（

هسـانُلـى براساس معادلات شيهيهيايـ

 1， 1 را

 （ 10 （ 1 －\uparrow居

 مود2 نيأر استع「

$$
2 \mathrm{NaNH}_{2}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow
$$

$$
\mathrm{NaN}_{3}(\mathrm{~s})+\mathrm{NaOH}(\mathrm{~s})+\mathrm{NH}_{3}(\mathrm{~g})
$$

جند

$$
\begin{array}{r}
3 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{~s})+\underset{4 \mathrm{Nr}}{\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
\end{array}
$$

＊
$\mathrm{PI}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{HI}(\mathrm{g})+\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{l})$
． فرض كنـا

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

 جنـدر است؟؟

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\underset{\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}{\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})}+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

$$
\begin{gathered}
5 \mathrm{KNO}_{2}(\mathrm{aq})+2 \mathrm{KMnO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
5 \mathrm{KNO}_{3}(\mathrm{aq})+2 \mathrm{MnSO}_{4}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{gathered}
$$

 dobe Ba $_{Y}\left(\mathrm{PO}_{\gamma}\right)_{\Gamma}(\mathrm{s})$

$$
3 \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \overrightarrow{\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})}+6 \mathrm{HCl}(\mathrm{aq})
$$

 ：
$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\underset{\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})}{\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})}+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s}) \longrightarrow$

$$
2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}(\mathrm{aq})
$$

$4 \mathrm{KBrO}_{3}(\mathrm{aq})+\underset{\mathrm{KN}_{2}(\mathrm{~g})}{6 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \longrightarrow 4 \mathrm{KBr}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}$

$\mathrm{Fe}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
 نـ 20．4
 $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{S}(\mathrm{s}) \longrightarrow \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$

$$
\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

تركيبات تهجزيه شلدماند：

$$
\begin{aligned}
\mathrm{CaCO}_{3}(\mathrm{~s}) & \longrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) & \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

 $.0,10=M \cdot \mathrm{NaCl} 0, \mathrm{r} 0 \cdot \mathrm{~L}(\mathrm{Z}): 9, \ldots \mathrm{M}, \mathrm{H}_{Y} \mathrm{SO}_{4}$俍

 $0, r 0.0 M, \mathrm{BaCl}_{r} r \omega,=0 \mathrm{~mL}(\tau): 1,000 \mathrm{M}$居

俍

共
 $0, \mathrm{~T} \circ \circ \mathrm{M} \cdot \mathrm{NH}_{T} \circ, \mathrm{VOCL}(r): 0,00 \mathrm{M} \cdot \mathrm{H}_{+} \mathrm{PO}_{+}, 0,0 \mathrm{~mL}(u)$

واكنش هاى مو جود در هحلول

$$
2 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(1)
$$

iver，；
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \longrightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
 Cinl jele

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \xrightarrow[\mathrm{NaC}_{2} \mathrm{O}_{4}(\mathrm{aq})]{ }+2 \mathrm{H}_{2} \mathrm{O}(1)
$$

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\underset{2 \mathrm{NaCl}(\mathrm{aq})}{2 \mathrm{HCl}(\mathrm{aq})}+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \overrightarrow{2 \mathrm{NaCl}(\mathrm{aq})}+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

 متحن

（ Cu（NO $\left.{ }_{\mu}\right)_{Y}$ $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \longrightarrow$

$$
2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

$\mathrm{CuCl}(\mathrm{s}) \Delta_{j} 00 \mathrm{~g}$ 少
：تهيه كن

$$
\left.\begin{array}{rl}
2 \mathrm{CuCl}_{2}(\mathrm{aq})+ & \left.\underset{2 \mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{aq})}{ }+\mathrm{CuCl}_{2} \mathrm{~s}\right)+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow
\end{array}\right)+2 \mathrm{HCl}(\mathrm{aq})
$$

，
 ．

 $\therefore=5$

$$
\begin{aligned}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s}) & +\underset{2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}(\mathrm{l})}{\left.4 \mathrm{KCl}_{2} \mathrm{~s}\right)}+3 \mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{ll} \mathrm{SO}_{4}(\mathrm{~s})\right.
\end{aligned}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

躬

 واكتئنها بها صورت زبر است：

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
& 2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{AiCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

 به صورت زَير است：

$$
\mathrm{NaCl}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

ry j 4 ¢ mL ،

$$
\begin{array}{r}
4 \mathrm{KBrO}_{3}(\mathrm{aq})+6 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \\
6 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{KBr}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

مسانُّل دسته بندى
：

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l})+\mathrm{KI}(\mathrm{~s}) \longrightarrow \mathrm{KNO}_{3}(\mathrm{~s})+\mathrm{NO}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \quad\left(\mathrm{c}^{3} \mathrm{~s}\right)
$$

$$
\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \longrightarrow \mathrm{S}_{4} \mathrm{~N}_{4}(\mathrm{~s})+\mathrm{S}(\mathrm{~s})+\mathrm{HCl}(\mathrm{~g})
$$

$$
\mathrm{TiO}_{2}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{COCl}_{2}(\mathrm{~g})
$$

$$
\mathrm{AgClO}_{3}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{ClO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathrm{AgCl}(\mathrm{~s})+\mathrm{ClO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 （ب）（ب）
基 ：

$$
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \xrightarrow[\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})]{ }
$$

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\begin{aligned}
& 5 \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{KMnO}_{4}(\mathrm{aq})+8 \mathrm{HCl}(\mathrm{aq}) \\
& 5 \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{MnCl}_{2}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

 مىتوان بلصورت زير انجأم داد:
 ميزان بالا بودن دما برحسب درجهُ فارنهايت نسبت به دماي انجهاد آب

است

 يعينمْ

در نتيجه،

 ها -

اندازهْ گيرى گرما

 ا0, 0 اتعريف مى شـد.

$$
1 \mathrm{cal}=4.184 \mathrm{~J} \text { (دقَّقاً) }
$$

در اينجا، اششاره بهـ جند نكته ضروري است: 1 - زولن و كالرى، واحدهاى نسبتأ كر جِى براى اتدازْكِيرى عقادير كُرما شيميايى هستند.

1. Andres Celsius
\therefore \therefore C C ,

 در لولةّ مو يين بالا مكرود.

 كـ

[^0]

شكل ه - - بك بهب گرماسنج

كرماسنج بهدرار زير است:

 قرار داده شُدهـ، آشاز مییشود.

 كل گَ ماسنج و محتوياتآنَا يعنى

$$
\begin{equation*}
C_{\text {toata }}=C_{\mathrm{H}_{4} \mathrm{O}}+C_{\text {cal }} \tag{9-0}
\end{equation*}
$$

 بددست آيد. تعيين اين مقدار، شامل اندازمگيرى افزايشى دماى گرماسنج

 گزازرش ميشدند.

$$
\text { (} \ddagger, \mid A \nmid \text { F/cal })
$$人

$1,000 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right) \quad \mathrm{L}$

㽣
 براي بالا بردن دما
 بالا بردن دماى وا الز جسم به ميزان
 برابر أست با:

$$
\begin{align*}
C & =(p, 7)(0), \mathrm{s} / \mathrm{s}, \mathrm{\xi}) \\
& =[125 \mathrm{~g}]\left[4.184 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)\right] \\
& =523 \mathrm{~J} /{ }^{\circ} \mathrm{C}
\end{align*}
$$

 برايى افزايش دما به ميزاذ 2اشت، بـطرِركلّى،

$$
\begin{equation*}
q=C\left(t_{2}-t_{1}\right) \tag{0-0}
\end{equation*}
$$

 و
 بهصور رت زير متاساسبه مى شـود:

$$
\begin{align*}
q & =C\left(t_{2}-t_{1}\right) \tag{0-0}\\
& =\left(523 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(25.00^{\circ} \mathrm{C}-20.00^{\circ} \mathrm{C}\right) \\
& =\left(523 \mathrm{~J} /{ }^{\circ} \mathrm{C}\right)\left(5.00^{\circ} \mathrm{C}\right) \\
& =2615 \mathrm{~J}=2.62 \mathrm{~kJ}{ }^{*}
\end{align*}
$$

$$
47.0 \mathrm{~kJ} \approx 3.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

 $? \mathrm{~kJ}=180 . \mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\left(\frac{47.0 \mathrm{~kJ}}{3.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)=2.82 \times 10^{3} \mathrm{~kJ}$

 فشار ثابت أست '.

ا.
 0 - ا به ترال زيبر است:
$\mathrm{C}_{\gamma} \mathrm{H}_{4 \mathrm{~T}} \mathrm{O}_{\varphi}+9 \mathrm{O}_{\gamma}(\mathrm{g}) \longrightarrow 9 \mathrm{CO}_{\Gamma}(\mathrm{g})+9 \mathrm{H}_{Y} \mathrm{O}(\mathrm{l})$
توجه كنبد كا 9 مول كُاز (كاز

 أنزايش دما

$$
\begin{equation*}
\mathrm{q}=C_{J 5}\left(t_{2}-t_{1}\right) \tag{0-0}
\end{equation*}
$$

مثال ه - 1

$$
\left.\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{Ol}\right)
$$

 هـحتويات آن بـه كرماسنج
 حِيْ

$$
\begin{aligned}
C & =(\rho, ج)\left(0,9, v^{\prime}, \xi\right) \\
C_{\mathrm{H}, \mathrm{O}} & =\left[1.20 \times 10^{3} \mathrm{~g}\right]\left[4.18 \mathrm{~J} /\left(\mathrm{g}^{0} \mathrm{C}\right)\right] \\
& =5.02 \times 10^{3} \mathrm{~J} /{ }^{\circ} \mathrm{C}=5.02 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

ظرفيت گرمانيى گرماسنج، ، كِّ مايىى كل، C، برابر است با:

$$
\begin{aligned}
C_{\text {total }} & =C_{\mathrm{H}, \mathrm{O}}+C_{\text {cal. }} \\
& =5.02 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}+2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \\
& =7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

دورتيجهd، مقدلار

$$
\begin{align*}
q & =C_{\text {toaat }\left(t_{2}-t_{1}\right)} \\
& =\left(7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(25.50^{\circ} \mathrm{C}-19.00^{\circ} \mathrm{C}\right) \\
& =\left(7.23 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(6.50^{\circ} \mathrm{C}\right) \\
& =47.0 \mathrm{~kJ}
\end{align*}
$$

شكل

 كسرى از يك مول از جسسم است. بنابراين؛

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-286 \mathrm{~kJ}
$$

 :

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-242 \mathrm{~kJ}
$$

 آنز كاز

(l) هنگامىكيكيواكنش بر عكس شوده عامت

$$
\begin{array}{rlrl}
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s}) \longrightarrow \mathrm{HI}(\mathrm{~g}) & \Delta H & =+25.9 \mathrm{~kJ} \\
\mathrm{HI}(\mathrm{~g}) & \longrightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~s}) & \Delta H & =-25.9 \mathrm{~kJ}
\end{array}
$$

 آخر در Y ضرب شوده، مقدار
$2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \quad \Delta H=2(-25.9 \mathrm{~kJ})=-51.8 \mathrm{~kJ}$
 عدد تقسيم كرد.
 خا خصه كرد:

$$
\Delta H_{f}^{\circ}
$$

شكل ه ـ r ب نمودار آنتانْه برايى بكى واكنش گرمازا

$$
\begin{equation*}
\Delta H=H_{\text {laoc , 思j }}-H_{\text {ladinas }} \tag{v-0}
\end{equation*}
$$

 Y Y Y Y Y Y و

 .

 b Y - 1.

هشخصركرد.

$$
\begin{aligned}
& \mathrm{C}\left(\mathrm{H}, \mathrm{H}_{3}, \xi^{3}\right)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g}) \quad \Delta H=-110.5 \mathrm{~kJ} \\
& \begin{aligned}
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{C}(-215)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned} \quad \frac{\Delta H=-283.0 \mathrm{~kJ}}{\Delta H}=-393.5 \mathrm{~kJ}
\end{aligned}
$$

جون با

$\mathrm{C}(4, \mathrm{H})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}(\mathrm{~A}-\mathrm{O})$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-285.9 \mathrm{~kJ}(9-\Delta)$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$（l）（ $\left.\mathrm{l} \cdot-\mathrm{a}\right)$

$$
\Delta H=-890.4 \mathrm{~kJ}
$$

 CH_{4}

$\left(-\mathrm{O}_{\mathrm{i}(\xi)}, 2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta H=\right.$ ？
有
 قبلى آن مى نريسيس：
$\mathrm{C}_{(-\mathrm{a}(\mathrm{B}, \mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}(\mathrm{~s}-\Delta)$二小
 م مغ

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-571.8 \mathrm{~kJ}(\mathrm{li}-\mathrm{\Delta})
$$

1．G．H．HES
㳥 ΔH

 DH
 ｜استوكيومترى حل مى شوندا

r－مثال

－
$2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta H=-848 \mathrm{~kJ}$
 حل حH $-848 \mathrm{~kJ} \approx 2 \mathrm{~mol} \mathrm{Al}$
خري ن وزن اتمى اN براير با

$$
? \mathrm{~kJ}=36.0 \mathrm{~g} \mathrm{Al}\left(\frac{1 \mathrm{~mol} \mathrm{Al}}{27.0 \mathrm{~g} \mathrm{Al}}\right)\left(\frac{-848 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Al}}\right)=-565 \mathrm{~kJ}
$$

$$
\mathrm{C}\left(-\mathrm{i}(\xi)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-393.5 \mathrm{~kJ}\right.
$$

彻

 مختلف الين تعر فـ را بايل توضيح داد.
 و عناصرى در حالتهاي انستانداردشـان باشد.

 و) ΔH_{f}°,

$$
\mathrm{C}(=, 5) \longrightarrow \mathrm{C}(\mathrm{~m}(\mathrm{~L}) \mathrm{L}) \quad \Delta H^{\circ}=+1.9 \mathrm{~kJ}(19-0)
$$

$\mathrm{C}\left((\mathrm{H} / \mathrm{S})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{\circ}=-393.5 \mathrm{~kJ}(1 \mathrm{Y}-0)\right.$
$\mathrm{C}\left(\Omega \mathrm{Na}^{\mathrm{I}}\right)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H^{\circ}=-395.4 \mathrm{~kJ}(\mathrm{IA}-\Delta)$

$$
\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=+142 \mathrm{~kJ} \quad(19-0)
$$

 حبرن در آن موارد، تفاوت

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \Delta H=+890.4 \mathrm{~kJ} \quad(\mathrm{lr}-\Delta)
\end{aligned}
$$

. و (CO ، ، بO

$$
\begin{gather*}
\mathrm{C}_{(\mathrm{c}, \mathrm{~g})}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta H=-393.5 \mathrm{~kJ} \quad(\mathrm{~A}-0) \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H=-571.8 \mathrm{~kJ}(\mathrm{II}-0) \\
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \tag{1r-0}\\
\mathrm{C}_{(\mathrm{e}, 515)}+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})
\end{gather*}
$$

$$
\frac{\Delta H=+890.4 \mathrm{~kJ}}{\Delta H=-74.9 \mathrm{~kJ}}
$$

 H.O Jo

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H=-1531 \mathrm{~kJ} \\
& \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \Delta H=-367.4 \mathrm{~kJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \text { هقدار } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-765.5 \mathrm{~kJ} \\
& 3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta H=-1102.2 \mathrm{~kJ} \\
& 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta H=+857.7 \mathrm{~kJ} \\
& \text { طرفـ } \\
& \text { طرف مe } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta H=-1010.0 \mathrm{~kJ}
\end{aligned}
$$

 هحاسباتى كي در بخشش ه - ها آمعه است

$$
\mathrm{C}(\mathrm{C}
$$

$$
\Delta H_{f}^{\circ}=-74.9 \mathrm{~kJ}
$$

 واكنش زير:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H^{\circ}=?
$$

 محاسبه كرد:

$$
\begin{align*}
& 2 \mathrm{C}\left(0 \mathrm{H}_{\mu}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}^{0}=+52.30 \mathrm{~kJ}\right. \\
& 2 \mathrm{C}\left(=\mathrm{H}^{(\mathrm{e}}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}{ }^{\circ}=-84.68 \mathrm{~kJ}\right. \tag{r1-0}
\end{align*}
$$

 ($\mathrm{C}_{\mathrm{Y}} \mathrm{H}_{+}(\mathrm{g})$,

 .

$$
\begin{aligned}
& \frac{2 \mathrm{C}(-\mathrm{H} 1 \mathrm{~g}) \mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})}{\mathrm{C}_{4} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})} \quad \frac{\Delta H_{f}^{\circ}=-84.68 \mathrm{kI}}{\Delta H_{f}^{\circ}=-136.98 \mathrm{~kJ}}
\end{aligned}
$$

 را درنظر گرفت:
2
2

 برصورت دو اتمى هستنـ (

 atm

 أنتاليى تشكيل، نوع معينى از تغيير آنتالِى است. در واقع معادير
 معادير

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H_{f}^{\circ} & =-285.9 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HI}(\mathrm{~g}) & \Delta H_{f}^{\circ} & =+25.9 \mathrm{~kJ}
\end{aligned}
$$

$2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

$$
\Delta H^{\circ}=-2 \Delta H_{f}^{\circ}=+92.38 \mathrm{~kJ}
$$

در واكنش (يعنى

$$
3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}^{(\mathrm{g})}
$$

$$
\frac{2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})}{2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g})}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=6 \Delta H_{f}^{\circ}=-553.80 \mathrm{~kJ} \\
& \Delta H^{\circ}=-2 \Delta H_{f}^{*}=+92.38 \mathrm{~kJ} \\
& \hline \Delta H^{\circ}=\quad-461.42 \mathrm{~kJ}
\end{aligned}
$$

و (If $\mathrm{Cl}_{Y}(\mathrm{~g})$) عبارت (
 تدارك ويئها
r.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

0. 0 هثال

بر مبناي

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g})
$$

$$
\Delta H^{\triangleright}=-493.4 \mathrm{~kJ}
$$

 در اين مورد، مندار ΔH° هر واكتش معلوم است و متدار ΔH° بكى از موارد واكنثد دهنده را نيز بهدست مى آَوريب:

$\Delta H^{\circ}=2 \Delta H_{f}^{\circ}\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)-\left[\Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)+6 \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ $-493.4 \mathrm{~kJ}=(2 \mathrm{~mol})(-1088.7 \mathrm{~kJ} / \mathrm{mol})-\left[(1 \mathrm{~mol}) \Delta H_{f}^{c}\left(B_{2} H_{6}\right)\right.$ $+(6 \mathrm{~mol})(-285.9 \mathrm{~kJ} / \mathrm{mol})]$

$$
\begin{aligned}
& =3 \Delta H_{f}\left(\mathrm{CO}_{2}\right)-\left[\Delta H_{f}^{*}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)+3 \Delta H_{f}(\mathrm{CO})\right] \\
& =(3 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})-[(1 \mathrm{~mol})(-822.2 \mathrm{~kJ} / \mathrm{mol}) \\
& +(3 \mathrm{~mol})(-110.5 \mathrm{~kJ} / \mathrm{mol})] \\
& =-1180.5 \mathrm{~kJ}+1153.7 \mathrm{~kJ}=-26.8 \mathrm{~kJ}
\end{aligned}
$$

استغاده از آنتالتى تشكيل برایى بهدست آوردن هتادير
1
Y - عبارتهاى معادله زير را جايگز: نز كنيد:"

الف - عبارت
 ب - عبارت (و)

 ضرب ميكنيمـ
براي عناصرى كه در فشار

- ا

 تعداد موللهایى
 , $\sum \Delta H_{f(\text { angaj) }}^{\circ}$)

$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g}) \quad \Delta H^{\circ}=?$

$3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{HCl}(\mathrm{g})$

$$
\Delta H^{\circ}=6 \Delta H_{S}=-553.80 \mathrm{~kJ}
$$

 (نيز NH $\mathrm{NH}_{\varphi}(\mathrm{g})$

$$
\begin{aligned}
& =6 \Delta H_{f}(\mathrm{HCl})-2 \Delta H_{f}\left(\mathrm{NH}_{3}\right) \\
& =(6 \mathrm{~mol})(-92.30 \mathrm{~kJ} / \mathrm{mol})-(2 \mathrm{~mol})(-46.19 \mathrm{~kJ} / \mathrm{mol}) \\
& =-553.80 \mathrm{~kJ}+92.38 \mathrm{~kJ}=-461.42 \mathrm{~kJ}
\end{aligned}
$$

 انرثى كل لازم براى شيكستن بيرندها $(\Delta H=+\mu \mu \Delta \mathrm{kJ}+7 \mathrm{FrkJ}=+9 \mathrm{VAKJ})$
,
 واكنشرهاى زير را درنظر بـيزيدي:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g}) \quad \Delta H=2 \Delta H_{f}^{\circ}=+180.74 \mathrm{~kJ}$

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}(\mathrm{~g}) \quad \Delta H=+941 \mathrm{~kJ}
\end{aligned}
$$

 تشكيل بيوندها. واكنش گرمهائير است:

$$
\Delta H=+1435 \mathrm{~kJ}-1254 \mathrm{~kJ}=+181 \mathrm{~kJ}
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g}) \quad \Delta H=+181 \mathrm{~kJ}
$$

 اين شيوه راگحترش

 مى

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

$$
\Delta H=+926 \mathrm{~kJ}
$$

$$
\begin{aligned}
-493.4 \mathrm{~kJ} & =-2177.4 \mathrm{~kJ}-\left[(1 \mathrm{~mol}) \Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)-1715.4 \mathrm{~kJ}\right] \\
-493.4 \mathrm{~kJ} & =-462.0 \mathrm{~kJ}-(1 \mathrm{~mol}) \Delta H_{f}^{\circ}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right) \\
\Delta H_{f}\left(\mathrm{~B}_{2} \mathrm{H}_{6}\right) & =+31.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

 :H-H بـصورت

$$
\begin{aligned}
\mathrm{H}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g}) & \Delta H & =+435 \mathrm{~kJ} \\
\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{~g}) & \Delta H & =+243 \mathrm{~kJ} \\
\mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) & \Delta H & =+431 \mathrm{kJJ}
\end{aligned}
$$

 تغيير كند:

$$
\mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \quad \Delta H=-431 \mathrm{~kJ}
$$

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta H=2 \Delta H_{j}^{\circ}=-184.6 \mathrm{~kJ}$ مقذار ΔH اين واكنش، دو برابر آنتالّى تشكيل HCl(g) است، زيـرا
 ر $\Delta \mathrm{H}$

$$
:=\sim \mathrm{H}-\mathrm{Cl}
$$

$$
\begin{aligned}
\mathrm{H}-\mathrm{H}(\mathrm{~g}) & \longrightarrow 2 \mathrm{H}(\mathrm{~g}) & \Delta H & =+435 \mathrm{~kJ} \\
\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) & \longrightarrow 2 \mathrm{l}(\mathrm{~g}) & \Delta H & =+243 \mathrm{~kJ} \\
2 \mathrm{H}(\mathrm{~g})+2 \mathrm{Cl}(\mathrm{~g}) & \longrightarrow \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) & \Delta H=2(-431 \mathrm{~kJ}) & =-862 \mathrm{~kJ}
\end{aligned}
$$

جمع معادلههاى بالا، قتنين است:
$\mathrm{H}-\mathrm{H}(\mathrm{g})+\mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow 2 \mathrm{H}-\mathrm{Cl}(\mathrm{g})$ $\Delta H=-184 \mathrm{~kJ}$
 ΔH

$\mathrm{N}-\mathrm{N}$	$+159 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{C}+347 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}-\mathrm{N}$
$\mathrm{N}=\mathrm{N}$	$+293 \mathrm{~kJ} / \mathrm{mol}$		
$\mathrm{N}=\mathrm{N}$	$+4 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{C}+619 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{N}$
$\mathrm{N}=\mathrm{N}$	$+616 \mathrm{~kJ} / \mathrm{mol}$		
$\mathrm{NJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{C}+812 \mathrm{~kJ} / \mathrm{mol}$	$\mathrm{C}=\mathrm{N}$	$+879 \mathrm{~kJ} / \mathrm{mol}$

 بايد سهـ عامل را درنظر كـرفت:

باله -

 حساب كنيد: $2 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{g})+3 \mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{N} \equiv \mathrm{N}(\mathrm{g})+6 \mathrm{H}-\mathrm{Cl}(\mathrm{g})$

ل

ب".

$$
\begin{array}{cl}
\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{H}(\mathrm{~g})+\mathrm{O}-\mathrm{H}(\mathrm{~g}) & \Delta H=+501 \mathrm{~kJ} \\
\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{O}(\mathrm{~g})+\mathrm{H}(\mathrm{~g}) & \Delta H=+425 \mathrm{~kJ}
\end{array}
$$

 (يبرند

 $\Delta H L$ ）

درنتّجهي：

6 mol of $\mathrm{N}-\mathrm{H}$ Ladig $\quad 6 \mathrm{~mol}(+389 \mathrm{~kJ} / \mathrm{mol})=+2334 \mathrm{~kJ}$
3 mol of $\mathrm{Cl}-\mathrm{Cl}$ ها Cl ن $3 \mathrm{~mol}(+243 \mathrm{~kJ} / \mathrm{mol})=+729 \mathrm{~kJ}$ ：ينيوناهاهي تشـكيل ششده

 （يتنى（

قرإنبن H

$$
\begin{aligned}
& 2 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}(\mathrm{~g})+6 \mathrm{H}(\mathrm{~g}) \\
& \Delta H=6(+389 \mathrm{~kJ})=+2334 \mathrm{~kJ} \\
& \text { سه مول } \\
& 3 \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \longrightarrow 6 \mathrm{Cl}(\mathrm{~g}) \\
& \Delta H=3(+243 \mathrm{~kJ})=+729 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{~N}(\mathrm{~g}) \longrightarrow \mathrm{N}=\mathrm{N}(\mathrm{~g}) \quad \Delta I=-94 \mathrm{lkJ}
\end{aligned}
$$

$$
\begin{aligned}
& 6 \mathrm{H}(\mathrm{~g})+6 \mathrm{Cl}(\mathrm{~g}) \longrightarrow 6 \mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \\
& \Delta H=6(-431 \mathrm{~kJ})=-2586 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g}) \\
& \Delta H=-464 \mathrm{~kJ}
\end{aligned}
$$

 Lo 弓 ulates \＆ $2 j$ ，

ΔH 首

 مقياس سـلسيوس الست

 3 أكنی

药
 راك

 ～n ΔH ，

 آبا Calorie，cal

مفاهيم كلينـي

Bond energy تـ

$$
\because
$$

جوثّ ترمال آبي

 Heat capacity
 Joule, J $1 \mathrm{kgm}{ }^{\varphi} / \mathrm{s}^{\mu}$. Law of Hess, Law of constant heat summation

 Polyatomic molecule

شُامل بيشّ از دد اتم باثند. Specific heat
 Temperature
 Thermochemistry شربوط به تغييرات ثيمبابیى و فيزبكى.

 ا

 - 90 okg

معادلات كرماشيميايى

$$
\left.\mathrm{Br}_{2}(1)+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BrCl}_{\mathrm{g}}\right) \Delta H=+29.4 \mathrm{~kJ} \quad \text { (لن) }
$$

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \Delta H=-176 \mathrm{~kJ}
$$

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=+58.0 \mathrm{~kJ}
$$

$$
\begin{equation*}
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCl}_{4}(\mathrm{l})+\underset{\Delta H}{ } \mathrm{~S}_{2} \mathrm{Cl}_{2}(\mathrm{l}) \tag{د}
\end{equation*}
$$

(

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N} \cdot(\mathrm{~g}) \Delta H=+42.7 \mathrm{~kJ} \text { (ell) }
$$

* آهده است.
تبريت مئشود.

Calorimeter
 Celsius temperature scale هقياس انمازم دماي جوش نرمال آب مبتنى است. (بشتش Qndothermic reaction

Energy Enthalpy, H

 Enthalpy of formation

 تيبميإبي كد كرما آلزد كند. Fahrenheit temperature scale

مسائل

انذازه گيرى دما، گرماسنـج ا 0

 SE- 0 8-0 9

 fink

 سرب اذ

路
 جقا (號 بيده استا 10-0.
 .
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{BCl}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{g}) \quad$ (al) $\Delta H=-112.5 \mathrm{~kJ}$
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{~s})+6 \mathrm{H}_{2}(\mathrm{~g}) \quad(\mathrm{g})$
$\Delta H=-493.4 \mathrm{~kJ}$
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{g}) \quad \Delta H=-92.3 \mathrm{~kJ} \quad(\mathrm{\imath})$

$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BCl}_{3}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{g})$

- Q O
$\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})$
$\Delta H=-276.6 \mathrm{~kJ}$
$\mathrm{SF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{g}) \quad 4 \mathrm{H}=-827.5 \mathrm{~kJ}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta H=-296.9 \mathrm{~kJ}$

$2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{OF}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{SF}_{4}(\mathrm{~g})$

$$
\mathrm{OSCl}_{2}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{SO}_{2}(\mathrm{~g})+2 \underset{\Delta H=}{2 \mathrm{HCl}(\mathrm{~g})}+10.3 \mathrm{~kJ} \text { (ill) }
$$

$$
\mathrm{PCl}_{3}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{OPCl}_{3}(\mathrm{l}) \quad \Delta H=-325.1 \mathrm{~kJ}
$$

$$
\mathrm{P}(\mathrm{~s})+{ }_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PCl}_{3}(1) \Delta H=-306.7 \mathrm{~kJ}
$$

$$
\begin{array}{r}
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}_{2}(\mathrm{~g})+ \\
\hline
\end{array} 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .202 .6 \mathrm{~kJ} .
$$

. هـدار
$2 \mathrm{P}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \underset{2 \mathrm{OSCl}_{2}(\mathrm{l})}{ }+2 \mathrm{OPCl}_{3}(\mathrm{l})$

$2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow$
$\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H=-1195.6 \mathrm{~kJ}$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H=-622.4 \mathrm{~kJ} \quad(ب)$
$\begin{aligned} & 4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \Delta \mathrm{H}=-1530.6 \mathrm{~kJ}\end{aligned}$

$3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+4 \mathrm{ClF}_{3}(\mathrm{~g}) \longrightarrow$
$3 \mathrm{~N}_{2}(\mathrm{~g})+12 \mathrm{HF}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g})$
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g}) \Delta H=-89.4 \mathrm{~kJ}$
$\mathrm{SnCl}_{2}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SnCl}_{4}(\mathrm{l}) \quad \Delta H=-195.4 \mathrm{~kJ} \quad(\mathrm{\imath})$
$2 \mathrm{HgO}(\mathrm{s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H=+181.4 \mathrm{~kJ}$

 .
斯 سوخت ,

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta H=-622.4 \mathrm{~kJ}
$$

الز س, الز俍 اتيّل|

Lر الث أزا
:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g}) \quad \Delta H=+42.7 \mathrm{~kJ}$

$2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta H=-1010 \mathrm{~kJ}
$$

 أزا
:

$$
\begin{align*}
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g}) \\
\Delta H=-562.6 \mathrm{~kJ} \\
\mathrm{CS}_{2}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \tag{ب}\\
\Delta H=-1075.2 \mathrm{~kJ}
\end{align*}
$$

.

$$
\mathrm{CS}_{2}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \underset{: \mathrm{CO}_{2}(\mathrm{~g})}{\longrightarrow}+{ }_{2} \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

$$
\begin{gather*}
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{الف}\\
\Delta \mathrm{H}=-1010 \mathrm{~kJ} \\
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-1531 \mathrm{~kJ}
\end{gather*}
$$

شیدار $\mathrm{N}_{2}(\mathrm{~g})+\frac{\left.\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O} \mid \mathrm{g}\right)}{}$: 0

 ，
 ，در ，

 بV Y 0 O

$$
\begin{array}{r}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{CaCN}_{2}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H^{\circ}=+90.1 \mathrm{~kJ}
\end{array}
$$

 A F F
$\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{f}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
$\Delta H^{\circ}=-125.3 \mathrm{~kJ}$
 ．1．5 aculena

انرزّى ，بيوند
相 تشتكيل مقأبسا كنيّد．左 تشكيل
$\mathrm{N}=\mathrm{N}(\mathrm{g})+2 \mathrm{H}-\mathrm{H}(\mathrm{g}) \longrightarrow \mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}(\mathrm{g})$
H H
O O 0

$$
\mathrm{XeF}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HF}(\mathrm{~g})+\mathrm{Xe}(\mathrm{~g})
$$

$$
\Delta H=-430 \mathrm{~kJ}
$$

و التوز يبونـا

 $\Delta H(T-\partial J, 1 \rightarrow)$（ \quad ） واكثش زير وا محاسبـ كنيلد：

：

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HNO}_{3}(\mathrm{l}) \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \\
\Delta H=-145.7 \mathrm{~kJ} \\
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-125.2 \mathrm{~kJ} \\
3 \mathrm{NO}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=-1169.2 \mathrm{~kJ} \\
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta H=-1169.2 \mathrm{~kJ} \\
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=-56.6 \mathrm{~kJ}
\end{gathered}
$$

مشدار

$$
\begin{align*}
& 3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{HNO}_{3}(\mathrm{l})+\mathrm{NO}(\mathrm{~g}) \\
& \text { : } \\
& 2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \text { (eil) } \\
& \Delta H=-1010 . \mathrm{kJ} \\
& \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad(ب) \\
& \Delta H=-317 . \mathrm{kJ} \\
& \begin{aligned}
2 \mathrm{NH}_{3}(\mathrm{~g}) & +\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow
\end{aligned} \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-143 \mathrm{~kJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{ll}) \Delta \mathrm{H}=-286 . \mathrm{kJ} \tag{o}
\end{align*}
$$

號

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

آنتالِي تشيكيل
الـ 0

AgCl（s），$-127 \mathrm{~kJ} / \mathrm{mol}$（الف）
$\mathrm{NO}_{2}(\mathrm{~g}),+33.8 \mathrm{~kJ} / \mathrm{mol}(ب)$
$\mathrm{CaCO}_{3}(\mathrm{~s}),-1206.9 \mathrm{~kJ} / \mathrm{mol}$（飞）
而
）
$\mathrm{CS}_{2}(\mathrm{I}),+87.86 \mathrm{~kJ} / \mathrm{mol}(ب)$
$\mathrm{HCN}(\mathrm{g})_{2}+130.5 \mathrm{~kJ} / \mathrm{mol}$（ل）
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}),-365.1 \mathrm{~kJ} / \mathrm{mol}(-)$
－－－
楊 $\Delta \mathrm{H}^{\circ}$
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})$
－－ 0明 $\Delta \mathrm{H}^{\circ}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
（－O
 $2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow$ $2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
 ，ΔH°
$\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{HF}(\mathrm{g})$

碞

$$
\mathrm{C}(\mathrm{E}(\mathrm{i}(\mathrm{~S}) \longrightarrow \mathrm{C}(\mathrm{~g}) \quad \Delta H=+717 \mathrm{~kJ}
$$

 تشكيل

$$
\mathrm{C}(\sim \mathrm{e} \mid, 5)+2 \mathrm{H}-\mathrm{H}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}
$$

$$
C(\because, 1,5) \longrightarrow C(g) \quad \Delta H=+717 \mathrm{~kJ}
$$

 : =0

$$
2 \mathrm{ClF}_{3}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HF}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-1195.6 \mathrm{~kJ}
$$

$$
\text { و - } 0
$$

$$
\text { - - } 0
$$

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})
$$

$$
\Delta H=-397 \mathrm{~kJ}
$$

$$
\begin{equation*}
\mathrm{PCl}_{5}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})+\underset{\Delta H=-136 \mathrm{~kJ}}{5 H \mathrm{~g})} \tag{ب}
\end{equation*}
$$

$\mathrm{OPCl}_{3}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{g})$

$$
\Delta H=-68 \mathrm{~kJ}
$$

$$
\text { مقدار } \Delta H \text { واكثش زبر را بيابيل: }
$$

$$
\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{PCl}_{5}(\mathrm{~s}) \longrightarrow 100 \mathrm{PCl}_{3}(\mathrm{l})
$$

准 $\mathrm{H}_{Y} \mathrm{C}_{0} \mathrm{H}_{8} \mathrm{O}_{F}(\mathrm{~s})$ (بهب گُرماسنع در (g)
 1,000

$$
\begin{aligned}
4 \mathrm{H}-\mathrm{N}-\mathrm{H}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) & \\
& 2 \mathrm{~N} \equiv \mathrm{~N}(\mathrm{~g})+6 \mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g})
\end{aligned}
$$

$\Delta H(Y-0$ و 0 و 0 - 0
واكتش زبر را هسالسبه كيندي

 ,

$$
4 \mathrm{H}-\mathrm{Cl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \underset{2 \mathrm{H}}{\longrightarrow}-\mathrm{O}-\mathrm{H}(\mathrm{~g})+2 \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g})
$$

$$
\mathrm{F}-\mathrm{O}-\mathrm{F}(\mathrm{~g})+\mathrm{H}-\mathrm{O}-\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}-\mathrm{F}(\mathrm{~g})
$$

 راكثش زير را محاسبه كنيدت:

 ΔH (

واكنيّ زبر را هحاسبـه كنيد :

㳯 تشكيل

$$
\begin{aligned}
& \frac{1}{2} \mathrm{H}-\mathrm{H}(\mathrm{~g})+\mathrm{C}(\underset{\square}{4})+\frac{1}{2} \mathrm{~N} \equiv \mathrm{~N}(\mathrm{~g}) \xrightarrow[\mathrm{H} \quad \mathrm{C}=\mathrm{N}(\mathrm{~g})]{\longrightarrow}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C C C C = N }
\end{aligned}
$$

$$
\begin{aligned}
& n=1,+, \ldots v \operatorname{ch}^{\prime} \cos x
\end{aligned}
$$

ساختار الكترونى اتمهها

$$
\begin{equation*}
\lambda y=c \tag{1-9}
\end{equation*}
$$

و به اين ترتيب،

$$
\begin{equation*}
v=\frac{c}{\lambda} \tag{Y-8}
\end{equation*}
$$

$$
1 \mathrm{~Hz}=1 / \mathrm{s}
$$

 نامشاذلارى شده است.
طليف الموالج الكترو مغناطيسي در شكا

1. Infrared waves

2. Intensity

据

4. Heinrich Hertz

. $10^{-1 *} \mathrm{~m} \cdot(\AA)$ ($)$ o

 .

$$
\hat{A}=10^{-1} \cdot \mathrm{~m}=10^{-1} \mathrm{~cm}
$$

$\backslash \mathrm{nm}=10^{-4} \mathrm{mt}=10^{-v} \mathrm{~cm}$

 خواح شـيميايى آن اتم استا
 الكترومفغناهِيسى بهدست آملده است. در نتيجه ابتّا با به ماميّت و و نوع اين

 زيو أستفاده میشود.

 a هوجشانان، با سرعت بكسان،

 ثانيه (سرعت نرو) است:

(الفـ) معادلّ 9 -

$$
? \mathrm{~m}=700 . \mathrm{nm} \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=7.00 \times 10^{-7} \mathrm{~m}
$$

$$
\begin{align*}
v & =\frac{c}{\lambda} \tag{r-9}\\
& =\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.00 \times 10^{-7} \mathrm{~m}}=4.29 \times 10^{14} / \mathrm{s}
\end{align*}
$$

$$
v=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.00 \times 10^{-7} \mathrm{~m}}=7.50 \times 10^{14} / \mathrm{s}
$$

 موج بلندتر از بك نقطه ميكذرند.

1. Mas Plank

1-9
 طول موج Foonm تمقدر است؟

 مثالا، بنغثن با آبى، آبى با سبز و غيرهـ

 میتو انْ از معادله زير به دست آورد: $v=\frac{c}{\lambda}=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right) \quad n=3,4,5 \ldots(\uparrow-9)$
 إين رابطه، در

نظريأ بوهر

نكتههاى زير بود.

2. Bunsen flame

1. Albert Einstcin

$$
\begin{equation*}
E=h v \tag{r-9}
\end{equation*}
$$

مثال 9 -
 (ب) نور بنقش با فركانس

ل
 ثابت تالانكى
(الف) $E=h \nu$

$$
\begin{align*}
& =\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.29 \times 10^{14} / \mathrm{s}\right) \tag{r-9}\\
& =2.84 \times 10^{-19} \mathrm{~J}
\end{align*}
$$

(ب) $E=\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(7.50 \times 10^{14 / \mathrm{s})}\right.$

$$
=4.97 \times 10^{-19} \mathrm{~J}
$$

 شكل 9 - T را بيبنيد) استـ.

وت Tr - Y

 ناجيه برئى

$$
\begin{equation*}
v=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{0}^{2}}\right) \tag{1-9}
\end{equation*}
$$

 بالاتر به تراز
$\mathrm{v}=\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{n_{0}^{2}}\right) \quad n=3,4,5 \ldots$

 طيفى در شـكل تراز

 n $n=r$

r-9 مثال res
 n $n=r$

ل

1. Ground state
2. Excited state
3. Lyman series
4. Paschen series

$$
, L ; G \tilde{\sim}_{0} 0 \text {, is }
$$

 P P

 قرار دارند.

$E_{j L_{0}}=-\frac{\left(2.179 \times 10^{-18} \mathrm{~J}\right)}{n^{2}} \quad n=1,2,3 \ldots$
 يكى لابه درونى (n) را با با

 بنابراين،

$$
\begin{align*}
& h v=E_{0}-E_{\mathrm{i}} \\
& h v=\frac{\left(-2.179 \times 10^{-18} \mathrm{~J}\right)}{n_{\mathrm{o}}^{2}}-\frac{\left(-2.179 \times 10^{-18} \mathrm{~J}\right)}{n_{\mathrm{i}}^{2}} \\
& h v=\left(2.179 \times 1 E_{\mathrm{o}}^{-18} \mathrm{~J}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{0}^{2}}\right)
\end{align*}
$$

$$
h=9,9 \times 9 \times 10^{-r t ~ J . s ~} 0
$$

$$
v=\left(\frac{2.179 \times 10^{-18} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}\right)\left(\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{\mathrm{o}}^{2}}\right)
$$

 جا جاول خو

 (Ar ،Ne ،He ، H ((Rn g ، Xe ، Kr

 S(Br g , Cl ، Cl)

 سيستم تناوبى بوده، بستگى دارد ارد.

قائون تناوبى موزلى كار هنرى موزلم "

 3 3 (3 (
 ريافت S

الز

[^1]\[

$$
\begin{align*}
v & =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{0}^{2}}\right) \\
& =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\
& =\left(3.289 \times 10^{15} / \mathrm{s}\right)\left(\frac{1}{4}-\frac{1}{9}\right) \\
& =0.4568 \times 10^{15} / \mathrm{s}=4.568 \times 10^{14} / \mathrm{s}
\end{align*}
$$
\]

طول موج وا مىتوان از مادللّ 9 ـ بَ به دست آورد. $\lambda=\frac{c}{v}$

$$
\begin{align*}
& =\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{4.568 \times 10^{14} / \mathrm{s}} \tag{r-4}\\
& =6.563 \times 10^{-7} \mathrm{~m}=656.3 \mathrm{~nm}
\end{align*}
$$

 $? \mathrm{~nm}=6.563 \times 10^{-7} \mathrm{~m}\left(\frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}\right)=6.563 \times 10^{2} \mathrm{~nm}$ $=656.3 \mathrm{~nm}$

 (Te،Se ،S!I ، Br ، Cl
 عنصر ديگر اسـتـ)

دوران جلا

	0,										
-											b (0)
1	$\begin{aligned} & \mathrm{H} \\ & \text { t. } \end{aligned}$										$\begin{aligned} & \mathrm{He} \\ & 4.0 \\ & \hline \end{aligned}$
2	$\frac{4}{69}$	$\begin{aligned} & \mathrm{Be} \\ & 90 \end{aligned}$	$\begin{array}{r} B \\ +08 \end{array}$	$\begin{array}{r\|} \hline c \\ 12.0 \end{array}$	$\begin{array}{r} \mathrm{N} \\ +4.0 \end{array}$	$\begin{array}{r} 0 \\ 160 \end{array}$	$\begin{array}{r} F \\ 190 \end{array}$				$\begin{aligned} & \mathrm{Ne} \\ & 20.2 \end{aligned}$
3	$\begin{aligned} & \mathrm{Na} \\ & 230 \end{aligned}$	$\begin{aligned} & \mathrm{Mg} \\ & 24.3 \end{aligned}$	$\begin{array}{r} \text { Al } \\ 27.0 \end{array}$	$\begin{array}{r} 8 \\ 28.1 \end{array}$	$\begin{array}{r} p \\ 31.0 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{S} \\ 32.1 \end{array}$	$\begin{array}{r} 61 \\ 35.5 \end{array}$				$\begin{array}{\|l\|} \hline \text { Ar } \\ 38.9 \\ \hline \end{array}$
	$\begin{aligned} & k \\ & 39.1 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{Ca} \\ 40.1 \end{array}$	$\begin{array}{\|l\|} \hline S C \\ 45.0 \end{array}$	\int_{47}	$\begin{aligned} & V \\ & 509 \end{aligned}$	$\begin{aligned} & \mathrm{er} \\ & 52.0 \end{aligned}$	$\begin{aligned} & \mathrm{Mn} \\ & 54.9 \end{aligned}$	$\begin{aligned} & \mathrm{Fe} \\ & 55.8 \end{aligned}$	$\begin{aligned} & 60 \\ & 58.9 \end{aligned}$	$\begin{aligned} & \mathrm{Ni} \\ & 58.7 \end{aligned}$	
4	$\begin{array}{r} \mathrm{Cu} \\ 635 \end{array}$	$\begin{array}{r} 2 n \\ 65.4 \end{array}$	$\begin{array}{r} \mathrm{Ga} \\ 69.7 \end{array}$	$\begin{array}{r} \mathrm{Ge} \\ 72.6 \\ \hline \end{array}$	$\begin{array}{r} \text { As } \\ 74.9 \\ \hline \end{array}$	$\begin{array}{r} 5 \mathrm{e} \\ 79.0 \end{array}$	$\begin{array}{r} \mathrm{Br} \\ 79.9 \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline \mathrm{Kr}_{r} \\ 83.8 \\ \hline \end{array}$
	$\begin{aligned} & 80 \\ & 85.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & 876 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & 889 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{Zr} \\ 91.2 \end{array}$	$\begin{array}{\|l\|l} \mathrm{Nb} \\ 92.9 \\ \hline \end{array}$	$\begin{aligned} & \text { Mo } \\ & 959 \end{aligned}$	Te	$\begin{aligned} & \mathrm{Ru} \\ & 101.1 \end{aligned}$	$\begin{aligned} & \text { Fh } \\ & 1029 \end{aligned}$	$\begin{aligned} & \mathrm{Pd} \\ & 100.4 \end{aligned}$	
5	$\begin{array}{r} \mathrm{Ag} \\ 1079 \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ 112.4 \end{array}$	$\begin{array}{r} \text { If } \\ 114.8 \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ 118.7 \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ 121.8 \end{array}$	$\begin{array}{r} \mathrm{Te} \\ 127.8 \end{array}$	126.9				Xe 131.3
	$\begin{aligned} & \mathrm{Cs} \\ & 1329 \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & 137.3 \end{aligned}$	$\begin{aligned} & \text { La* } \\ & 138.9 \end{aligned}$	$\begin{aligned} & \mathrm{Hif} \\ & 178.5 \end{aligned}$	Ta 1809	$\begin{aligned} & W \\ & 1839 \end{aligned}$	$\begin{aligned} & R e \\ & 186.2 \end{aligned}$	$\begin{aligned} & \text { Os } \\ & 1902 \end{aligned}$	$\begin{aligned} & \text { It } \\ & 1922 \end{aligned}$	$\begin{aligned} & P_{1} \\ & 195,1 \end{aligned}$	
6	$\begin{array}{r} \mathrm{Au} \\ 1970 \end{array}$	$\begin{array}{r} \mathrm{Hg} \\ 200 \cdot 6 \end{array}$	$\begin{array}{r} \pi \\ 204.4 \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ 207.2 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ 209.0 \end{array}$	Po	At				An
7	Er	Pa	$A c^{* *}$								

*	$\begin{aligned} & \mathrm{Ce} \\ & 140.1 \end{aligned}$	Pr 140.9	Nd 144.2	Pm	$\begin{aligned} & \mathrm{Sm} \\ & 150.4 \end{aligned}$	$\begin{aligned} & \mathrm{Eu} \\ & 152.0 \end{aligned}$	$\begin{aligned} & \mathrm{Gd} \\ & 157.3 \end{aligned}$	$\begin{aligned} & \text { Tb } \\ & 158.9 \end{aligned}$	$\begin{aligned} & \text { Dy } \\ & 162.5 \end{aligned}$	$\begin{aligned} & \mathrm{Ho} \\ & 64.9 \end{aligned}$	Er 167.3	$\operatorname{Tm}_{168.9}$	$\begin{aligned} & \text { Yb } \\ & 173.0 \end{aligned}$	$\begin{aligned} & \text { Lu } \\ & 175.0 \end{aligned}$
\cdots	$\begin{aligned} & \text { Th } \\ & 2320 \end{aligned}$	Pa	$\begin{aligned} & U \\ & 238.0 \end{aligned}$	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	Lr

$19 . \mathrm{VEINHF}$ ،

X
setsectit

شيهميا يـ هشابي هـيتنا.

 نشان داده شده است.
 اين كتاب ابست.

 (

N:90

 بار بيش

شـ
(الف) در بازى بيسبال، سرعت توب

居 $19 \times 10^{\circ} \mathrm{m} / \mathrm{s}$

$$
h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=6.63 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
$$

(ل) $\lambda=\frac{h}{m v}$
ح

$$
\begin{align*}
& =\frac{6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{(0.146 \mathrm{~kg})(44.1 \mathrm{~m} / \mathrm{s})} \tag{1r-9}\\
& =1.03 \times 10^{-34} \mathrm{~m}
\end{align*}
$$

(ب) $\lambda=\frac{h}{m v}$

$$
\begin{align*}
& =\frac{6.63 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)} \tag{1r-9}\\
& =3.32 \times 10^{-10} \mathrm{~m}=0.332 \mathrm{~nm}
\end{align*}
$$

 ناحيءُ اششعه X طيف الكتبرومغناطيسي قرار دارد.

اصل ملدم فطعيت هايزيز نبرتي

1. Louis de Broglie
2. Momentum
3. Clinton Davisson
4. Lester Germer

سهرلت كاربرد آن الكُر بستگى دارد.

رابطهُ دوبروى

$$
\begin{equation*}
E=h \nu \tag{r-9}
\end{equation*}
$$

$$
\begin{equation*}
E=h^{c} \frac{c}{\lambda} \tag{4-9}
\end{equation*}
$$

با الستفاده زل معادلٌ اينشتين،

$$
\begin{equation*}
m c^{2}=h \frac{c}{\lambda} \tag{10-9}
\end{equation*}
$$

با حل كردن اين معادله برايى λ ، طول مورج:

$$
\begin{equation*}
\lambda=\frac{h}{m c} \tag{11-9}
\end{equation*}
$$

براساس نظريةٌ دوبروى، معاللّة مثـابابهى را براى طول مبرج الكترون نيز میتوان به دست داد:

$$
\begin{equation*}
\lambda=\frac{h}{m v} \tag{1r-9}
\end{equation*}
$$

كه در آن m جرم الكترون و و

$$
\begin{equation*}
\Delta x \Delta m v \geq \frac{h}{4 \pi} \tag{15-9}
\end{equation*}
$$

$$
\begin{equation*}
\Delta v \geq \frac{h}{4 \pi m \Delta x} \tag{14-9}
\end{equation*}
$$

(الف)

$$
\begin{aligned}
\Delta v & \geq \frac{5.28 \times 10^{-35} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{(0.146 \mathrm{~kg})\left(1.00 \times 10^{-11} \mathrm{~m}\right)} \\
& \geq 3.62 \times 10^{-23} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

است كه جابهجاييا

$$
\text { (ب) } \begin{aligned}
\Delta v & \geq \frac{5.28 \times 10^{-35} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.00 \times 10^{-11} \mathrm{~m}\right)} \\
& \geq 5.80 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

 مرجى آن بياذ كرد.

معادلهُ شروديتُر

 حركت سريع آّن باصورت ابرى از بار فرض میشود. جـكالى اين ابر در
 كشف شـد

 .

 الكترون سبب تشـديد أندازه حركت آن میشيود.

بزركتر از ثابت ڤلانكا، h، تقسبم بر

مثال 9-9
 (ب) بكى اللكترون (جرم،
 ه1\% شعاع يكى اتم معهولى است) تعيين شده باشذ.

 شختصـات ترار دارد).
 .

 حالت 1 = 1 اتم هيدرورّن، در شكل 9 - 1 ا 1 نشانان داده شده است.

در مكانيك موجي (يا مكانيك كو انتومى) ترزيع الكترون در اتمى كي

 الكترون هستند.
علد كوانتومى اهلى، n، تقريباً بـ nبيان شـده تون الوسط بوهر مريوط

 زياد اسست. مثّار n، يك علدد صشتع مئبت الست:

$$
n=1,2,3 \ldots
$$

 در آن لا يه باللاتر است

 n= n

[^2]

(ب)
(all)

هبيردزن

بعضى نواحى بيشتر است. احتمال بيدا كردن الكترون در يكى نـاحبهـ

 براى الكتتورنى در حالت

 (ز هسته، باسوري صفر ميل مى كند. منحنى (ب)، منحنى توزيع شعاعى است. احتمال كلّ براي يـافتن

 متحدالمركز در اطراف هسته قراردارند. احتمال يِيلدا كـردن الكتـترون در

$$
\begin{aligned}
& \Delta \dot{L}=s, \quad p, \quad d, \quad f, \quad g \quad \cdots \\
& l=0, \quad 1, \quad 2, \quad 3,4 \ldots \\
& \text { La dun }
\end{aligned}
$$

 الوربيتال،

$$
m_{t}=+l,+(l-1) \ldots 0 \ldots-(l-1),-l
$$

درنتيجه، براى براى . d)

 جدول 9 - بَ آمـهـه است.

 س.

 يكى در نزدبكى هسته و ديگرى در فاصلةُ دورتو. به اين تر ترتيب در ابر

وبو2

$$
\begin{equation*}
I=0,1,2,3 \ldots(n-1) \tag{10-9}
\end{equation*}
$$

انىر برايى

 براي هر يكى أز مقادير lاز يك حرفـ استفاده هى مشود:

$$
\begin{array}{rllllllll}
l & =0, & 1, & 2, & 3, & 4 & 5 & \ldots \\
ن ـ ن ش ا ن ه & =s, & p, & d, & f, & g, & h & \ldots
\end{array}
$$

 الكترونهاي لائُ
 يكى لايهُ فرعى از معادلّ زير بهدست مى آيد.
"

برايى مشالل در هر لايأ فرعى
 در هر لاينّ فرعى بـبيان ديخر،

 مغناطيسى أسيبن،

$$
m_{s}=+\frac{1}{r} t-\frac{1}{r}
$$

دو الكترون با مبادير متفاوت

 أَتو أثشترن"

1. Zeeman eflee
2. Otto Stem
3. Wather Gerlach

 (Sj) ب

2_{2},

2p.

4.

 كروي هستينل.

． 2 ．${ }^{2} m_{m_{s}}$－＊

اصل طرد هاوالى

 （ ＂توتوان مشخصر كرد．

 Y Y ．$n=4$

Ag برتو اتمهـياى

أنثكارساز

$$
\text { شـكل 9 ـ } 10 \text { آزما }
$$

 شr و و据

 داراى الاكتمون جفن ت نشامه با ． تحْ
病隹－Y

شكل 9 ـ

 الكترونها دارإى مالامت يكسان باشند.

الكترونى

 Ne g، F،O ،N، ، أوربيتال
 - لايه فوعى d

[^3]$$
\text { (بخشي } 9 \text {, } 9 \text { بيينيد). }
$$

نشان داده شله الست. در نمودارهاى اوربيتالى هر اوربيتال با يكى خخط
 + $+\frac{1}{Y}$

 (mpo ,

 2 أوربيتال

 الكترون جنجم در الوربيتال rp جالى دالرد. لاية فرعى
 اوربيتال
 يك يبيكان در الوربيتالهاي وp . مشخص نشد.اند. نمايش الكتروني اتم

		Ster	ا	rp		示
${ }_{1} \mathrm{H}$	\uparrow	-		-	\square	$1 s^{1}$
${ }_{+} \mathrm{He}$	$1+$	-				$1 s^{\text {r }}$
${ }_{4} \mathrm{Li}$	$\uparrow \downarrow$	1				$1 s^{\text {r }}$ Y s^{\prime} !
$*^{\mathrm{Be}}$	$\uparrow \downarrow$	$\uparrow \downarrow$				$1 s^{T} Y s^{\text {r }}$
0^{B}	$\uparrow \downarrow$	$\uparrow \downarrow$	1		-	
${ }_{8} \mathrm{C}$	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow		$1 s^{\text {r r r r rer repr }}$
V^{N}	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	1	\uparrow	
x_{0}	$\uparrow \downarrow$	$\downarrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	$1 s^{\text {r }}$ T r $s^{\text {r r r r r }}$ Y $p^{\text {r }}$
${ }_{4}{ }^{\text {F }}$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	1	
1. Ne	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow+$	$1 s^{r} r s^{\text {r }}$ r $p^{\text {r }}$

 بجز هليم كي دارايى دو الكترون اسنـ،

 روش آفبا' مشهور است

(1.1居

 3. Differentiating electron

 مغناطيسى تأييد شده استـ.

 است و در بسياري از موارود آثر اخير ناهيزيز استيت.

 يو شاندهم میشود

 شباهن بين بيكربندى عناصر يكى كروه تو جه كنيد. مثلاكا تمام عناصر

جلول 9 ـ 9 (ادامهه)

رnic	z	1s	2 is	20	3 s	$3 p$	3 d	4 s	$4 p$	$4 d$	$4 i$	58	5ρ	$5 d$	$5 t$	65	$6 p$	$6 d$	75
Es	55	2	2	6	2	6	10	2	6	10		2	6			1			
Ba	56	2	2	6	2	6	10	2	6	10		2	6			2			
La	57	2	2	6	2	6	10	2	6	10		2.	6	1		2			
Ce	58	2	2	6	2	6	10	2	6	10	2	2	6			2			
Pr	59	2	2	8	2	6	10	2	6	10	3	2	6			2			
Nd	60	2	2	6	2	6	10	2	6	10	4	2	6			2			
Pm	51.	2	2	6	2	6	10	2	6	10	5	2	6			2			
Sm	82	2	2	6	2	6	10	2	6	10	6	2	6			2			
Eu	63	2	2	6	2	6	10	2	6	10	7	2	6			2			
Gd	64	2	2	6	2	6	10	2	6	10	7	2	6	1		2			
Tb	65	2	2	6	2	6	10	2	6	10	9	2	6			2			
Dy	66	2	2	6	2	6	10	2	6	10	10	2	6			2			
Ho	67	2	2	6	2	6	10	2	6	10	11	2	6			2			
Er	68	2	2	6	2	6	10	2	6	10	12	2	6			2			
Tm	69	2	2	6	2	6	10	2	6	10	13	2	6			2			
Yb	70	2	2	6	2	6	10	2	6	10	14	2	6			2			
Lu	71	2	2	6	2	6	10	2	6	10	14	2	8	1		2			
Hf	72	2	2	6	2	6	10	2	6	10	14	2	6	2		2			
Ta	73	2	2	6	2	6	10	2	6	10	14	2	6	3		2			
W	74	2	2	6	2	6	10	2	6	10	14	2		4					
Re	75	2	2	6	2	E	10	2	6	10	14	2	6	5		2			
Os	76	2	2	6	2	6	10	2	6	10	14	2	6	6		2			
Ir	77	2	2	6	2	6	10	2	6	10	14	2	6	7		2			
Pt	78	2	2	6	2	6	10	2	6	10	14	2	6	9		1			
Au	79	2	2	6	2	6	10	2	6	10	14	2	6	10		1			
Hg	80	2	2	6	2	E	10	2	6	10	14	2	6	10		2			
TI	81	2	2	6	2	6	10	2	6	10	14	2	6	10		2	1		
Pb	82	2	2	6	2	6	10	2	6	10	14	2	6	10		2	2		
Bi	83	2	2	6	2	6	10	2	6	10	14	2	6	10		2	3		
Po	84	2	2	6	2	6	10	2	6	10	14	2	6	10		2	4		
At	85	2	2	6	2	6	10	2	6	10	14	2	6	10		2	5		
Rn	86	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		
Fr		2	2	6				2			14		6	10		2	6		1
Ra	88	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6		2
Ac	89	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	1	2
Th	90	2	2	6	2	6	10	2	6	10	14	2	6	10		2	6	2	2
Pa	91	2	2	6	2	6	10	2	6	10	14	2	6	10	2	2	6	1	2
u	92	2	2	6	2	6	10	2	6	10	14	2	6	10	3	2	6	1	2
Np	93	2	2	6	2	6	10	2	6	10	14	2	6	10	4		6	1	2
Pu	94	2	2	6	2	6	10	2	6	10	14	2	6	10	6	2	6		2
Am	95	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6		2
Cm	96	2	2	6	2	6	10	2	6	10	14	2	6	10	7	2	6	1	2
Bk	97	2	2	6	2	6	10	2	6	10	14	2	6	10	8	2	6	1	2
Cf	98	2	2	6	2	6	10	2	6	10	14	2	6	10	10	2	6		2
Es	99	2	2	6	2	6	10	2	6	10	14	2	6	10	11	2	6		2
Fm	100	2	2	6	2	6	10	2	6	10	14	2	6	10	12	2	6		2
Md	101	2	2	6	2	6	10	2	6	10	14	2	6	10	13	2	6		2
No	102	2	2	6	2	6	10	2	6	10	14	2	6	10	14	2	6		2
Lr	103	2	2	6	2	6	10	2	6	10	14	2	6	10	14	2	6	1	2

 به دست أورد. تو جه داشته باستيد كه در هر لايه فرعي

 .
 تناوبى (مانتل جلو لـ داخل جل جلد كتاب) استفاده كنيلد.

 تناوب دومه با ليتيم (IS $1 S^{\top}$) و و بريليم (
 تناوب , ${ }^{\text {r }}$
 الگگو تناو
 عنصر وبلوك

 صـورت بيكريندي x
 ميلان +ی شود (روى، لايه فرعى .
 ($n=Y$ (H) قبل از بيرونى توين لايه (

 يعنى
S S

شكل 9 ـ 1 ا ترتيب هركردن الوربيتالهاى اتمى به روش أثبا

 بنجچگانه

 در لائ

بيشترين انوزيى، و اتوثى اوردبيتال

عنامر رالشطهد

 جدول تناربـي

مثالـ 9

j

 روش كار رابا استفاده از يكى جدول تناوبي بردسى كنيّن:

$$
\begin{aligned}
& \text { (ما را به He (} \\
& \text { تناوباول: }
\end{aligned}
$$

> r تناوب
> ((
> تناوب سوم:
(0) (0ا

 $\Delta s^{r}+d^{10} \Delta p^{r} \quad$ تناوب با تغيير دادن آرايش عبارت بمدست آهدلم، ندايش الكترونى با تـرتيب املى بهدست هی آيل:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2}$

V-9 مثال

را بنو يسيل.

تناوب اول: rs rtpr تُاوب تناوب سوم: ب $s^{r} r d^{10}$ \& $p^{q} \quad$:تاوب $\Delta \dot{s}^{r}+d^{10} \Delta p^{\varepsilon} \quad$ ت G $s^{r}+f^{*} \quad$ تناوب ششـم

باتغييرآرايشا اين "بارتها، بمنمايشن الكترونى عنصرنتوديميميمىوسيم:
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{4} 5 s^{2} 5 p^{6} 6 s^{2}$
 هشكلى دارد. نماينش هدكن الست جنين تصور شود كي نمايش الكترونى

 نمايش الكتروني
 (براى
($\left.\Delta s=r \lambda, \ldots \varphi s^{\gamma} \varphi p^{\varphi} \Delta s^{\gamma}\right)$ على رغم خاكى بودن الوربيتالنهاي

 ($Z=\psi q \ldots$... $f s^{r}$ \& p^{γ} \& $\left.d^{\prime} \Delta s^{r}\right)$ ($\left.Z=+\wedge, \ldots \& s^{\psi}+p^{g}+d^{l \cdot} \Delta s^{\gamma}\right)$

 ... استت. در با ايان اين تناوب، لايه فرعى

 (Z = QN
 , Ce \quad, \quad, \ldots \& d^{10} \& $f^{\prime} \Delta s^{\top} \Delta p^{\varphi} \Delta d^{\prime}$ \& s^{\top}

 (Z = VI)
 عنصر

 تناوب هفتّم كامل نيست و و بسيارى از عناصر ساخته شا شلهه بهو سيله

 هي شود و بالاخره در عناصر واسططة

 (9 (9)
 و براساس جلدرل تتاوبى الكترونهايى اضافه شلده را در اوربيتالها قرار
 داده شلده است.

تبيين كرد.

آرايش
 دست/آملده با روش تج

 ($Z=9 \psi$) براى عناصر والسعدت داخلى

 ($5(Z=V 9)$

عناصر را مى تو ان بر پايةٌ آرايش الكترونى آنها طبتهبندى كرد:

A-9 J

را بنويسِيد.
$ح$

$1 s^{r}$	تّاوب اولن.
Y $S^{\text {r }}$ Y $p^{\text {r }}$	تناوبدوم؛
$r s^{T} r p^{\gamma}$	تناوبسزم:
	تّاوب
$\Delta s^{\gamma}+d^{\prime \prime} \Delta p^{\varphi}$	
Qs $s^{T}+f^{1 T} \Delta d^{*}$	

 $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 4 f^{14} 5 s^{2} 5 p^{6} 5 d^{4} 6 s^{2}$

 , و بيكربندى يون

 هسته و فقّط Y Y الكترو

 الوربيتاله ها نوشت.

بيكرينـا

الكتر ن

 iica $1 s^{Y} \gamma s^{Y} r p^{\varphi} r s^{Y} r p^{\zeta}+d^{\varphi}+s^{Y}$
+

 تركيبات پارامغناطيس شديداً رنُخين تو ليّل مىكنـند.

 میروند. به استتُناى هليم (كه آرايش داراى آرايشث بسيار چايلدار Y Y F

 الكترونهاى ظرْيتى بستگى دارد..
\%

كوانترمى ششينصر میشود.

㢄

 (($-\frac{1}{Y}$

 ساختار الكترونى أنها بستگى دارد.

 .

رئّه خرود استـ.

 h h/mv

سرعت) است.

كو انتومق مرد محخالف در خود جالي دهــ Paramagnetic substance
 جا

Principal quantum number (n)

 SQuantum

Representative element

 Spectrum

 .
 سرعت نور (بخشي 9- Speed of light, c
 Subshell

 .

 Uncertainty principle
 فيرمهكن استا

 Wave function, ψ

 Wavelength, λ

روش آفبا(بحشُ Aufbau method

 Diamagnetic substance
 جفت شدهاند.
Electromagnetic radiation
 باين هوج با كوانتوم قابل تفـيـير است

 يكتـان باتشند.

 أَن مَاتخثـد.

 دائته باتُنـنـ.
(Frequency, v
 Ground state
 را دارند.

 اضافـه مئسود. Magnetic orbital quantum number, m_{l}

 لايأ ذرعى است.
Magnetic spin quantum number, m_{s}

داراى أسيبين هخالف (

[^0]:

[^1]: 1. Kohann W. Döbereiner (1780-1849)
 2. John A. R. Newlands
 3. Davy Mcdal
 4. Royal Society
 5. Julius Lathar Mayer
 6. Dimitri Mandeleev
 7. Henry G. J. Moseley
[^2]: 1. Subsidiary quantum number
[^3]: 1. Hund's rule of maximum multiplicity
