كو انتومق مرد محخالف در خود جالي دهــ Paramagnetic substance
 جا

Principal quantum number (n)

 SQuantum

Representative element

 Spectrum

 .
 سرعت نور (بخشي 9- Speed of light, c
 Subshell

 .

 Uncertainty principle
 فيرمهكن استا

 Wave function, ψ

 Wavelength, λ

روش آفبا(بحشُ Aufbau method

 Diamagnetic substance
 جفت شدهاند.
Electromagnetic radiation
 باين هوج با كوانتوم قابل تفـيـير است

 يكتـان باتشند.

 أَن مَاتخثـد.

 دائته باتُنـنـ.
(Frequency, v
 Ground state
 را دارند.

 اضافـه مئسود. Magnetic orbital quantum number, m_{l}

 لايأ ذرعى است.
Magnetic spin quantum number, m_{s}

داراى أسيبين هخالف (

 فاهـله （ 9
 8 9

 در لائة 0. IV－ 9

از لا لوan路 9

 بطرح بالانر به لائ

 ．
 Se－mer

 سریها كامهام است؟

 با

 X X X X － 9

 كتاب أمده انست

 （ 4

 بور （بـ） 9
 سبز با نركانس
 （J）（ل） 9
 فركانس رنم آن بنز

 ＊ $0 . \mathrm{Hm}$ نانوت ابَن كار را النجهام ميدهـ؟ A－F＂

 SLas年番

 اسر

 طول مـوج

خارجششه هحقلدز انست؟

 برابر با

آرايش الكترونى
病

和 9α به مررت زير است را مشُخص كنيا

 \＆
 $\Delta r^{T e}(\mathrm{~J}): \mathrm{V}_{0} \mathrm{Yb}(\infty)$ （ 90 － 9
 $\cdot{ }^{-19}{ }^{\mathrm{Au}}(\mathrm{g})$

 Or－ 9
 رو ـ 9

 （ Δ ）
（ OH－ 9

（ $\%$ ـ

（ 9

 نيبه بر هستند را رــــيـص كنيد．

مسانُل طبقهبيثلدى نشـده

 طبف هق الستو جقثدر است

ميشود جقلـر است
 تبعيت

اعلداد كو انتوهمى
 با سرعت （ 9 （

 ¢

 ． 9 ．

 （TY－F تُطميت سرعت بكى نوترون（جرمه و،

 تبيين كنيد．

 استفاده كنيل．

 الستفاده كنيلد．居

 $, l=l, n=r(g): m_{l}=-r, l=r, n=\psi(\omega): m_{\mathrm{P}}=+\mu, l=Y, n=Y(\nu)$
$l=1 \quad n=r 0!m_{2}=0$

 $!m_{l}=+1, l=\cdots, n=r(\cdot)!l=\bullet, n=1(\Delta)!m_{l}=0, l=r, n=r(\Omega)$ $m_{l}=-1, l=1, n=Y$（j）
隹 الكترين دارای عدد كوانتومى ال－有
 الكترون دارايى عدد كوانتومى Y＝l الست

جقدر است؟ اين عنسر جِبست؟

 وجود لايه فرعى بر

 (90 9

 4. 9

 X بك عنصر زل طرين فرمول (Z-b) در أن a تغريبأ برابر بألط

خواص اتمم و يبوند يونى

 قابل ذكر هستغنـ:

 جا

 اصلى وجود دارد:

 در يكى ساختار بلورى نتا مه ميدارد.

 هرك از

 بستگ"

 اختصاص بافته الست.

Lancolbjout 1-Y

热

 (IV9 pm)

1 ـ اكُر سيستمى انرزي جأنب كنلا علاهت مقدار

 .

$$
\mathrm{Na}(\mathrm{~g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+e^{-} \quad \Delta H_{1 \mathrm{st} \text { ion en }}=+496 \mathrm{~kJ}
$$

انترزى يونش براي هو يكى از الكـترونها بـر هسب الكترون ولت
(kJ/mol) بـراى يكى هـول (eV/atom)

در نتيجه تعميمهاى زير را هيتو ان بيان كرد:

1 ـ ـبه طور كلى انز

 تشكيل يون مشبت دارند. اتم نافلزات چنين رفتار نـمـى ركنتن. در نـتيجه

1. First ionization energy

 در اثر عبور از اختلاف

$$
1 \mathrm{eV} / \mathrm{Hil}=1,9 . \mathrm{YY} \times 10^{-19} \mathrm{~J} / \mathrm{c} /=49, * \wedge V \mathrm{~kJ} / \mathrm{mol}
$$

$$
\mathrm{A}(\mathrm{~g}) \longrightarrow \mathrm{A}^{+}(\mathrm{g})+\mathrm{e}^{-}
$$

نماد (A(g)، بيانگگ اتم كازی هر عنصر است.
 (بخشث (F-Q) را مورد توجه قرار دهيمز:

16/mol					نلز
0,	Pr	psor	إو		
+0,0\% 1	+9,915	+4.jast	+49,	IA	Na
+1.j0to	+v,yri	+1, H0 $^{\circ}$	+VTA	UA	Mg
+ilaga	+r,yefe	+1) SN_{19}	+ovv	ma	${ }^{\text {A }}$

 به وجود میى آيند.

 لايه ظرفينى قرارِ دارد.

 كاهش مكـيابيا.

 . $1000 \mathrm{~kJ} / \mathrm{mol}$ برخى از ويزُّى ماى منحنى شكل
 (1 آرايش الككنرونى

 K بيرونى ترين لايهاند (ns"

 عنصر بمدى آسانانت است

$$
\mathrm{A}^{+}(\mathrm{g}) \longrightarrow \mathrm{A}^{2+}(\mathrm{g})+e^{-}
$$

$$
\mathrm{Na}^{+}(\mathrm{g}) \longrightarrow \mathrm{Na}^{2+}(\mathrm{g})+e^{-} \quad \Delta H_{2 \text { nd ion an }}=+4,563 \mathrm{~kJ}
$$

بايد انترزى صرف شود.

 در مرود عناصر كروه VIIA الكترونخواهي فلوئر

 شُده است

$$
e^{-}+\mathrm{O}^{-}(\mathrm{g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H_{2 \text { nd elec af }}=+845 \mathrm{~kJ}
$$

 الكترونخْو امى، داراي علامت مئبتانداند.

 انزئى آزاد شـلـه در اولين الكترون خوراهيى،

$$
\mathrm{c}^{-}+\mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{O}^{-}(\mathrm{g}) \quad \Delta H_{\text {Ist elec at }}=-141 \mathrm{~kJ}
$$

كستر از اتزذي مورد نياز در دومين الكترونخواهى استا،

1. First electron affinity

$$
e^{-}+\mathrm{A}(\mathrm{~g}) \longrightarrow \mathrm{A}^{-}(\mathrm{g})
$$

 .

$$
e^{-}+\mathrm{F}(\mathrm{~g}) \longrightarrow \mathrm{F}^{-}(\mathrm{g}) \quad \Delta H_{\text {1s elec af }}=-328 \mathrm{~kJ}
$$

$$
e^{-}+\mathrm{Ne}(\mathrm{~g}) \longrightarrow \mathrm{Ne}^{-}(\mathrm{g}) \quad \Delta H_{1 \mathrm{st} \mathrm{zi} e \mathrm{cat}}=+29 \mathrm{~kJ}
$$

隹 كُ

艮

بر

$$
\begin{array}{ll}
0 & s \\
+704 & +332
\end{array}
$$

"

شكل V - \& بـاختار بلورى سـديم كلريد.

 يك الكتبرون از دست مى دهلد؛ اتم كلر يكى الككترون میئيرد:

$$
\mathrm{Na} \cdot+\cdot \ddot{\mathrm{C}}: \longrightarrow \mathrm{Na}^{+}+: \ddot{\mathrm{C}} \mathrm{l}^{-}
$$

 است و ييوند يونى نام دارد.

$$
\begin{aligned}
\mathrm{Na}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}\right) & \longrightarrow \mathrm{Na}^{+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)+e^{-} \\
e^{-}+\mathrm{Cl}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}\right) & \longrightarrow \mathrm{Cl}^{-}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right)
\end{aligned}
$$

$e^{4}+\mathrm{O}^{-}(\mathrm{g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H_{2 \text { nd efec at }}=+845 \mathrm{~kJ}$ در نتيجه فرايند كلى، گُرماگيز است:

$$
2 e^{-}+\mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{O}^{2-}(\mathrm{g}) \quad \Delta H=+704 \mathrm{~kJ}
$$

" - Y
در بخشَهاى ب

الكتريكى دارد.

الف ـكاتيون، داراى بار مشبت است (زيرا يكى يا حتند الكترون/از
دست دادهاست).

است).

$$
\begin{aligned}
& \text { Y - يون يكا اتمى از يك اتم تشمكيل شده است. }
\end{aligned}
$$

؟ يونهالى تمند اتمى مدكن است كاتيون (برأى مثال آتيون (مثلاً

است (مثال ا ـ ا را بابينيد).
تركيبات حامل از عناصر نمونه اغلب با اسستفاده ازز نـماد عـناصر

 الـكترون نهاي ظا ظرفيتي الست.

يكى اتم Al (فلزى از كُروه IIIA) با الز دستدادن سه الكترون آَرايش

: Em / m-VA kJ/mol

$$
\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{~s}) \quad \Delta H=-788 \mathrm{~kJ}
$$

$$
\mathrm{NaCl}(\mathrm{~s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H=+788 \mathrm{~kJ}
$$

 ,
$\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{f}^{\circ}=-411 \mathrm{~kJ} \quad(1-\mathrm{v})$

1. Lattice energy
2. Max Born
3. Fritz Haber
4. Born - Haber cycle

مى دهند يا الكترون تميكيرند تا يونهاى هم الكترون با يكى گاز نجيب بـا
 خارجي خرد ג الكترون دارند (آرايش واي

 الككترونى كاز نجيبانانـد

$$
2 e^{-}+\mathrm{O}\left(1 s^{2} 2 s^{2} 2 p^{4}\right) \longrightarrow \mathrm{O}^{2-}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)
$$

در واكنش بين سلـيم و اكـيرئن، بازازاى هر اتم اكسيرّن، دو اتم سلديم
 الكترونهاي كُرفته شُده برابر باثيد:

$$
2 \mathrm{Na}++\ddot{\mathrm{O}}: \quad 2 \mathrm{Na}^{+}+: \ddot{\mathrm{O}}:^{2-}
$$

سادهترين نسبت بين يونها در محصصول و اكنشّ، يعنى سليمّ اكسيلد، با فرمول تركيب، يعنى Na

$\mathrm{Ca}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}\right) \longrightarrow \mathrm{Ca}^{2+}\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right)+2 e^{-}$ فـرمولت تركيبحاصل از يـونونهاى
 است. كلسيم|كسيد.كمركب از يونهاى

NaCl(s) شـكل V V V V

 به دست مى آيد:
$\mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{\mathrm{r}}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{f}^{\circ}=-411 \mathrm{~kJ} \quad(1-\mathrm{v})$ حجرخهُ بالا رابه صورت زير مى تو ان وارسى كرد.

$$
\begin{aligned}
\Delta H_{S}^{\circ} & =\Delta H_{\text {subl }}+\frac{1}{2} \Delta H_{\text {diks }}+\Delta H_{\text {lon en }}+\Delta H_{\text {elec af }}+\Delta H_{\text {lat en }} \\
& =+108 \mathrm{~kJ}+122 \mathrm{~kJ}+496 \mathrm{~kJ}-349 \mathrm{~kJ}-788 \mathrm{~kJ} \\
& =-411 \mathrm{~kJ}
\end{aligned}
$$

1-v مثال
انترؤ شبكه
俍
 است. أتنالِي تشكيل MgCl (s)
 كُرماشييميايى آتتالِى تشكيل يك مول MgC1

$$
\mathrm{Mg}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{~s}) \quad \Delta H_{f}^{\alpha}=-642 \mathrm{~kJ}
$$

 قرار زير أست:
 Cl
 ا ΔH

$$
\mathrm{Na}(\mathrm{~s}) \longrightarrow \mathrm{Na}(\mathrm{~g}) \quad \Delta H_{\text {subl }}=+108 \mathrm{~kJ} \quad(\mathrm{r}-\mathrm{Y})
$$

 برابر با
 يكى مول NaCl لازم است، فقّط نصف اترٔى تفكيك للازم خوراهد بود.
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Cl}(\mathrm{g}) \quad \frac{1}{2} \Delta H_{\text {diss }}=\frac{1}{2}(+243 \mathrm{~kJ})=+122 \mathrm{~kJ}(\mathrm{r}-\mathrm{V})$

$$
\mathrm{Na}(\mathrm{~g}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+e^{-} \quad \Delta H_{\text {ion cin }}=+496 \mathrm{~kJ}(\digamma-\mathrm{V})
$$

$$
\mathrm{Cl}(\mathrm{~g})+e^{-} \longrightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H_{\text {elec af }}=-349 \mathrm{~kJ}(\Delta-\mathrm{v})
$$

قبلى كافى نيست.

 (VAA kJ/mol maCl (s)
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{NaCl}(\mathrm{s}) \quad \Delta H_{\text {lat cn }}=-788 \mathrm{~kJ} \quad(9-\mathrm{Y})$

ΔH	,	"
+10.k. ${ }^{\text {a }}$	$\mathrm{Mg}(\mathrm{s}) \longrightarrow \mathrm{Mg}(\mathrm{g})$	Mg تصصيد
+VTAkJ	$\mathrm{Mg}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{+}(\mathrm{g})+e^{-}$	Mg اولين انؤئى برتي
$+140 . \mathrm{kJ}$	$\mathrm{Mg}^{+}(\mathrm{g}) \longrightarrow \mathrm{Mg}^{\text {r+ }}(\mathrm{g})^{-}+\mathrm{e}^{-}$	
+Y\#TkJ	$\mathrm{Cl}_{\mathrm{r}}(\mathrm{g}) \longrightarrow \mathrm{Cl}(\mathrm{g})$	$\mathrm{Cl}_{4}{ }^{\text {ت }}$
Y(-YFq kl $)=-99 A \mathrm{~kJ}$	$\mathrm{YCl}(\mathrm{g})+\mathrm{re}^{-} \longrightarrow \mathrm{YCl}^{-}(\mathrm{g})$	
$\Delta H_{\text {laten }}$	$\mathrm{Mg}^{\text {Y+ }}(\mathrm{g})+\mathrm{YCl}^{-} \longrightarrow \mathrm{MgCl}_{Y}(\mathrm{~s})$	ا ان,
$+\backslash \mathrm{ANT}^{+}+\Delta \mathrm{H}_{\text {laten }}$	$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{\gamma}(\mathrm{g}) \longrightarrow \mathrm{MgCl}_{\Psi}(\mathrm{s})$	J

 أنرُى يونش سـيم (جـدون لا - ا) است:
$+496 \mathrm{~kJ} / \mathrm{mol}+4563 \mathrm{~kJ} / \mathrm{mol}=+5059 \mathrm{~kJ} / \mathrm{mol}$

 زيادى لازم است.

مجموع بواى Na است:
$+738 \mathrm{~kJ} / \mathrm{mol}+1450 \mathrm{~kJ} / \mathrm{mol}=+2188 \mathrm{~kJ} / \mathrm{mol}$

 ${ }^{M g^{+}} \times$لز
 (اولين انزَّى يونش Mg +VFAKJ/mol NaCl Na . MgCl_{4} هـ ($\mathrm{Mg}^{\dagger+}$ تشكيل , MgCl

.

رسيدن به إين آرايش، به هلايل زير مطلوب است:

مقداركل

$$
\begin{aligned}
+1883 \mathrm{~kJ}+\Delta H_{\text {lat en }} & =-642 \mathrm{~kJ} \\
\Delta H_{\text {laten }} & =-2525 \mathrm{~kJ}
\end{aligned}
$$

 ، NaCl (- VAA kJ/mol) دوتركيب ناشى میشود. جاذُّةٌ بين يك يون

 Na^{+}بزرى، در صورتى
 بين اترزى شبكه

$\mathrm{Zn}\left(\ldots 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}\right) \longrightarrow \mathrm{Zn}^{2+}\left(\ldots 3 s^{2} 3 p^{6} 3 d^{10}\right)+2 e^{-}$
آرايش الكترونى يون لم مربوط طبه لايه خارجى يون $d^{\prime} \cdot{ }^{\text {آرايش }}$

اين نوو يونهاست:
$\mathrm{Sn}\left(\ldots 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{2}\right) \longrightarrow \mathrm{Sn}^{2+}\left(\ldots 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2}\right)$

$$
+2 e^{-}
$$

 كه آرايش بكى يون "d
 IIIA

 (d" s^{r}
 همان آرايش لايأ بيرونى يرن الست.
 براي نمورنه میتوان بود. براى توليد يون

(0^{+-}

 Na, O
 Y ا

 كاتيونهاي الي الي

 واكنشهها شركت میكتنـ!:

آرايش الكترونى	لم
$3 s^{2} 3 p^{6} 3 d^{1}$	$T i^{3+}$
$3 s^{2} 3 p^{6} 3 d^{2}$	V^{3+}
$3 s^{2} 3 p^{6} 3 d^{3}$	$\mathrm{Cr}^{3+}, \mathrm{V}^{2+}$
$3 s^{2} 3 p^{6} 3 d^{4}$	$\mathrm{Cr}^{2+}, \mathrm{Mn}^{3+}$
$3 s^{2} 3 p^{6} 3 d^{5}$	$\mathrm{Mn}^{2+}, \mathrm{Fe}^{3+}$
$3 s^{2} 3 p^{6} 3 d^{6}$	$\mathrm{Fe}^{2+}, \mathrm{Co}^{3+}$
$3 s^{2} 3 p^{6} 3 q^{7}$	Co^{2+}
$3 s^{2} 3 p^{6} 3 d^{8}$	Ni^{2+}
$3 s^{2} 3 p^{6} 3 d^{9}$	Cu^{2+}

 دافعةه الكترو نهاى ظرفيتى و گسترش لائّ موبر ط به آنها مىشرد.

نامُظارى تركيبات يونى بر چتند قاعده انسترار استت. ابتدا نـام كـاتيون (يون مثبت) تركيب و ديسى نام آنيون (يون هنفى) آنَ مى آيّن.

يكسان خو اهد بو :

 $\mathrm{K}^{+}{ }^{+} \mathrm{g}^{(H)}=1 \mathrm{Tr} \mathrm{pm}$

يك يون مثبت، هميشه كوجَكتر از اتم به وجود آّورنده أَن أست،
(شكا
 ($n=\uparrow$

(ب)

(ail)

 يون

 نام تركيبات يونى شامل نام كاتيون و سيس نام آتئنيون (به صورت

والثمایى جذاكانه) است:
(III) اكـيـيل يا فريكى اكسيد
躬 $\mathrm{Ag}_{4} \mathrm{PO}_{4}$ ($\left.\mathrm{NH}_{\psi}\right)_{Y} \mathrm{~S}$
 ($\mathrm{Mg}\left(\mathrm{NO}_{r}\right)_{r}$
Na^{+}

بغخى فلزات، بيش از يكى نوع كاتيون تشكيل مىيهنـد. در ايـن مسوارد

 مى آيل، مشخص میشود:

$$
\begin{aligned}
& \mathrm{Cu}^{+} \\
& \text {(} \mathrm{Fe}^{r+}
\end{aligned}
$$

 تصى توان به كاركرفت.

يون
 . 0 -
ها ا

$$
\begin{aligned}
& \text { Cr } \\
& \mathrm{O}^{\text {r- }} \\
& \text { ، } \mathrm{N}^{\mu-}
\end{aligned}
$$

 ! !لكترون
次

.

 .

 2

اتم نلزات الكتترون مىكيرند.

 بيونى انـت

Anion

تقسيبر ناصلهماي بيو ندي. Bond distances
 هرخ Born - Haber cycle

 Cation كاتيون (بخش لV V

隹 d^{10} نی
 Effective nuclear charge

 (الكتروذذ Electron affinity

 Enthalpy of sublimation
 تبلـيل شود. Ion

 ． أَتُالِى

而
الكترون

I 1 ， BaO ＿V
 ＋490kIl d －
 الكترون انحو اهم

 N

 $I^{-}: 1 \mathrm{~A} \Delta \mathrm{pmo}$信 19 pm بلور الز يونها ． $\mathrm{CaO} \mathrm{CsI}(\underset{\sim}{\text {（ }) ~!~ R b I ~} \mathrm{R}$ RbF（ب）

 （ Yا9 pm ．I－

ترتيب توضبح 2هديد.

场

انتخاب ائن ترتيتب توضبح ديهيلـ.

بيوند يونى، انواع يونهـا

 （2）Y V $\mathrm{Ca}^{\mathrm{rt}}(\mathrm{g})$ （ $: \mathrm{La}^{++}(\lambda): \mathrm{Fe}^{r+}(\rho): \mathrm{Ag}^{+}(\mathrm{e}): \mathrm{S}^{\top-}(\mathrm{c}): \mathrm{K}^{+}(\mathrm{al}): \pm$. $\mathrm{Sr}^{\mathrm{r}+}$（g）

＂انخر كثاب آمله استح．

حواص اتمها

隹

 ．T1 $\mathrm{Ga}(\mathrm{g})$
 （ IFY pm cF－F ：IVo pm جققدر است•
،I－B $!$ Y00pm ．As－I ：$:$ ：
范

 Se ، Sb（ J ）

 lo＝V （ 11 －V V هالورّنها كوجكا IY－V
 IT－V

 a 10 ＿V V

 ． K 19 －V

$$
. \mathrm{Cu}^{\mathrm{r}+} \mathrm{Cu}^{+}(\mathrm{\rho})!\mathrm{I}^{-}
$$

نامڭذارى تركيبات يونى

$$
. \mathrm{Cr}\left(\mathrm{IO}_{\Gamma}\right)_{\mu}(*)!\mathrm{CdI}_{\gamma}(\nu)!\mathrm{Sn}\left(\mathrm{NO}_{\mu}\right)_{Y}(\tau)
$$

$$
\mathrm{NH}_{4} \mathrm{NO}_{\gamma}(\rho): \mathrm{KMnO}_{\psi}(\rho): \mathrm{Na}_{\gamma} \mathrm{CrO}_{\psi}(\tau)
$$

$$
\mathrm{Li}_{r} \mathrm{SO}_{r}(\Omega): \mathrm{K}_{Y} \mathrm{Cr}_{Y} \mathrm{O}_{V}(\rho): \mathrm{Fe}_{Y}\left(\mathrm{SO}_{r}\right)_{T}(\tau)
$$

 $\mathrm{NaClO}_{\Gamma}(\Omega)!\mathrm{Na}_{Y} \mathrm{O}_{\mu}(2) \div \mathrm{SnF}_{\mu}(\uparrow)$

 مطا 00 - V

 , Na بونى، تو نتط يون S

 .
 الكتروذهاى زد

 $. \mathrm{K}^{+}(\Omega)!\mathrm{Au}^{+}(\mathrm{s}): \mathrm{Hg}(\mathrm{\tau})$

 . $\mathrm{Cd}(\mathrm{A})!\mathrm{Cd}^{\mathrm{r}}(\mathrm{o})!\mathrm{Ba}^{\mathrm{Y}}$ (ج)

 $. \mathrm{Br}^{-} . \mathrm{Bi}^{r^{+}}$

 $\mathrm{Ge}^{\mathrm{T+}}, \mathrm{Ga}^{\text {r+ }}$

بيدست آردريد.

 باشُند را به دبـت آوريـد.

看 يونى

 نغيير میكند؟ (
 $. \mathrm{O}^{r-}-\mathrm{N}^{r-}$ (ه) $\leq \mathrm{Tl}^{r+}$

 $. \mathrm{Mg}^{r+} \mathrm{L} \mathrm{Mg}(*): \mathrm{Sr}^{r+}$! (性 - V

ييوندكووالانسى

بيوند يك بار.

 براى هيدرورّن آرايش دو الكترونى هليم ثايدار است است

$$
\ddot{\mathrm{F}} \cdot+\ddot{\mathrm{F}}: \longrightarrow: \ddot{\mathrm{F}}: \ddot{\mathrm{F}}: \quad(4: \ddot{\mathrm{F}}-\ddot{\mathrm{F}}:)
$$

1. Valence - bond structures
2. Lewis structures
3. Gibbert N. Lewis

در فصل بيثى، تشكيل و برخی از خواص تركيبات يونى را مورد بحث

 كروالانسى خالصى رانيز در نظر مىكيريم.

 !
 السِينّهاى مخالفـ) است كه اوربيتالهاءى هر دو اتم دركّير در تشكـيل جيبرند را اشغال كردماند.

بيرند است (شكل ^ - ا ر ا ببينيد).

 هلبم دانست (دو الكترون در تراز (n=1) اين هلاحظات ات بر اين فرض

si EI
 pely简简 1 on row
 B as

NP

F 9 每

 كوروالنانسي بيان كـد．

 ارى N
 صررت زير نمايش داد： $: \dot{N} \cdot+\cdot \dot{N}: \longrightarrow: N: \cap N: \quad(4: N \equiv N:)$

 عبارتند از：

$$
: \ddot{\mathrm{O}}:+: \mathrm{C}:+: \ddot{\mathrm{O}}: \rightarrow \underset{\mathrm{O}}{\rightarrow \mathrm{O}: \mathrm{C}:: \ddot{\mathrm{O}}:} \quad(\mathrm{t}: \ddot{\mathrm{O}}=\mathrm{C}=\ddot{\mathrm{O}}:)
$$

شكل＾－ا نـهابش توزبع الكنرون در يكا مولكول هيدرورن

 بار براي هر اتم．

 （بالهـ،

را در نظر بغيريد：

$$
\begin{aligned}
& \mathrm{H} \cdot+\ddot{\mathrm{C}}: \longrightarrow \mathrm{H}: \ddot{\mathrm{C}}: \\
& \text { هيدروزنن كلريد } \\
& \text { (} 4 \mathrm{H}-\ddot{\mathrm{C}} \mathrm{i}: \text {) }
\end{aligned}
$$

$2 \mathrm{H} \cdot+\cdot \dot{\mathrm{O}}: \longrightarrow \stackrel{\stackrel{H}{\ddot{O}}:}{\underset{\mathrm{O}}{\mathrm{T}}}$
$\binom{\stackrel{H}{\mathrm{H}}}{\mathrm{H}-}$

（ $\mathrm{L} \mathrm{H}-\mathrm{N}-\mathrm{H}$ ）
$4 \mathrm{H}+\cdot \dot{\mathrm{C}} \cdot \mathrm{H}: \stackrel{\mathrm{H}}{\mathrm{C}}: \mathrm{H}$
(4)

تيرند كور الانسسى

يو

 كوو الانسسى خو اهل شد.
 هم الكترون با Ar دارند. در اين سري كه شامر

 كورالانسى أست. تركيبات يونى محضض كه كاتيو

كوورألانسـ، اند.

 هتصل شونل.

 متفاوت خخ اهل بود.
哣 BrCl

1. Ion distortion
2. Polarization of covalent bonds
$2 \mathrm{H} \cdot+\dot{\mathrm{C}}:+: \dot{\mathrm{C}}+2 \mathrm{H} \cdot \mathrm{H}: \stackrel{\mathrm{H}}{\mathrm{C}}: \stackrel{H}{\dot{\mathrm{C}}}: \mathrm{H}(\mathrm{L}$

انيلن
$\mathrm{H} \cdot+\cdot \mathrm{C} \vdots+\mathrm{C} \cdot+\cdot \mathrm{H} \longrightarrow \mathrm{H}: \mathrm{C}: \vdots \mathrm{C}: \mathrm{H}(\mathrm{H}-\mathrm{C}=\mathrm{C}-\mathrm{H})$ استبلن

 استو ار اسست بيردازيم.

بيوند شيميا يیى در بيشتر تركيبات، از نظر خصلتا احـد واسط بين بيوند

 حالت بيوند در اغلب تركيبات شيميايى، بيئ اين دو حالت حلدّ قرار
 وإيبحش يون' الستوار است. خْصلت بيوند در تركيبي هركب از يكى فلز

 1

 Y

 كاتيونى بالاشت. ()

$$
\begin{aligned}
& \text { as } 2, \quad N^{\prime}= \\
&=\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.27 \times 10^{-10} \mathrm{~m}\right) \\
&=2.03 \times 10^{-29} \mathrm{Cm}=6.08 \mathrm{D}
\end{aligned}
$$

 گشتاور دو قطبى تحربى HCl بـرابـ,

$$
1.03 \mathrm{D} / 6.08 \mathrm{D}=0.169
$$

-

 الككتوناگاتيز أتم Cl H انست، و بار منفى جزئى، جزئى،
منهوم الكترونگاتيوى گُحهه دقيق نـيست انــا مـفيلد است. مسقادير

 براى غلبه بر بارهاى جززئى، +

 ها ياين سمت چجِ قرار دارند.

1. Linus Pauling
2. Debye
3. Partial ionic character
4. Electronegativity

است، اتم بـرم بـايلد دالرالى بـار مشبت مسـاوى بـا بـار مـنفى اتـم كـلـر

 بيون

 جلاگانه اسـت (شكل (شا

 *هى مقى

(ناصلد) (با = =ششثاور دو قطبیى

 مولكو له، افزايش مى يابيلد.
 جز نُى

جلو

تغارت 		اتر اتر（3） （ $\mathrm{kJ} / \mathrm{mol}$ ）	 （D）	0\％ هاليد
1λ	$F=F, 0$	Q90	1，91	HF
$1 ;$	$\mathrm{Cl}=r_{\mu} r$	Frl	1， $\mathrm{OH}^{\text {r }}$	HCl
－λ A	$\mathrm{Br}=r_{\text {，}}$	He\％	－j $\times 1$	HBr
－ 0	$1=r, \gamma$	Y8V	－رّN	HI

 ذ躬
 باشلـ،
 بيانگ゙

 بي

 با بالاترين الثرز ى

 شاختا，اتم هو， بستَ

 PO—F （الف）＂نفاوت الكترونكاتبوى به قرال زير است：
$N-0$ in C－O H，O
．جاول 1 ـ ـ الكترونگاتيرى نسبى

$\begin{aligned} & \mathrm{H} \\ & 2.2 \end{aligned}$	
$\begin{aligned} & \mathrm{Li} \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{Be} \\ & 1.6 \end{aligned}$
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{Mg} \\ & 1.3 \end{aligned}$
$\begin{aligned} & k \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Ca} \\ & 10 \end{aligned}$
$\begin{aligned} & \text { Rb } \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & 0.9 \end{aligned}$
$\begin{aligned} & C_{5} \\ & 08 \end{aligned}$	$\begin{aligned} & \mathrm{Ba} \\ & 0.9 \end{aligned}$

$\begin{aligned} & \mathrm{B} \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 2.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 34 \end{aligned}$	$\begin{aligned} & F \\ & 4.0 \\ & \hline \end{aligned}$	Ne
$\begin{aligned} & \text { Al } \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{si} \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{aligned} & p \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & 2.6 \end{aligned}$	$\begin{aligned} & C 1 \\ & 3.2 \end{aligned}$	Ar
$\begin{aligned} & 68 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \mathrm{Ge} \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { AS } \\ & 2.2 \end{aligned}$	$\begin{aligned} & \mathrm{Se} \\ & 2.6 \end{aligned}$	$\begin{aligned} & \mathrm{Br} \\ & 3.0 \end{aligned}$	K_{r}
$\begin{aligned} & \text { In } \end{aligned}$	$\begin{aligned} & \mathrm{Sn} \\ & 20 \end{aligned}$	$\begin{aligned} & 36 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{Te} \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2.7 \end{aligned}$	Ke
$\begin{aligned} & \pi 1 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & 2.3 \end{aligned}$	$\begin{aligned} & \mathrm{Bi} \\ & 20 \end{aligned}$	$\begin{aligned} & P_{0} \\ & 2.0 \end{aligned}$	$\begin{aligned} & A_{i} \\ & 22 \end{aligned}$	R 2

 1．性

 ．

شيك نافلزى عناهصر

 است، هي توان به دست آَّردر．

 قراردادي ندارند．

 برابر با：

＋（＂عدلاد

خولهد بود．اكُر الكترون ظرفيتى نداشثت، اين رقم برابـر بـا بـار التمى

 بـ اين موارد برابر است با：

بنابراين، بار قراردادى اتم شركتكنتـهـ دـ يبيوند آز فرمول زير بـه دست خراهد آمد：

－（تعاد（ت）

综 $=+0-4-0=1+$

بار قراردادى هر اتم

倍 $=+1-1-0=0$

 بار

 （ب）تناوت الككترونكاتيوى عناصر به ترار زير است：
$S-F$ F F S

㥩

－

 NH_{+}^{+}اين شـثاهدات

بار قراردادى مر اتم Cl:

در تتيجه، ساختار مو لكرل به صورت زير است:

-
 اين روش، در مثالل ^ - آمداهناست.

$$
\begin{aligned}
& \text { r-A مثال } \\
& \text { ساختار لوويس يون كلرات، } \\
& \text { مركزي است كه سه اتم اكيسيزن به آن متصل شـدلمداند. }
\end{aligned}
$$

 اللكترونهاى ظرفيتى در

$$
\begin{aligned}
& \text { v (از اتم }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r 9} \text { (از بار ئئى) }
\end{aligned}
$$

1. Adjacent charge rule

 د

"میویم:

بار قراردادى اتم اكسيرئن (O) برابر استت با:

$$
\begin{aligned}
& \text { - (تعداد -هعهاى نايبيوندى) } \\
& =+c-1-c=1-
\end{aligned}
$$

بار قراردادي اتم P:

> بار تراردادى

 (تماداد $)$
(تعداد - "عهاي نايبيرندى) -

قراردادى يكى يون برابر با بار آن يون استـ.
r

$$
\text { بار قراردادى هر اتم } 0 \text { برابر است با: }
$$

ساختار نها يع به صورت زير است:

توجه داشُتدباشيد كه جمع جبرى بارهاى قرازدادى برابر بار يرنها يعنیى - 1 - است

Y ـ تعداد الكترونهاى لازم براي آنكه بـ هر اتم H H دو الكترون و بـه بـ
 مورد بحث مان، يعنى

$$
=r(0)+\Delta(\Psi)=r r
$$

$$
\begin{aligned}
& =T r-r=\%
\end{aligned}
$$

 ساختار نهايى است:

Y

$$
=s / r=r
$$

(تعداد

$$
=r q-q=r_{0}
$$

V V - بار قراردادى اتمها رانشاندهيد. بار قرإردادى اتمكلر برابر است با: با:

$$
\begin{aligned}
& =+\gamma-r-r=r+
\end{aligned}
$$


```
داده هـده است بنريسيدي
```



```
                                    نإيبرنــى است:
```



```
    آنها مشخص كنيد.
```


$$
=Y(1)+A(Y)=r K
$$

 $=H Y-Y H=10$

$$
=1 . / Y=0
$$

(Gil)

(ب)

(()

$$
=14-1 \cdot=14
$$

(الف)

($($

(c)

براى اتم 0 سمت راست،
-
ساخثار نهايُى به صورت زير است:

$$
\ddot{O}
$$

 كرد كه در آن اتم اككسيرن سمت راست با يبيوند دوكانه بها اتم S متصلم شـده باشد.

بم ساختار لوويسنيتريكاسيلـ، بHNO

1 ـ ت تعداد كل الككترونهاى ظرنيتى در اين مولكول:
1 ($\mathrm{H}_{\mathrm{H}} \mathrm{H}^{-1} \mathrm{l}$

- (ازاز
$\frac{1 A}{T F}$ (از سه اتم O
 د - A

 O 0

 (1 F 1 pm)

 فرمها

 1

 رزوناتسى يون سياتاتات نيست.

(الe)

(ب)

($\tau)$

ג-7

 آَهـ را در نظظر بِكِير يد:

$$
\because \stackrel{\ddot{\circ}}{\square}
$$

 ، ${ }^{\text {SO }}$

$$
\ddot{\mathrm{S}}^{\oplus} \cdot 0: \ddot{\mathrm{S}}^{\oplus} \longleftrightarrow 0
$$

 با -

 عادي.بودن مولكول SO.

 دارد (قاعدهُ ب).

 يعنى الكترونگاتيو توين اتم ساختار است.

$$
\begin{aligned}
& 0 \text { مثال } 0 \text { م }
\end{aligned}
$$

اكسيد مو لكو للي خطى با آرايش NNO استـ.

ح
 بك كار میى

1. (N) (N)
$\frac{9}{19}$ (الز

- r

-r
 $=\mathrm{rt}-19=\mathrm{A}$
-

$=\mathrm{A} / \mathrm{Y}=*$
 بهنظر میرسـد:
$\mathrm{N}=\mathrm{N}=\mathrm{O}$
(
$\mathrm{N} \equiv \mathrm{N}-\mathrm{O}$
$\mathrm{N}-\mathrm{N} \equiv \mathrm{O}$
(()
(

$$
=1.6-\Lambda=\lambda
$$

 : $\mathrm{FNO}_{\mathrm{r}}$

 يكى از فرمهاى رزونانسى مهكن برايى يون سيانات:

فرم رزونانسى (ج) سهم جـندانی در هيبريد روزنانسـى ندارد، زبـرا بـار قراردادى اين فرم بالاتر از ساير فرمهماستاست.

 مسكن میابـا شـ. فرم دزونانسّى،

$$
: \ddot{\mathrm{O}}-\stackrel{\oplus}{\mathrm{C}}=\ddot{\mathrm{N}}: \stackrel{\theta}{\theta}
$$

 و/اشتها باتُدلد.

(الف)
(ب)

ثj2	山，${ }^{2}$
1	－ザ
r	－52
r	－53：
＊	－تتر
0	－
9	50
V	－
\wedge	－｜ 0 ｜
9	－
1.	－ 6

$$
\begin{aligned}
& \text { NO } \\
& \text { 的 } \\
& +5 \text { SO } \\
& \text {. }
\end{aligned}
$$

تركيبات دوتايى معيني نام غير سيستماتيك دارنـ كه منحصراً با بآن

 موارد اتم هيارورزن كـترين الكترونتاتاتيوى را دالزاست．

$: \ddot{\mathrm{N}}=\mathrm{N}=\ddot{\mathrm{O}}:$	$: \mathrm{N} \equiv \mathrm{N}-\ddot{\mathrm{O}}:$	$\ddot{\mathrm{N}}-\mathrm{N} \equiv \mathrm{O}:$
（فil）	(c)	(c)

V－ـبا افزودن بارهاى قراردادى، به ساختارهاى زير میرسيم；
${ }^{\circ}: \ddot{N}=\stackrel{N}{N}=\ddot{0}:$
（النـ）
$: N=\stackrel{\oplus}{N}-\ddot{O}:^{\ominus}$
（ب）
（27）$: \ddot{\mathrm{N}}-\stackrel{\oplus}{\mathrm{N}}=0:^{\oplus}$
（ \subset ）

$$
: \ddot{\mathrm{N}}=\stackrel{\oplus}{\mathrm{N}}=\ddot{\mathrm{O}}: \longleftrightarrow: \mathrm{N}=\stackrel{\oplus}{\mathrm{N}} \quad \ddot{\mathrm{O}}:
$$

 （＾－V

نامگذ.ارى آنها را در فـصل r^ خوراهيم ديد.

 نامخگدارى اكسيلـهاى نيتر ورّن اشاره ميكنيم：

1．Binary compound

حكيدهُ مطالب

 بو لكولى از تركيب انستفاده مىـيـود.

مغاهيمر كليدى
قاعده بار مجاور (تخـي A Adjacent charge rule
 Binary compound

Covalent bond

 مشترك وجيود دارند. Dipole moment

 (بار تار تراردادي (Formal charge

 , VR D

 $=145 \% \times 10^{-r 60} \mathrm{Cmm}$ m

الكترونگاتيوى ال ا 11

حالتهاى كذار بين پيوتانهاى كووالانسى و يونى
 دارند را ان ام بيربيا
P1 هر

 از اين نوع بيونا بيأوريد.

 .

（ A A A A

 نرمول متصل اند． （

رو PV－A
 هيبونيتربت．هو

$$
\mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}, \quad \mathrm{O}=\mathrm{N}-\mathrm{N}-\mathrm{O}
$$

ر

$$
\mathrm{F}-\mathrm{N}=\mathrm{N}-\mathrm{F}, \quad \mathrm{~F}=\mathrm{N}-\mathrm{N}-\mathrm{F}
$$

ر A A A A

$\mathrm{H} \quad \mathrm{O} \quad \mathrm{N}=\mathrm{S}, \mathrm{H} \quad \mathrm{O}=\mathrm{N} \quad \mathrm{S}$

（ا－＾OX

$\mathrm{Cl}-\mathrm{C}=\mathrm{N}, \quad \mathrm{Cl}=\mathrm{C}-\mathrm{N}, \quad \mathrm{Cl}-\mathrm{C}=\mathrm{N}$

（ Y A

 سهيم در هيبريد زنونأنسى ارزيابي كنيلد．

 N ． $\mathrm{Ca}(s): \mathrm{N}, \mathrm{C}(b): \mathrm{I} \subset \mathrm{C}(\tau): \mathrm{H} / \mathrm{C}(\mathrm{j}): \mathrm{Cl}$ A ـ

 $\therefore \mathrm{Cs}-\mathrm{H}(\underset{\mathrm{C}}{ }): \mathrm{Cl}-\mathrm{I}, \mathrm{C}-\mathrm{I}, ~ \mathrm{Ca}-\mathrm{I}, \mathrm{Cs}-\mathrm{I}(\mathrm{Y}): \mathrm{Cl}-\mathrm{O}, \mathrm{C}-\mathrm{O}$

$$
. \mathrm{Cl}-\mathrm{H} \cdot \mathrm{H}-\mathrm{C} \cdot \mathrm{H}-\mathrm{Ca}
$$

 ：N－O N－S（C）！N－F：N－H：O－F：O－H（ب）：N－F $. \mathrm{S}-\mathrm{Cl}$ ،N－Cl

 ،N－H（ج）！ P （ $. \mathrm{P}-\mathrm{O}, \mathrm{N}-\mathrm{O}(\mathrm{g})!\mathrm{P}-\mathrm{S}, \mathrm{N}-\mathrm{S}(土) \leq \mathrm{N}-\mathrm{Cl}$ ، $\mathrm{N}-\mathrm{H}(0) \leq \mathrm{N}-\mathrm{F}$

 $\stackrel{\mathrm{H}-\mathrm{Te}(\mathrm{g}): \mathrm{S}-\mathrm{Cl} \because \mathrm{O}-\mathrm{Cl}(\mathrm{A}): \mathrm{Si}-\mathrm{O}, \mathrm{C}-\mathrm{O}(\mathrm{s}): \mathrm{C}-\mathrm{S}}{ }$

$$
. \mathrm{I}-\mathrm{Se} . \mathrm{Te}-\mathrm{I}(\mathrm{j}): \mathrm{H}-\mathrm{Se}
$$

ساختارهـاى لوويس （تشا 19 － 19 Q
 （
 بع أز أز （H0－人

 خود M ا 1
泿
 （
屋
俍

 متصل تُسده است stacile

 (
 $O \mathrm{NE}_{r}^{+}(0): \mathrm{ONF}_{\Gamma}(\omega): \mathrm{NF}_{\Gamma}(2): \mathrm{NSF}_{\Gamma}(\tau): \mathrm{O}_{\Gamma} \mathrm{NF}(\varphi)$ _ 1

 ارزيبابى كنيد.

(4) $\mathrm{H}-\mathrm{C}=\mathrm{N}=\mathrm{N}, \quad \mathrm{H}-\mathrm{C}-\mathrm{N} \equiv \mathrm{N}$
(() $\mathrm{N}=\mathrm{S}-\mathrm{F}, \quad \mathrm{N} \quad \mathrm{S}=\mathrm{F}$
و

 الزيابي كنبـد $\mathrm{F}-\mathrm{C} \equiv \mathrm{N}, \quad \mathrm{F}-\mathrm{C}=\mathrm{N}, \mathrm{F} \equiv \mathrm{C}-\mathrm{N}: \mathrm{FCN} \mathrm{S}$, بر (e (l) $\mathrm{N}-\mathrm{N} \equiv \mathrm{N}, \quad \mathrm{N}=\mathrm{N}=\mathrm{N}, \quad \mathrm{N}=\mathrm{N}-\mathrm{N}: \mathrm{N}_{\Gamma}^{-} \mathrm{G}, \mathrm{\mu}$ (ب) $S-C=N, S=C=N, S=C \quad N: S C N^{-} \leqslant(T)$ $\mathrm{N}-\mathrm{C}=\mathrm{N}, \quad \mathrm{N}=\mathrm{C}=\mathrm{N}, \quad \mathrm{N}-\mathrm{C}-\mathrm{N}: \mathrm{CN}_{+}^{\gamma-} \mathrm{s}^{\prime}$ بر (2)

和
 كتبد. در هر 2و تركيب 2 در

A - 1 (FNNN را رسم كتبد.
 - 1

را رسـم كنيا. $\mathrm{H}_{Y} \mathrm{NNO}_{\gamma}$ ـ
 _ FY ـ A
 , А ONNO ${ }_{\text {r }}$, A

ناهـذارى تركيبات دو تايه كووالانسي
(ب) A 1

(A - A

 $\mathrm{XeF}_{F}(g): \mathrm{CIF}_{\Gamma}(\Omega)!S_{Y} \mathrm{~F}_{10}(\Omega)!\mathrm{P}_{\gamma} \mathrm{S}_{\Gamma}(\tau)$

C A A A

 .
. $\mathrm{N}_{\mathrm{Y}} \mathrm{CN}^{-}$, NO^{+}.CO CO ـ 1

شكل هناسى مولكول، اوربيتال مولكولى

درنتيجه، تعداد بيرندهاى كوروالانسى مربوط به اتمهاى ايـن عـناضر،

疗

 H

- Valence - shell electron-pair repulsion $\overline{\text { | }}$ - VSEPR . 1

 (NO و و

 (ز)

 ظرنيتى است:

(حدود

 دافعٔة بين زوجهاى ييرندى است.
 CH_{4} مولكول حنين است:

خطى است:

$$
\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}
$$

 زوج الكترون بيوندى (و فاقد زوج الكترون نايبوتدى) در لايه طـرفيتى

 (VIIA مولكول بور ترى فلوئوريده سهـ كوششاى (مثلثى) و مسـطح است:

قلع (II) كلريد، سـكورشهاي هستند. |r. ${ }^{\circ}$ 品

$$
\text { شكل } 9 \text { ـ ا آرابشى سـ كرشهانى مسطح براي سـ ووج الكترون }
$$

 اتم مركزى

 . الس ($(\mathrm{H} \cdot \mathrm{Fpm})$

 يك زوج تاييوندى بانتى هاندهاندي:

 تشكيل دادهاندا:

1. Trigonal bipyramide
2. Axial positions
3. Equatorial positions
4. Irregular tetrahedron

شكل 9 ه - 9 شك

$$
\begin{aligned}
& \text { در لائٌ ظرفيتى أتم O در مولكول آبَ، دو زوج ييوندى و دو زوج } \\
& \text { نإيونديى وجرد دارد: }
\end{aligned}
$$

 H

 ريويوندي است:

[^0]

䍝 T (C)

$$
\text { (ب4جاى } 90^{\circ} \text { مي شود. }
$$

هر سه زوج اللكترون نابيروندي، مبوتعيتهالى استوا أيى را اشغال ميكتند،

\%			4	\%
	-	ज1909		
r	r	-	¢ L^{2}	$\mathrm{HgCl}_{4}, \mathrm{CuCl}_{5}$
r	r	-		$\mathrm{BF}_{T}, \mathrm{HgCl}^{-}$
*	r	1	- jousjly	$\mathrm{SnCl}_{4} \mathrm{NO}_{+}^{-}$
*	${ }^{*}$	-	(स) 14	$\mathrm{CH}_{4}, \mathrm{BF}_{+}^{-}$
*	-	1		$\mathrm{NH}_{4}, \mathrm{PF}_{\mu}$
*	r	r)	$\mathrm{H}_{4}^{\mathrm{O}}, \mathrm{ICl}_{+}^{+}$
\bigcirc	0	-	\%	$\mathrm{PCl}_{2}, \mathrm{SnCl}_{2}^{-}$
-	*	1	隹	$\mathrm{TeCl}_{f}, \mathrm{IF}_{*}^{+}$
0	+	r	-	$\mathrm{ClF}_{Y}, \mathrm{BrF}_{Y}$
9	r	+	خ2	$\mathrm{XeFF}_{4}, \mathrm{ICl}_{4}^{-}$
,	9			$\mathrm{SF}_{y}, \mathrm{PF}_{\gamma}^{-}$
4	,	1		$\mathrm{IF}_{0}, \mathrm{SbF}_{0} \mathrm{O}_{0}$
9	*	r	-	$\mathrm{BrF}_{+}^{-} \mathrm{XeF}_{*}$

$$
{ }^{\ominus} \mathrm{N}=\stackrel{\oplus}{\mathrm{N}}=\mathrm{O} \longleftrightarrow \mathrm{~N} \equiv \stackrel{\oplus}{\mathrm{~N}}-\mathrm{O}^{\ominus}
$$

$$
\mathrm{O}_{\mathrm{O}}^{\ddot{\mathrm{N}}} \longleftrightarrow \mathrm{O}^{\ddot{\mathrm{N}}} \mathrm{O}^{\ominus}
$$

زاويهُ بيرندى اين مرلكرل، به علت اثو زوج الكترون نايبيرندى، بـجانى 170 1110°

در اين يرن، تمام زواياى يبرندى O-N-O برابر O

 بيوندهاى N-O Aهتـند.

1. Square pyramid
2. Triangular planar

اتم برم دارایى مفت الكترون ظرفيتى است (گُرْه VII A). از اين تعداده،

生 1 رسيده است
 دو زوج نإيبرندى است:

براي توضيح بار اين يون، مى توان تصور كرد كـ اتم مركزي I با با كُتتن

 داده شُده استٍ

$$
\mathrm{O}=\mathrm{C}=\mathrm{O} \quad \mathrm{H}-\mathrm{C} \equiv \mathrm{~N}
$$

 ساختار رلمت ، دارد:

البته، يكى ييوتد دوگانه، بيشتر از يك يِيوند ساده، نضضا را اشثغالل مىكتد. C-Cl OCCI بل بكديگر مى شـرد. درنتيجه، زاويهُ بيوندى، Cl-C-Cl، بـه جـاى
.

 . $109^{\circ} \mathrm{K} \mathrm{KA}^{\prime}$

 ($1 s^{r}$ r s^{\prime} r r p'r r $p^{\prime} r p^{\prime}$ (

 و

 كرجه تشكيل

مثال 1 - 1

 الكترونها بهدست مىي آيد:

	الكترو	تعداد زوجالكترونها			شكل
	$\overline{A+X+\text { chg }=j 5}$	${ }^{5}$	\%	نإيوندا	
(al) TiCl_{+}^{+}	$r+r-1=r$	r	Y	。	, ${ }_{\text {br }}$
(ب) $\mathrm{AsF}_{\Gamma}^{+}$	$0+r-1=9$	r	r	1	زإوبها
(c) IBr_{5}^{-}	$r+r+1=10$	0	r	r	
(3) SnCl_{μ}^{-}	$r+r+1=\lambda$	+	r	1	هرمبّ
(-) $\mathrm{ClF}^{\text {a }}$	$v+y+1=1 y$	4	*	Y	مربع مسط

r-9 مثال
 .

$$
\begin{aligned}
& \text { (e) }
\end{aligned}
$$

Jte	जutit	+	- دا
HgCl_{4}	+	$s p$	s. p_{z}
BF_{r}	س	sp ${ }^{\text {r }}$	s, p_{s}, p_{y}
CH_{4}	, 179,40	$s p^{+}$	s, p_{x}, p_{y}, p_{z}
PtCl_{+}^{r-}	ramer	$d s p{ }^{\text {r }}$	$d_{x^{r}-y^{y}}, s_{1}, p_{x}, p_{y}$
PF_{0} 。L	-tur gepar	$d v p p^{\top} \leq s p^{\top} d$	$d_{z^{r}}+s_{1}, p_{x}, p_{y}, p_{z}$
$\mathrm{SF}_{¢}$		$d^{\top} s p^{\top} u s p{ }^{\top} d^{\top}$	$d_{z}{ }^{+}, d_{x}{ }^{\top}-y^{r}{ }^{\text {r }} s^{\text {a }}, p_{x}+p_{y} \cdot p_{z}$

1. $s p^{3}$ Hybrid orbital

 الكتروندها نيسـتـ
هو اور اوبيتال هيبريندى خصلت

 برأى توصيف نحوه تشكيل بيوند در مـو لكو لهاهي ديگـر از

 بهدست آودد. يكى از سه اووربيتال

俍

 ,
 ريو تدى ى بشا

 و

 بينيند). الوربيتال

75

ब15

 'وربيتان با بو جود دنمى آَورد.

1. Method of molecular ortitals
2. Sigma bonding erbital
3. Sigma antibonding orbital

هيبريدى هشت وجهى را میىتوان

 رفتهاند. زاليةٌ بيوندى H

 اوربتأل

 مولكولنهاى دو اتمى جور هستئ عـناصر تناوب دوم (مـولكربالهاى)

[^1]

ييوندها دز هو لككو ل است (درجئ سيرند' '):

برای مو لكول
دريبة

$$
\text { 苂 }=\frac{1}{r}(r-Y)=0
$$

 دو تاى أَّها در اوربيمتال

خواهدد بود.

 اوربيتال

 كه در (الفن)، اوربيتال

 است. درنتيجه، مو لكول
 . $\frac{1}{r}(r-0)=1$

 $\mathrm{Be}_{r} \mathrm{U}^{\mathrm{T}}$ وجود ندارد.

 قرار داده میشّدد.

$\bigotimes_{\sigma^{\prime} 2 p}$	\mho_{σ}	$\prod_{\sigma^{*} 2 p}$
* $2 p$	** ${ }^{\text {P }}$	$\pi{ }^{*}$ \%
		11.
020	ब2p	-2p
11	11.16	1. 11
$\pi 2 p$	$\pi 20$	\#2p
(3)	(1)	(4)
o*2s	0×5	$9 \cdot 25$
11.	11	16
-2s	-2s	a2s
B_{2}	C_{2}	N

$N_{T} \neq \cdot C_{T} \cdot B_{Y}$ شكل 4 -

شـكل 4 -

$$
. \mathrm{F}_{\mathrm{Y}}, \mathrm{O}_{\mathrm{r}}
$$

 اوربيتالهایى Y Y P تشكيل دهنده: اوربيتال تشكـيل اوربـيتال

 نيز صادق است.
در تكو ين ترتيب نشان دأده شله در (ب)، فرض بـر ايـن است كـه r اوربيتالهاي s به كار رفته بـراى تشكـيل اوربـيتالهأى
 F و وربيتالهای

شيشن بينى شود ((

 نمودار آنييونهاى

 ترتيب واقتي نامشخخص استا

 . N_{Y}

درمهود د

 تهودارهانى

 الوربيتاله هاى

قابل قبول نيست. گرحهـ اين ساختار بيرند دوكانهُ مولكول

$0_{0} 20$	$\sigma_{\sigma^{2}+20}$
$4 \pi_{\pi}$	(1)
(11) 11	(16) 11
$\pi 2 \rho$	$\pi 20$
(16)	(11)
-2p	-20
$\frac{14}{025}$	$\underbrace{(9)}_{\sigma^{\prime}, 2 s}$
(11)	11.
ars	a 2 s
O_{2}	F_{2}

FY

نُمايّي داده شـدهاندالد)
(19-9

 اسكلت يبّوندهاى σ در مو لكول اتيلي بهصورت زير است:

 . (IV - 9 شكا)
 هيبريدى

$$
\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}
$$

NH_{r} و براى مورلكرله

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
U
اتيلن
استينـ

با قرإر دادن يك يبيرند دوكانه در ساختار

 بيوند

 ساده بـ طرل (10v pmi) امست.

据 م

[^2]

 داده است.يكى از أوربيتال هايى pr كرفته نشده است. اين اوربيتال

 سرولثير توىأكيـيه، .

 كرو ألانسى (تاعده هشتايـى) در مرود P Pا صادق نيست.

> شده ابست. دون سولفات

 خصلت

به قراز زيو اسـت،

H

طول سه وبيو ند

 Cl—O

فسفات افلب به صورت زبر نمايش داده میشبرد:

$$
\left[\begin{array}{c}
0 \\
0-\mathrm{P} \\
0
\end{array}\right]^{3-} 0
$$

 دوگانه داشته باشنذ، امّا اين بيونلـها با استفاده از الوربيتالههأى وجود مكـ آينـا.

به صورت زير است:

 بـيونا
 بيرّد الست،
 ك

جكيله

 الكترون لا اتح هركزي

,

مفاهيرمكليلـي

الوربتالل میتوان توصيف كرد.
Molecular orbital
بكى شولكول، نه به بك اتم.
; Nonbonding pair of electrons, lone pair of electrons

共 π bond
 sigma bond

دا دعi زوج الكترون لاين Valence - shell - electron - pair repulsion

اوربـئّال هـ, Antibonding molecular orbital

 (أر Bonding molecular orbital

 ;ؤر الكترون هيو Bonding pair of electrons
 كورالانانسى بين دو اتم استح.
Bond order
 Hybridization

 (9
 آنّا
 تولكرل

 . $A B_{e} E_{Y}, A B_{0} E \cdot A B_{\gamma}, A B_{r} E_{r}, A B_{r} E_{r}, A B_{r} E$

 $\cdot \mathrm{GeF}_{\Gamma}^{-}(\mathrm{s}): \mathrm{AsCl}_{\psi}^{+}(b): \mathrm{AsF}_{T}^{+}(\tau): \mathrm{iBr}_{Y}^{-}(j): \mathrm{AsF}_{+}^{-}(g)$

! . $\mathrm{NH}_{*}^{+}(\mathrm{s})$

اوربيتالهماى مولكولى، بييوند
 بامه متايسه كنبّ.

 . $\mathrm{He}^{+}(\mathrm{A})!\mathrm{He}_{\varphi}(\mathrm{a})$

 LC CT (ج) (ح) كدام مولكول ختثى هم الكترون است اسْ
 $0_{\gamma}^{\gamma-}$
 مولكولى را ابراى

 NO , CO 9 ـ 9

 را تيبين كيند.

 طول هيوند را در PMF

مسائل طبقهبندىنشده (9 ; ;
 (9 9 ـ 9 ه

 : $\because \mathrm{FCO}_{\varphi}(\mathrm{j}): \mathrm{COO}_{+}^{+}(\rho) \div \mathrm{NCCN}(\hat{}): \mathrm{HCCH}(\rho): \mathrm{H}_{\uparrow} \mathrm{NNH}_{\gamma}(\tau)$. $\mathrm{XeF}_{\mathrm{Y}}(b)!\mathrm{F}_{\mathrm{Y}} \mathrm{ClO}^{+}(\tau)$
 بريسي كنبد.

 نيع اوريبتال هيبريبي استفاده میكند؟

 $\mathrm{H}_{\mathrm{r}} \mathrm{PO}_{\gamma}^{-}(\mathrm{a}): \mathrm{XeO}_{r}(د)!\mathrm{HCN}(\tau)!\mathrm{O}_{\varphi}(ب)$

 . $\mathrm{CO}_{\Gamma}^{+-}(\Delta)!\mathrm{N}_{\Gamma}^{-}(\Delta)!\mathrm{ClO}_{\Gamma}^{-}(\mathrm{T})!\mathrm{OClO}^{-}(ب)$

 . $\mathrm{OSbCl}(A)!\mathrm{SF}_{\mathrm{Y}}(\mathrm{s})!\mathrm{SeO}_{\gamma}(\mathrm{T})!\mathrm{OPCL}_{T}(\mathrm{C})$

 . $\mathrm{H}_{\mathrm{T}} \mathrm{O}^{+}(\Omega)!\mathrm{O}_{Y} \mathrm{SCl}_{r}(\Omega)!\mathrm{OCN}^{-}(\widetilde{)})!\mathrm{O}_{\mathrm{T}} \mathrm{NCl}(ب)$ IV ـ 9
 $\left.. \mathrm{NO}_{\Gamma}^{-}(\Delta): \mathrm{NH}_{+}^{+}(\Omega): \mathrm{NH}_{\Gamma}^{(}\right)$($): \mathrm{NO}_{\Gamma}^{+}(ب)$
 :SO $. \mathrm{SCl}_{\psi}(\Omega): \mathrm{SO}_{\psi}^{\psi-}(\Omega): \mathrm{SO}_{r}^{+-}(\tau)$

 (世 Q*

 (ح 9
 (OSF . $\mathrm{OClF}_{Y}^{-}(\Omega)!\mathrm{O}_{Y} \mathrm{ClF}_{\psi}^{-}(\Omega)!(\mathrm{HO})_{Y} \mathrm{XeO}_{Y}(\tau)$ (ج

 محورى را الشغال كتند با الستوايكي؟

 (Q Q Q 9 $\mathrm{NC}_{\mathrm{r}}\left(\widetilde{\text { (}}\right.$) $\leq \mathrm{CCl}_{\mathrm{T}}$ (ب) $\leq \mathrm{Cl}_{\mathrm{r}}^{\mathrm{O}} \mathrm{O}$ (ill)

 © $\mathrm{BF}_{*}^{-}{ }^{-}$(ج) . $\mathrm{IF}_{9}^{-}(\Delta)!\mathrm{PF}_{0}(د)$

3 9

4 ـ 4
دياكسيد، SO

$$
\left.\left(\frac{r}{T}\right)_{T}=a_{r}\right)_{r=}
$$

$$
\frac{r_{1}}{T_{1}}=\frac{r_{r}}{T_{r}}
$$

do :

$$
\left(P \propto \frac{1}{r}\right)_{T_{\text {om }}} \leq\left(P r_{4}=E_{1}\right.
$$

$$
\frac{P V}{T}=\tau i, i, \omega=n R
$$

كاز

$$
\text { pr=ngt } \quad\left[R=1,9 \Lambda \frac{\mathrm{Cal}}{\text { mol, }, \mathrm{K}}\right.
$$

كاز، مجمرعهاي از مرلكولهماى بسياز دور از يكديخرند كه در حركت

رإنيرد

$$
\begin{aligned}
1 \mathrm{~Pa} & =\frac{1 \mathrm{~N}}{1 \mathrm{~m}^{2}} \\
& =\frac{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{1 \mathrm{~m}^{2}}=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

 .

 داخل بشقاب، ستون جيوه رادر داخلى لولى نكا، مىیارد.

[^0]: 1. Regular octahedron
[^1]: 1. Bond order
[^2]: 1. Back bonding
