

$$
\left.\left(\frac{r}{T}\right)_{T}=a_{r}\right)_{r=}
$$

$$
\frac{r_{1}}{T_{1}}=\frac{r_{r}}{T_{r}}
$$

do :

$$
\left(P \propto \frac{1}{r}\right)_{T_{\text {om }}} \leq\left(P r_{4}=E_{1}\right.
$$

$$
\frac{P V}{T}=\tau i, i, \omega=n R
$$

كاز

$$
\text { pr=ngt } \quad\left[R=1,9 \Lambda \frac{\mathrm{Cal}}{\text { mol, }, \mathrm{K}}\right.
$$

كاز، مجمرعهاي از مرلكولهماى بسياز دور از يكديخرند كه در حركت

رإنيرد

$$
\begin{aligned}
1 \mathrm{~Pa} & =\frac{1 \mathrm{~N}}{1 \mathrm{~m}^{2}} \\
& =\frac{1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{1 \mathrm{~m}^{2}}=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

 .

 داخل بشقاب، ستون جيوه رادر داخلى لولى نكا، مىیارد.

 شـدهاست.

1-1 1-1 مثال

$$
P_{i}=0.750 \mathrm{~atm}
$$

$$
P_{f}=1.000 \mathrm{~atm}
$$

$$
\begin{aligned}
& \text {. } \\
& \text { 组: : }
\end{aligned}
$$

نشار گاز

$$
1 \mathrm{~atm}=760 \mathrm{torr}
$$

 در شكل

بـ جيوه منتقل كند.

 بابد از فشثار جوّ كم كرد.

 فئار رابطه معكوبي دارد:

$$
V \propto \frac{1}{P}
$$

با استفاده از ثابت kمىتوان تناسب را به تساوى تبديل كرد:

$$
\begin{equation*}
V=\frac{k}{P} \quad \vdots P V=k \tag{1-10}
\end{equation*}
$$

ترارمیىدهيم:

$$
? \mathrm{~atm}=5.00 \mathrm{~atm}\left(\frac{75.0 \mathrm{~L}}{30.0 \mathrm{~L}}\right)=12.5 \mathrm{~atm}
$$

روش ديگُري براى حل كردن ايـن مسئله وجـود دارد كـه در آن ازلز
 بايانى حل میكنيم:

$$
P_{f}=P_{i}\left(\frac{V_{f}}{V_{f}}\right)=5.00 \mathrm{~atm}\left(\frac{75.0 \mathrm{~L}}{30.0 \mathrm{~L}}\right)=12.5 \mathrm{~atm}
$$

را -

 كيلرساك

 1 mL KV Tr mL
 خر خArmL و به off mL

 S فقط آن را زاز

 سلسيوس (با نماد t) هی تو انا بـ دست آَوزد.

$$
T=t+273
$$

[^0]2. Joseph Gay - Lussac

حجم ثاياتى كُاز را با تصحيح حجم آَغازين در اثر تغيير فشار مسىتران
 يكسان است:

$$
2 \mathrm{~mL}=(360 \mathrm{~mL})\left(ت \mathrm{H}^{-}\right)
$$

ضرايب تصحيح با ضرايب تبلديل بكسـان نـيستند. ضـريب تصصحيح،

مسئله به دست آورد:
($1.000 \mathrm{~atm} / 0.750 \mathrm{~atm}$)
(0.750 atm $/ 1.000 \mathrm{~atm})$
راستى، كدام ضريب را بايـد بي كار ببر يم؟ حرن نُشـار از از

در نتّبجه،

$$
? \mathrm{~mL}=360 . \mathrm{mL}\left(\frac{0.750 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)=270 . \mathrm{mL}
$$

در تُتيجه،

$$
\begin{equation*}
P_{f} V_{f}=P_{i} V_{i} \tag{r-10}
\end{equation*}
$$

$$
V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)=360 . \mathrm{mL}\left(\frac{0.750 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)=270 . \mathrm{mL}
$$

r-1. مثال
در دمای "
كاز با بـه دست آَوريد.

$$
\begin{aligned}
& \text { : سرإيط آغازين : } V_{i}=75.0 \mathrm{~L} \quad P_{i}=5.00 \mathrm{~atm} \quad t=0^{\circ} \mathrm{C} \\
& \text { 隹 : } V_{f}=30.0 \mathrm{~L} \quad P_{f}=? \mathrm{~atm} \quad t=0^{\circ} \mathrm{C}
\end{aligned}
$$

فشار آغازين بايلد بـ نسبت تغيير هجم تصحمح شود. دما ثابت است، در نتيجه، تصسِع دما لازم نـيست.

$$
2 \mathrm{~atm}=(5.00 \mathrm{~atm})(\text { تصمبح })
$$

 خراهد. بود. در نتيجها، حجم بزرگ تر را در صورت كسر ضريب تصر تصخيح

در		
		+a
(K)	(${ }^{\circ} \mathrm{C}$)	(mL)
ryu	-	YYT
rve	1	YY\%
rat	1.	rar
ofs	iver	ofe

 مى توان نا صفر مطلق امتداد دادر.

$$
\begin{equation*}
T=t+273.15 \tag{4-10}
\end{equation*}
$$

 توجه، به صورت
r-1.

$$
\begin{aligned}
& \text { 俍 : } V_{i}=79.5 \mathrm{~mL} \quad i_{i}=45^{\circ} \mathrm{C} \quad T_{i}=318 \mathrm{~K} \\
& \text { : } y_{f}=? \mathrm{~mL} \quad t_{f}=0^{\circ} \mathrm{C} \quad T_{f}=273 \mathrm{~K}
\end{aligned}
$$

[^1]حجم تمام كازها، در نشار ثُابت، با دماى مطالق رابطةُ مستقيم دارد. اين

$$
V \propto T
$$

$$
V=k^{\prime} T
$$

 نمونهاي از يكاكاز، حجم آن را دوبرابر خو اهدكيرد.

ح

$$
\begin{array}{llll}
\text { : شـرايط أغانـين : } V_{i}=10.0 \mathrm{~L} & P_{i}=2.00 \mathrm{~atm} & T_{i}=273 \mathrm{~K} \\
\text { : } V_{f}=10.0 \mathrm{~L} & P_{f}=2.50 \mathrm{~atm} & T_{f}=? \mathrm{~K}
\end{array}
$$

به علت ثابت بودن حجم، نيازى به تصحيح آن نيست. در مسائلّ مربوط به كازها بايد تمام دماها بر خسب كلرين باشنـند. دز نتيجه،
? K = (273 K) (تصححح خـُـبار)

$$
? \mathrm{~K}=\mathrm{K}\left(\frac{2.50 \mathrm{~atm}}{2.00 \mathrm{~atm}}\right)=341 \mathrm{~K}
$$

بناسخ مسئله را مىتو اخن به درجئ سلسبرس تبدبل كر :

$$
t=T-273
$$

$$
=341 \mathrm{~K}-273 \mathrm{~K}=68^{\circ} \mathrm{C}
$$

$$
\begin{equation*}
\frac{P_{f}}{T_{S}}=\frac{P_{i}}{T_{i}} \tag{v-10}
\end{equation*}
$$

با حل كردن معادلة ه ا - V برای TT ، داريم:

$$
T_{f}=T_{i}\left(\frac{P_{f}}{P_{i}}\right)=273 \mathrm{~K}\left(\frac{2.50 \mathrm{~atm}}{2.00 \mathrm{~atm}}\right)=341 \mathrm{~K}
$$

ويليام تامسرن، لرد كلوين (IQ.V اAYY)

بنابراين،

$$
? \mathrm{~mL}=(79.5 \mathrm{~mL})\left(\mathrm{L}_{2} \mathrm{C}_{2} \mathrm{~F} \cdot \mathrm{~F}\right)
$$

 $7 \mathrm{~mL}=79.5 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{318 \mathrm{~K}}\right)=68.2 \mathrm{~mL}$
 ، در نتيج $\frac{V_{f}}{T_{f}}=\frac{V_{i}}{T_{i}}$
اكر معادله را برايى حجم پايانى سل كنيم، خو اهيم داشت: $\mathrm{V}_{f}=V_{i}\left(\frac{T_{f}}{T_{i}}\right)=79.5 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{318 \mathrm{~K}}\right)=68.2 \mathrm{~mL}$

。

$P \propto T$ $P=K^{\prime \prime} T$

 مقياسى برايى دماى آن كاز استا سانِ ساحت.
مثال • - - م

ظــرفى 10 اليـترى در فشـار

خو اهد رسيد!

جوز، و دما بر حسب كلوين بيان شود. مقادير R بـا سـاير واحـذها، در

تتسيم بر وزن مرلكولى گاز، M، است:

$$
n=\frac{g}{M}
$$

با قاراردادن (g/M) به جاي nدر معادلّ

$$
P V=\left(\frac{g}{M}\right) R T
$$

0 - 10 مثال
 نمونه را در STP حساب كنيد.

روشن ضريب تصحتح را مى تموان برائ حل اين مسئله به كار برد:

 رإطئُ معكوس دارند:
$? \mathrm{~mL}=462 \mathrm{~mL}\left(\frac{273 \mathrm{~K}}{308 \mathrm{~K}}\right)\left(\frac{1.15 \mathrm{~atm}}{1.00 \mathrm{~atm}}\right)=471 \mathrm{~mL}$ اين مسئله را الز مسعادلّ
 نيز ثابت مى باشبد،

$$
\begin{equation*}
\frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}} \tag{11-10}
\end{equation*}
$$

$V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)\left(\frac{T_{f}}{T_{i}}\right)=462 \mathrm{~mL}\left(\frac{1.15 \mathrm{~atm}}{1.00 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{308 \mathrm{~K}}\right)=471 \mathrm{~mL}$
عثال •1. -9
$10,0 \mathrm{~L} \mathrm{H}_{\mathrm{j}} 100^{\circ} \mathrm{C}$ ى
خواهد رسيد؟

 تعداد مول مهاى كاز باتملـ،

$$
V \propto n
$$

$$
\begin{equation*}
V=k^{\prime \prime \prime} n \tag{A-10}
\end{equation*}
$$

 مستْيم دارد:

$$
V \propto \frac{1}{P} \quad V \propto T \quad V \nsim n
$$

بنابراين،

$$
V \propto\left(\frac{1}{P}\right)(T)(n)
$$

 اين مورد، هدد ثابت رابـا R مشخص مى كنيم: $V=R\left(\frac{1}{P}\right)(T)(n)$
با تغيير آرايش معادلةً بالا ميتو انْ به معادله (10 ـ 9) رسيه:

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

$$
R=\frac{P V}{n T}
$$

با قرار دادن دادهما براي ححهم مولى STP يك كاز ايدهآله، داريم:

$$
R=\frac{(1 \mathrm{~atm})(22.4136 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}=0.082056 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})
$$

هنغام استفاده ازز اين مقدار R، حجم بايد بر حـب لِيتر، فشار بر حسب
$(2.00 \mathrm{~atm}) V=\left(\frac{10.0 \mathrm{~g}}{44.0 \mathrm{~g} / \mathrm{mol}}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](300 . \mathrm{K})$ $V=2.80 \mathrm{~L}$

9-1. 9
得

ل

$$
P V=\left(\frac{g}{M}\right) R T \quad(1 \cdot-1 \cdot)
$$

تا هـ كالم، بِنى

وز

$$
\begin{aligned}
\frac{g}{V} & =\frac{(1.15 \mathrm{~atm})(17.0 \mathrm{~g} / \mathrm{mol})}{[0.0821 \mathrm{Latm} /(\mathrm{K} . \mathrm{mol})](373 \mathrm{~K})} \\
& =0.638 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

مثال 10-10

 بيدست آوريد.
j

$$
P V=\left(\frac{g}{M}\right) R T
$$

$(0.948 \mathrm{~atm})(1.00 \mathrm{~L})=\left(\frac{1.50 \mathrm{~g}}{M}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](323 \mathrm{~K})$ $M=42.0 \mathrm{~g} / \mathrm{mol}$

 (FT, $/ / /$ /F, 0) $=r$
 . $\mathrm{C}_{\mathrm{F}} \mathrm{H}_{8}$

J
$P=? \mathrm{~atm} \quad V=10.0 \mathrm{~L} \quad n=0.250 \mathrm{~mol} \quad T=373 \mathrm{~K}$ مسائلى كه شـرايط يكدست داشته باششند بـ آسانى با قرار دادن مقادير در هعادلى حالت، حل مییشوند:

$$
\begin{align*}
P V & =n R T \tag{4-10}\\
P(10.0 \mathrm{~L}) & =(0.250 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](373 \mathrm{~K}) \\
P & =0.766 \mathrm{~atm}
\end{align*}
$$

Y

j

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

$$
\begin{aligned}
(1.50 \mathrm{~atm})(0.500 \mathrm{~L}) & =n[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](323 \mathrm{~K}) \\
n & =0.0283 \mathrm{~mol}
\end{aligned}
$$

A-1. مثال حهم

$$
P V=\left(\frac{g}{M}\right) R T
$$

0 - واحد صر رت و مخرج كسر، به علت يكسان بوحن، حذف
 تصصحيح شده المت

$$
t=T-Y Y, 10
$$

ب - روش نرهولى
 تمرنه هسعينى از يكى Sاز، n نـيز مـانتد R تـابت است. در نتيجه، , $P_{j} V_{i} / T_{i}=n R$, $P_{f} V_{f} / T_{f}=n R$

$$
\frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}}
$$

 ك
 با يان كار محاسبد خوراهد شد:

$$
t=T-r \vee r, 10
$$

روش حلكردن مسائلى كه شامل تغيير حاللت يكىگاز معين هستند

b $\left(T_{f} ، P_{f} ، V_{f}\right)$ ا آ مشخخص كنيل.

 قبول است.

الف - روش ضريب تبليل

 آغازين رادر ضرايب تصحيح ضربـ كنيلد تا تغيير مربو ط به دو متغير ديگر نيز تصسحيح شود.
F F ـ هو يكى از ضرايب تصنحيح را بهصورت جلاگاكانه به كاربيريد. ضريب تصحيح؛ شامل كسر حـاصل از تـقنسيم مـقادير آفـازين و
 صورت ضريب و ديخُرى در مخرج قرار داده مى شود. باياين توتيب؛

 كسر رناسب برایى تصحيح را انتخاب كنيذ.

ث ـ نـــيروى جـاذبئ بـين هـولكولهاى گاز، نـاجيز و قـابل
جشميوشیى است.

 قانون شارل و قانون آمونتونه، خــواص كـازها را بـه تـغييرات دمـا

 دماى مطلت نيز، به طور نظرى، صغر است.

1. Daniel Bernoulli	2. Krönig
3. Clausius	4. Maxwell
5. Boltzmann	6. Postulates

نظرية جنبشى گُازها، الكُويى براي تبيين نظم و ترتيب مشـاهده شـده

 ديوارةٌ ظرفـ است، تبيين كرد. توضيح برنولمى، الولين و سادهترين تغسير

در اين عبارت، "uميانگين مجذرور تمام سرعتهاى مو مولكولى است.
 با با است با:

$$
\begin{aligned}
& \text { مساحت } \\
& P=\frac{\frac{N m u^{2}}{3 a}}{a^{2}}=\frac{N m u^{2}}{3 a^{3}}
\end{aligned}
$$

 $P=\frac{N m u^{2}}{3 V} \quad$ L $\quad P V=\frac{1}{3} N m u^{2}(1 r-1 \cdot)$

معادله را به صورت زير میتوان نوشت:

$$
P V=\left(\frac{2}{3} N\right)\left(\frac{1}{2} m u^{2}\right)
$$

 مبلكولى برابر است با:

$$
\begin{equation*}
K E=\frac{1}{2} m u^{2} \tag{10-10}
\end{equation*}
$$

$$
\begin{equation*}
P V=\frac{2}{3} N(K E) \tag{19-10}
\end{equation*}
$$

 مستقــم دارد، در نتيجه

$$
N(K E) \propto n T
$$

قرار دادن اين عبارت در معادلهه - If - م متضمن وارد كـيردن يكـ ثابت

است با ثابت كازها، يعنى R، در نتيجه،

$$
\begin{equation*}
P V=n R T \tag{9-10}
\end{equation*}
$$

 برخوردها جبران مىشود. قانون شارل بيانگر اين وضعيت است.

 خر اهدل شد با:

$$
V=a^{3} \mathrm{~cm}^{3}
$$

 در جهت محور y، و يكى سوم در جهت محور z

 جهتهاي x، yو zهمبارز است.

اندازئ حركت، حامل ضرب

 حركت هر مولكول در هر ثانيه برابر است با،

$$
\left(\frac{u}{2 a}\right) 2 m u=\frac{m u^{2}}{a}
$$

تغيير كل اندازٔ حركت (نيرو) برانى تمام مولكولهمايى كه در يكى ثانيه با اين ديوأره برخررد میىتنتل، عبارت است ان: $\frac{N}{3} \times \frac{m u^{2}}{a}$

 ساوى تمداد يكساتي مور لكورا، x، است.

11-1. 11 مثال

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

(الفت) زإبطةٌ بين ححمب

> شيمهيابيم داده شـده اسست.

$$
2 \mathrm{LC}_{2} \mathrm{H}_{6} \approx 7 \mathrm{LO}_{2}
$$

اين رابطه را براى بهدست آوردن ضريب تبديل به كاز می بريمب:
? $\mathrm{LO}_{2}=15.0 \mathrm{~L} \mathrm{C}_{2} \mathrm{H}_{6}\left(\frac{7 \mathrm{~L} \mathrm{O}_{2}}{2 \mathrm{LC}_{2} \mathrm{H}_{6}}\right)=52.5 \mathrm{~L} \mathrm{O}_{2}$
(ب) در اين هوردم، رابطه زيبر را داريم:

$$
2 \mathrm{LC}_{2} \mathrm{H}_{6} \approx 4 \mathrm{LCO}_{2}
$$

بنابراين،
? $\mathrm{LCO}_{2}=15.0 \mathrm{LC}_{2} \mathrm{H}_{6}\left(\frac{4 \mathrm{~L} \mathrm{CO}_{2}}{2 \mathrm{LC}_{2} \mathrm{H}_{6}}\right)=30.0 \mathrm{~L} \mathrm{CO}_{2}$

1. Gay - Lussac's law of combining volumes
2. Amedeo Avogadro

$$
\begin{aligned}
& \text { 隹 } \\
& \text { براى مثال، }
\end{aligned}
$$

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

 هو جود دز حجم هعيني از
 , H_{r} ى

 شـده، دو برابير حمجم (g)

 مو لكول لمايى

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
$$

نسبت هجمى اين واكتشَ برابير است با:

10; 1 - 1 。

1*
.

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

هorn
$J=$

$$
1 \mathrm{~mol} \mathrm{NaN}_{3}=65.0 \mathrm{~g} \mathrm{NaN}_{3}
$$

$$
? \mathrm{~mol} \mathrm{NaN}_{3}=0.400 \mathrm{~g} \mathrm{NaN}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{NaN}_{3}}{65.0 \mathrm{~g} \mathrm{NaN}_{3}}\right)
$$

$$
=0.00615 \mathrm{~mol} \mathrm{NaN}_{3}
$$

از معادلةٌ شبهياييى بالا، ميتوران تتيجهه كرفد
$2 \mathrm{~mol} \mathrm{NaN}_{3} \approx=3 \mathrm{~mol} \mathrm{~N}$
بـابنائن،

$$
P V=n R T
$$

$(0.980 \mathrm{~atm}) V=(0.00923 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](298 \mathrm{~K})$

$$
V=0.230 \mathrm{~L}
$$

10-10 مثال

$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \longrightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$

لo
إِــا : 0) चु

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{~N}=0.00615 \mathrm{~mol} \mathrm{NaN}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}\right) \\
& =0.00923 \mathrm{~mol} \mathrm{~N}_{2} \\
& \text { ح حجم : }
\end{aligned}
$$

 فشار يكسان اش

 ز

 نيز هـى تو ان انتجام داد.

مثالJ • -

ل
وز
$1 \mathrm{~mol} \mathrm{~F}_{2}=38.0 \mathrm{~g} \mathrm{~F}_{2}$

$$
1 \mathrm{~mol} \mathrm{~F}_{2}=22.4 \mathrm{~L} \mathrm{~F}_{2}
$$

بنابراين،
$? \mathrm{~g} \mathrm{~F}_{2}=1 \mathrm{LF}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{~F}_{2}}{22.4 \mathrm{~L} \mathrm{~F}_{2}}\right)\left(\frac{38.0 \mathrm{~g} \mathrm{~F}_{2}}{1 \mathrm{~mol} \mathrm{~F}_{2}}\right)=1.70 \mathrm{~g} \mathrm{~F}_{2}$
.

R وزن مولكولى با چڭالى STP ja

$$
? \mathrm{~g}=1 \mathrm{~mol}\left(\frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}\right)\left(\frac{1.34 \mathrm{~g}}{1 \mathrm{~L}}\right)=30.0 \mathrm{~g}
$$

C

 r r \& L . به كارگرفت (مثالهاي $P V=n R T$

$$
\begin{aligned}
& \text { توع مسانْلى كه با آنها روبه رو مى ششويم به قرار زير استا: } \\
& \text { ا } 1
\end{aligned}
$$

شلده است. از ثانون تركيب حجمى گيلوساك استفاده كـنيد (مـثال
.

$$
\begin{aligned}
& \text { مسنثله سـازگار شور } 2 . \\
& \text { ال r r ج } \\
& \text { الف ـ عدهُ مولها }
\end{aligned}
$$

شده است .

$$
\begin{aligned}
1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} & =159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
? \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} & =1.00 \times 10^{3} \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{159.6 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}}\right) \\
& =6.27 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{aligned}
$$

از معادلدٌ واكنش داريه:

$$
1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \approx 3 \mathrm{~mol} \mathrm{CO}
$$

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{CO} & =6.27 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\frac{3 \mathrm{~mol} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}\right) \\
& =18.8 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

(
(STP,

$$
1 \mathrm{~mol} \mathrm{CO}=22.4 \mathrm{~L} \mathrm{CO}
$$

بنابراين،
$? \mathrm{LCO}=18.8 \mathrm{~mol} \mathrm{CO}\left(\frac{22.4 \mathrm{~L} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}\right)=421 \mathrm{~L} \mathrm{CO}$
مرحلة آخر را مىتوان با استفاده از معادلة حالت نبز حل كرد:

$$
P V=n R T
$$

$(1 \mathrm{~atm}) V=(18.8 \mathrm{~mol})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mole})](273 \mathrm{~K})$

$$
V=421 \mathrm{~L}
$$

19-10 مثال

برای توليد معادلٌّ واكنشت به قرال زير است:

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

جدرل ه - - ب فشار بخار آب

 جيزئى A برابر يكى ينجم فشار كل، و فشار جزئى B برابر با جهارينجم فشاركل است.

 مىتوان بهدست آورد.

 فيا

ك، اكُر به تنهايـى در آن ظرف برد، وارد مىكرد.
 مولهاى كاز در مخلوط برابر با با

$$
X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}=\frac{n_{\mathrm{A}}}{n_{\text {loatal }}}
$$

 هى شود. بنابراين فشار جزئى A برابر است با،

$$
\begin{equation*}
p_{\mathrm{A}}=\left(\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}\right) P_{\text {total }}=X_{\mathrm{A}} P_{\text {total }} \tag{19-10}
\end{equation*}
$$

نشار جزئى B برابر با كسـر مولى B ضرب در فشار كلى است:

$$
p_{\mathrm{B}}=\left(\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{R}}}\right) P_{\text {total }}=X_{\mathrm{B}} P_{\text {toata }} \quad\left(\gamma_{0}-1 \cdot\right)
$$

توجه داشته باشيد كه مجموع كسرهاى مولى برابر ا است:

$$
\begin{aligned}
X_{\mathrm{A}}+X_{\mathrm{B}} & =1 \\
\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}+\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} & =\frac{n_{\mathrm{A}}+n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}}=1
\end{aligned}
$$

 ,

$$
P V=\frac{1}{3} N m u^{2} \quad(1 \Gamma-1 \cdot)
$$

 أستا : به دست

$$
P V=\frac{1}{3} M u^{2} \quad(Y-10)
$$

$$
R T=\frac{1}{3} M u^{2} \quad(Y Y-10)
$$

$$
\begin{equation*}
u=\sqrt{\frac{3 R T}{M}} \tag{r-10}
\end{equation*}
$$

$$
K E=\frac{1}{2} m u^{2}
$$

 "
 or
 S
 .

19-1.10

$$
\begin{equation*}
u=\sqrt{\frac{3 R T}{M}} \tag{الف}
\end{equation*}
$$

1. Rout - mean - square speed

1V-1.
 ر بقّر است؟

J
 نشار آغازبن اكسيرّن عبارن

$$
0.992 \mathrm{~atm}-0.028 \mathrm{~atm}=0.964 \mathrm{~atm}
$$

تسإبإن

$$
? \mathrm{~mL}=370 . \mathrm{mL}\left(\frac{0.964 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{296 \mathrm{~K}}\right)=329 \mathrm{~mL}
$$

.

$$
V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)\left(\frac{T_{f}}{T_{i}}\right)=370 . \mathrm{mL}\left(\frac{0.964 \mathrm{~atm}}{1.000 \mathrm{~atm}}\right)\left(\frac{273 \mathrm{~K}}{296 \mathrm{~K}}\right)=329 \mathrm{~mL}
$$

A 1 = 10

 . \uparrow, 0 O O 1 , ro mol
 بنابراين،

$$
\begin{aligned}
P_{\mathrm{O}_{2}} & =X_{\mathrm{O}_{2}} P_{\text {toont }} \\
& =(0.112)(0.900 \mathrm{~atm}) \\
& =0.101 \mathrm{~atm}
\end{aligned}
$$

فشَار جزئى هـلمه نيز برابِب انست با:

$$
\begin{aligned}
p_{\mathrm{Hc}} & =p_{\text {total }}-p_{\mathrm{O}_{2}} \\
& =0.900 \mathrm{~atm}-0.101 \mathrm{~atm}=0.799 \mathrm{~atm}
\end{aligned}
$$

$$
\begin{aligned}
& X_{\mathrm{O}_{2}}=\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{O}_{2}}+n_{\mathrm{He}}} \\
& X_{\mathrm{O}_{2}}=\frac{1.25 \mathrm{~mol}}{(1.25+10.0) \mathrm{mol}}=\frac{1.25 \mathrm{~mol}}{11.2 \mathrm{~mol}}=0.112 \\
& \text { فـّار جزتّى Or برايو است با }
\end{aligned}
$$

براى يكا مول كاز،

$$
\begin{equation*}
K E=\frac{3 R T}{2 N} \tag{x}
\end{equation*}
$$

ميانگين انز

Yo.-10 مثالJ
 محاسبه كنيد.

$$
\begin{aligned}
K E & =\frac{3 R T}{2 N} \\
& =\frac{3[8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})](273 \mathrm{~K})}{2\left(6.022 \times 10^{23} \mathrm{~J} / \mathrm{Jol}\right)} \\
& =5.65 \times 10^{-21} \mathrm{~J} / \mathrm{J} / \mathrm{Ji} \text {, }
\end{aligned}
$$

2

[^2]\[

$$
\begin{aligned}
& =\sqrt{\frac{3\left[8.314 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}\right)\right](273 \mathrm{~K})}{2.016 \mathrm{~g} / \mathrm{mol}}} \\
& =1.84 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
& =\sqrt{\frac{3\left[8.314 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mol}\right)\right](373 \mathrm{~K})}{2.016 \mathrm{~g} / \mathrm{mol}}} \\
& =2.15 \times 10^{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$
\]

 , $4,01 \times 10^{\circ} \mathrm{mile} / \mathrm{hr} g 0^{\circ} \mathrm{C}, 24,1 r \times 10^{r}$ mile/hr

 1 .f $1 \times 10{ }^{\circ}{ }^{\circ}$. 1 atm

هـيلرورثن نامنـ.

尾

$$
P V=\frac{2}{3} N(K E)
$$

$$
K E=\frac{3 P V}{2 N}
$$

 سرعت زياد در حركت باشـند، سريعتر از مولكو لـنهايـى كه بـا بـا سـرعت

$$
\begin{equation*}
\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}=\sqrt{\frac{M_{\mathrm{B}}}{M_{\mathrm{A}}}} \tag{ra-10}
\end{equation*}
$$

 : 2 行

 كُاهام رآبه صروت زير نيز مىتو انـ توشت:

$$
\begin{equation*}
\frac{r_{\mathrm{A}}}{r_{\mathrm{B}}}=\sqrt{\frac{d_{\mathrm{B}}}{d_{\mathrm{A}}}} \tag{19-10}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{r_{\mathrm{H}_{2}}}{r_{\mathrm{O}_{2}}}=\sqrt{\frac{M_{\mathrm{O}_{2}}}{M_{\mathrm{H}_{2}}}} \\
& \frac{r_{\mathrm{H}_{2}}}{r_{\mathrm{O}_{2}}}=\sqrt{\frac{32}{2}}=\sqrt{16}=4
\end{aligned}
$$

 از اين إصل براي جها جاسازى ايزوتوبها b bايزوتوب، فقط

 خورهد برد:

$$
K E_{\mathrm{A}}=K E_{\mathrm{B}}
$$

انوزى جنبشى جسـى به جوم mكه با سرعت بار حركت باشد:

$$
K E=\frac{1}{2} m u^{2}
$$

بنابراين،

$$
K E_{\mathrm{A}}=\frac{1}{2} m_{\mathrm{A}} u_{\mathrm{A}}^{2} \quad, \quad K E_{\mathrm{B}}=\frac{1}{2} m_{\mathrm{B}} u_{\mathrm{B}}^{2}
$$

تهام هورلكولهاى كاز A (يا Bاز B)، با سرعت يكسان حركت نحو اهنـل كرد. نهـ ميانگگين است. يس خواهيم داشت:

$$
\begin{aligned}
K E_{\mathrm{A}} & =K E_{\mathrm{B}} \\
\frac{1}{2} m_{\mathrm{A}} u_{\mathrm{A}}^{2} & =\frac{1}{2} m_{\mathrm{B}} u_{\mathrm{B}}^{2}
\end{aligned}
$$

$$
\begin{equation*}
m_{A} u_{A}^{2}=m_{B} u_{\mathrm{B}}^{2} \tag{L}
\end{equation*}
$$

$$
\frac{u_{A}^{2}}{u_{\mathrm{B}}^{2}}=\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}} \quad \text { با تغيير آرايش معادله، داريبم. }
$$

$$
\frac{u_{\mathrm{A}}}{u_{\mathrm{B}}}=\sqrt{\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}}}
$$

نسبت جرمهاى مولكولى دو كاز؛ يعنى

$$
\frac{u_{\mathrm{A}}}{u_{\mathrm{B}}}=\sqrt{\frac{M_{\mathrm{B}}}{M_{\mathrm{A}}}}
$$

مشتشتصنـــد

 SPVIRT

[^3] جداسازى ايزوتوبهمال، با تبديل اورانيم طبيعى به اورانيم هيخزا فلوئوريد كه در دماى در وانع مخلوطى از از
 (متخلخل) عبور دهيم؛ مى مند. در نتيجه، غلظت
 به طور قابل ملاحظهالى صرت كيردد.

Fl-10 مثّال

 يـيداكنيد.

$$
\begin{aligned}
& \frac{r_{\mathrm{x}}}{r_{\mathrm{N}_{2}}}=0.876 \\
& \text { وزذ مولكولى N } \\
& \sqrt{\frac{M_{\mathrm{N}_{2}}}{M_{\mathrm{X}}}}=\frac{r_{\mathrm{X}}}{r_{\mathrm{N}_{2}}} \\
& \sqrt{\frac{28.0}{M_{\mathrm{x}}}}=0.876
\end{aligned}
$$

$$
\begin{aligned}
\frac{28.0}{M_{\mathrm{x}}} & =0.767 \\
M_{\mathrm{x}} & =\frac{28.0}{0.767}=36.5
\end{aligned}
$$

 براى يكـ كاز ايدهآلل، PV =

$$
\begin{equation*}
\frac{P V}{R T}=n \tag{rv-1.}
\end{equation*}
$$

 تناسب (كه ب/1 نيز جزء آن است) در نظر كـرنت و عبارت تـصحتح .

[^4]از حجمكلى است. اين عامل باعتمى شودد تا PV/RT بزرگّتر از ا شو د.

 مولكولى به صورت يكـ عامل عمده در آمدلمهاست. منحنیهاى مريوط بـه ه ($\left(\circ^{\circ}{ }^{\circ} \mathrm{C}\right)$

 ك

 نزديكتر است.
 اين دو اثر، معادلة حالت كَاز اليدمآلى را اصالاح كرد. معادلة وان در والـس ختين است:

$$
\begin{equation*}
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \tag{5A-10}
\end{equation*}
$$

 عبارت

 مرلكر لى است.
 وجرد داشته باشلد، در آن صورت (1 -
 ($\mathrm{C} \mathrm{ClO}_{\mathrm{CO}}$

	$\begin{aligned} & 60 \\ & \left(0^{\circ} \mathrm{C}\right) \end{aligned}$
9, V^{\prime}	- 0 。
\| 4,1	- -
Y9, ${ }^{1}$	-1.
* 8 \%	1.
0980	Y.
vi, r	r.
Vr,n	H1

نشار بحراني (3tm)	 (K)	$j 15$
r, 76	0,5	He
1rs	Her	H_{5}
H, ${ }^{2}$	159.)	N_{T}
rojo	1ryo.	CO
fa, ${ }^{\text {P }}$	1075	O_{T}
+0, 9	19.jT	CH_{+}
vija	roter	CO_{5}
11100	$r \cdot 0$ ¢ $\%$	NH_{+}
Y Y \% , V	gry, ${ }^{\text {r }}$	$\mathrm{H}_{T} \mathrm{O}$

 ,السى استفاده شـده است.

1. Excluded volume
2. Critical tempcrature 3. Critical pressare 4. Joule - Thomson effect

 بدست آورد.

 هولكول (

$$
\begin{equation*}
b=4 N\left(\frac{4}{3} \pi r^{3}\right) \tag{4}
\end{equation*}
$$

 سرانجام با سرد كردن و تراكم يى در بیى هو الى مايع توليد میشّود.

 تامسرون (لرو كلوين) هطالعه شد. مايع شُدن هوا بهاين ترتيب صورت

 جوّ استاءدالرد (

Solen
مايعكردن بك كاز Critical temperature
 Dalton's law of partial pressures

 Gay - Lussac's law of combining volumes

 Graham's low of effusion
 نسبت معكرس دارد. Ideal gas constant, R ار Y - I.

[^5] (ب) atmosphere, atm . 1 atmi $=V 90$ torr اهصل آووكّادرو (بختّ Avogadro's principle路

 Boyl's law
 Charles' Iaw با (ir - 1 . ${ }^{\text {Compressibility factor }}$

S．Pascal نيو نون（كه برابر با ch نشار（بتش و Pressure Root－mean square speed
 2 Standard tamperature and pressure，STP \therefore atm（ At ） （ \wedge－ 10 （ 10 STP molar volume

 جيون بـ الرتفاع （ $1 T$－ 1 ．
 ك به حساب آمدماند．
 P قاثون كاز ايلدآل（بختّ Ideal gas law ，

 ．نظر Kinetic theory of gases كا تـوزيع مـاكســول－بـولتزمان Maxwell－Boltzmann distribution

يو Mean free path
 كسر مولى، صولى جزئى（بختّن Mole fraction，X
 نشار جزئى（．）Partial pressure

路
 （100atm
名 10 ـ 10

قانون كاز ايلدهآل

Los	مول	－	فشار
T	A	V	P
$100{ }^{\circ} \mathrm{C}$	$1 \mathrm{D} \cdot \mathrm{mol}$	－	$r_{\text {foo atm }}$
10.0 K	－	$1,00 \mathrm{~L}$	－j90．atm
－	－$\gamma=1.2 \mathrm{~mol}$	0.00 mL	F， F 0 atm
V0 ${ }^{\circ} \mathrm{C}$	$\mathrm{r}, \mathrm{j} \cdot \mathrm{mol}$	12 TOL	－

6.0	dor	\cdots	فشار
T	n	v	P
$14_{0}^{\circ} \mathrm{C}$	a， 90.0 mol	－	$\cdots 000 \mathrm{~atm}$
$40^{\circ} \mathrm{C}$	－	rormL	$1,0 \mathrm{~atm}$
$r_{0}{ }^{\circ} \mathrm{C}$	r remmal	$\mathrm{F}_{0}, \mathrm{l}$	－
－	$r .09 \mathrm{~mol}$	Y，Y\＆L	$r ¢, r \operatorname{atm}$

مسائل＂

توانين كًازهاي ساده
＂ 1 － （ج）تانون آمونتون． 10 1 ．

 PV（د）（ ） نسّبت به V Vر دماي ثابتا

㢄 I ا 10

 حجه Y，YOL L Tقدر الست؟ ． 10 ـ

 （10 10

 كا
 در صورتى كه إين ظران سربسته را تا دمالي ر

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+6 \mathrm{HCl}(\mathrm{~g})
$$

 مورت میئيرده
$2 \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 6 \mathrm{HF}(\mathrm{g})+\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$

 （ب）（ب）：

 ر 0 ：

 STP $\mathrm{N}_{\mathrm{r}} \mathrm{O}(\mathrm{g})$ g تعيين كنيد． ．
 در和 ．
俍
 1 示（3）性（1）

热

盅

استوكيو تترى و هتادير ححمى گازهما
原 ＂＂

 ＋1－1 م－م

 ثولمِ $\mathrm{Al}(\mathrm{OH})_{+}(\mathrm{B})$ $T 0^{\circ} \mathrm{C}, \dot{\sim}$
 U足 1
 نيونه

 Y $00^{\circ} \mathrm{C}$ C f＝

 C
 Conl

 ر）با

浣和
.

قانون تركيب حجمى گیلو ساك و اصل آووگادرو
 بلهسورت تحا \therefore ：
$2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCN}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
برإي تهـي

 ， $\mathrm{O}_{\mathrm{Y}}(\mathrm{g})$（

 ．
 ，ترئ
 UL ك ك

 ）
 \therefore－ام

 و فــار أَن
 －
 §un
隹
 آلن

 كه اين ندونةٌ كاز در

 $9100 \mathrm{~K}, N_{r}(\mathrm{~g})$（ 10 O．0．K
 §
 fent $\mathrm{F}_{\mathrm{Y}}(\mathrm{g}) \mathrm{S}$ ） S, C ． SLت － 10 مقايسس كنيد． （ 9 F－ا 10 ．
 گاز O（g）الست O 10
 ．

 ا اكر حم $V_{0}=1$ ．鱽

ا $\mathrm{La}(\mathrm{OH})_{\mu}(\mathrm{s})$ ， $\mathrm{C}_{\gamma} \mathrm{H}_{Y}(\mathrm{~g})$

 H ，C براي سوختز \＆\＆＿ا 10

摩 （ 10 爵

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq}) \\
& 2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{3}(\mathrm{aq})
\end{aligned}
$$

$H_{Y}{ }^{\text {l }}$

 به دست هي دهنـل：

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Zn}^{2+}(\mathrm{aq}) \\
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Al}^{3+}(\mathrm{aq})
\end{gathered}
$$

Hr الز واز

قانون فشار جزئى دالتون

． 1 ．
共

 ترتيب،

和
 j ${ }^{\text {F }}$; تُجزبة (S

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

از از سوتخ

 :

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

 Oحمب

 $j \mathrm{NO}_{\gamma}(\mathrm{g}), \mathrm{N}_{\gamma} \mathrm{O}_{\gamma}(\mathrm{g})$ (g)
 NK - ا.

जn

 O VO . 1 .

 مقايسد كنيد.

 مثايسه كنبن.
 : (ب) در ا

ما يوات و حاملاتات

 ال 11

 CH ${ }^{\text {C/ }}$

(ز)

 محدودتر از سالت كازي استي.

 .

كـتـاور دو قطبى و اتمى ثى كردد.

 براى

1. London forces (dispersion forces)

 צإز

3. Instantaneous dipoles

شیكل (NF

 VII A g，VIA

 ريبرند هيلرورزنى قرى، دو تهيز لازم است．

 كو كمتي از

جلول 1 1－1 انترزى جاذبه بين مولكرلى در برخى بلورهاي بولكر لىى س

ا＇الرّ					
ساينوب （K）	رمایجرش （K）			 （D）	بر／
V^{*}	Ar	－．．．．4	A，VF	－，إ	co
YYY	rra	－． rO_{0}	rvis	－ris	HI
1so	r．9	－． 94	11，9	－JVA	HBr
101	IAA	「ア「＊＊＊	198	1，4	HCl
190	rf．	$1 \mathrm{H} \mathrm{T}^{*}$	lify	1， Fa_{4}	NH_{w}
ryt	rrr	r9，${ }^{\text {\％}}$	9，	1 ，AF ${ }^{\text {F }}$	$\mathrm{H}_{\mathrm{Y}} \mathrm{O}$

 －الكترونگاتيوى

 HI（

 هو لكولهالى NH

 است．ســــرى

شـك

(بخش

 جامد است

 را به خرد مىكيريند.

 هيلدروزني بهازإي هر مور موكول

هيدروثنى آماده است.

هيدروثنى موجود در بخن.

 ج-

$$
\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{Y} \mathrm{O}(\underline{g}) \quad \Delta H_{\nu}=+\psi \mu, \wedge \mathrm{kJ}
$$

 مايع از يكديگ, قابل تشخيص نيستيتند.

 آب در فشار

كوزه خنكـ ميكردد.

$$
\mathrm{H}_{Y} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{Y} \mathrm{O}(\mathrm{~g})
$$

 سرعت تراكمو تبتير برابير مشـوند.

 به دماى بحرانى آن مادّه مربوط ساختى. در دماى بحراني فشـار بخار با

ΔH_{v}	t_{b}		
آنتالِّ تبهير	داكى جوش	نرمول	مايع
(kl/mol)	(${ }^{\circ} \mathrm{C}$)		
Ho, Y	1000°	$\mathrm{H}_{\mathrm{r}} \mathrm{O}$	آب-
r_{0}, λ	10, 1	$\mathrm{C}_{8} \mathrm{H}_{9}$	بنزن
$r_{1,9}$	$v \wedge, 0$	$\mathrm{C}_{\mathrm{Y}} \mathrm{H}_{6} \mathrm{OH}$	اتيل\|
rojo	ve, ${ }^{\text {r }}$	CCl_{4}	كربن تتراكلريد
$r a, r$	91,5	$\mathrm{CHCl}_{\mathbf{T}}$	كلروفرم
18, ${ }^{\circ}$	44,9	$\left(\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\omega}\right)_{\mathrm{r}} \mathrm{O}$	د دكآيل انر

رسادله كلازيوس -كلإيبرون

$$
\begin{equation*}
\log p=-\frac{\Delta H_{v}}{2.303 R T}+C \tag{1-11}
\end{equation*}
$$

 ايدهآل] (K.mol)

 معادلةً بسيار مفيدى را بهصورت زير بهدست آوريمز:

$$
\begin{align*}
& T_{2} \jmath:: \log p_{2}=-\frac{\Delta H_{v}}{2.303 R}\left(\frac{1}{T_{2}}\right)+C \tag{r-11}\\
& T_{1} \jmath: \log p_{1}=-\frac{\Delta H_{v}}{2 \cdot 303 R}\left(\frac{1}{T_{1}}\right)+C
\end{align*}
$$

باكم كردن معادلむ 11 - باز از 11 - با داريم:

$$
\log p_{2}-\log p_{1}=-\frac{\Delta H_{0}}{2.303 R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \quad(\uparrow-11)
$$

كه قابل بازنويسى به صورت زير است:

$$
\begin{equation*}
\log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \tag{0-11}
\end{equation*}
$$

1. Clausius - Clapeyron equation

2. Benoit Clapeyron
3. Rudolf Clausius

 latm
 جرش نرشالـ استال (VA, $0^{\circ} \mathrm{C}$) (

 فشار، آب در فشار جوّ در ارتفاع

 همالن

بحرانى آن ماده به صغر مىرسد.

$$
\begin{align*}
\log \left(\frac{p_{2}}{p_{1}}\right) & =\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \tag{0-11}\\
\log \left(\frac{1.000 \mathrm{~atm}}{0.695 \mathrm{~atm}}\right) & =\left(\frac{4.07 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{(2.303)[8.314 \mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})]}\right)\left(\frac{373 \mathrm{~K}-T_{2}}{(373 \mathrm{~K}) T_{2}}\right)
\end{align*}
$$

$$
0.1580=2126\left(\frac{373 \mathrm{~K}-T_{2}}{(373 \mathrm{~K}) T_{2}}\right)
$$

$$
1.028 T_{2}=373 \mathrm{~K}
$$

$$
T_{2}=363 \mathrm{~K}
$$

دمای:جوش آببدرفشار

ها 11

 جاملد برقرار مىشود.
 كُردانده مى شرد تا الينكه تبلور كا كمل شود.

مثال 11-1 1

 فشار بخار كلووفرم به براى اين فاصلهُ دماينى بيدا كنيد.

$$
\left[\frac{334 \mathrm{~K}-328 \mathrm{~K}}{(328 \mathrm{~K})(334 \mathrm{~K})}\right]
$$

$$
\Delta H_{v}=29,390 \mathrm{~J} / \mathrm{mol}
$$

$$
=29.4 \mathrm{~kJ} / \mathrm{mol}
$$

r- ret rer
 بخار دمايى برابر با

مثال 11 -
 .

حل

$$
\begin{aligned}
& J \\
& \text { ، } T_{1}=Y \vee \mu \mathrm{~K} \quad p_{Y}=0, \Delta r \varphi \mathrm{~atm} \quad T_{Y}=\mu \cdot 1 \mathrm{~K} \text {, } 1 \\
& \text { : } \Delta H_{v}=r, v 9 \times 10^{*} \mathrm{~J} / \mathrm{mol} \\
& \log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) \\
& \log \left(\frac{0.526 \mathrm{~atm}}{p_{1}}\right)=\left(\frac{2.76 \times 10^{4} \mathrm{~J} / \mathrm{mol}}{(2.303)[8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})]}\right) \\
& \left(\frac{301 \mathrm{~K}-273 \mathrm{~K}}{(273 \mathrm{~K})(301 \mathrm{~K})}\right) \\
& \left(\frac{0.526 \mathrm{~atm}}{p_{1}}\right)=31.0 \\
& p_{1}=0.170 \mathrm{~atm}
\end{aligned}
$$

年

 1 atm شو

1. Molar enthalpy of fussion

جدول 11 ـ ـ ب أَتْالبى ذوب مولى جاهـلات در دماي ذوب آنها

ΔH_{f}	${ }^{\text {f }}$		dula
آلتالى ذا	دهاs ذوب	نرمول	
($\mathrm{kJ} / \mathrm{mol}$)	(${ }^{\text {C }}$)		
9.9 Y	${ }^{\circ} \mathrm{O}$	$\mathrm{H}_{\mathrm{r}} \mathrm{O}$	با
9, $\boldsymbol{N}^{\prime \prime}$	0 os	$\mathrm{C}_{¢} \mathrm{H}_{¢}$	بنزن
r,so	- liver	$\mathrm{Cr}_{4} \mathrm{H}_{0} \mathrm{OH}$	اتاثيل الكىل
r, 01	-rrsa	CCl_{4}	كربن تراكريل
4, 5.	-9\% ${ }^{\text {¢ }}$	CHCl_{4}	كلروفرم
V, 9 \%	-119,	$\left(\mathrm{C}_{Y} \mathrm{H}_{0}\right)_{\mathrm{r}} \mathrm{O}$	

 r

自 " $14,4 \mathrm{r}^{\mathrm{k}} \mathrm{cm}^{+}$

 1, 1 در شكل 11 atm
 تقطة ثاققى خحط

 b

俍

 -VA, $\Delta^{\circ} \mathrm{C}$ ىloد 2

 خن

هنحنىى

 (rVr , 19 K K)

 مهكن أست دنر يكى از تو احى زير بر باشدل: - 1

ell

نيروها
 . 2 (\quad ($\because{ }^{\circ} \mathrm{C}$

 الكتريسيتهاند.

 شببكهاى رسانایى الكتر يسيتد نيستنا.

شكل

 J, r

CaF بلور بوني، فلو

جـول

LuJtise	صاص		\＃ 5	بو
$\mathrm{NaCl}, \mathrm{BaO}$ KNO_{Γ}	دهـ ＊	shantar而	د and	\％
$\frac{\mathrm{H}_{Y} \mathrm{O} \cdot \mathrm{NH}_{T}}{\mathrm{SO}_{Y}}$	 位 	－ sisus 3	｜rex	W0，
（w） AIN．SiC． 50_{r}	E.	，	4	ckers：
$\begin{gathered} \mathrm{Ag} . \mathrm{Cu} \\ \mathrm{Ne} . \mathrm{K} . \\ \mathrm{Ft} \end{gathered}$	$\because=\dot{\sim}$ ＂ 			cit

隹

 د

F - 11 مشال

 هر $1,4 \mathrm{Fg} / \mathrm{cm}^{ }$ محاسبه كنيد.

ح
. سلول واحد
 م1 $4 \approx 4.36 \times 10^{-23} \mathrm{~cm}^{3}$

از جحكّالى بلمرى، داريم،

$$
1 \mathrm{~cm}^{3} \approx \approx 8.94 \mathrm{~g} \mathrm{Ni}
$$

تعداد اتمها درو $؟_{\mathrm{c}} \mathrm{F}=58.7 \mathrm{~g} \mathrm{Ni}\left(\frac{1 \mathrm{~cm}^{3}}{8.94 \mathrm{~g} \mathrm{Ni}}\right)\left(\frac{\mathrm{F}^{-1} / 4}{4.36 \times 10^{-23} \mathrm{~cm}^{3}}\right)=6.02 \times 10^{23}$ م
مثال 11-0 0
品

$ح$ هر ضلع، سلول واحد

ساختارهاي بكعبى

شكل 11 = 19 ساخثارهاىي مكعبى

 سادهترين نوع سلول واحده، سلول واحد مكعبى (تشكل (1) - 19)

 1 (هشت كُوشه و در هر كُشه، يكى هـتم اتم).

 "

$$
\begin{align*}
& T=a \sqrt{r} \\
& r=\frac{a \sqrt{r}}{r} \tag{10-11}
\end{align*}
$$

9 - 11 مثال

 به دست آوريد؟

J
فطر مكعب سلبول واحد برابر است با،

$=(Y \mathrm{~F}, \mathrm{pm}) \sqrt{T}$
$=y * 0 \mathrm{pm}$
أين طول جههار برابر شُعأ اتمى است:
$K r=V \% 0 \mathrm{pm}$ $r=1 / \mathrm{A} 9 \mathrm{pm}$

 اشعه X كه داراى طول موج يكسان باششند، باعث تقريت آنها و توليد

واحد.
 ضرايب تبديل خرد را الز جچكالى سديم به دست مى آوريم:
$0.963 \mathrm{~g} \mathrm{Na} \approx 1 \mathrm{~cm}^{3}$
 با هدد آووگادرو است:

$$
\mathrm{Na} \mathrm{~N}^{1} 6.02 \times 10^{23}=23.0 \mathrm{~g} \mathrm{Na}
$$

حل هسئله به صورت زير است:
 مكعبی مركز بر، تنها سلول واحد مكعبى دارايى دو اتم است.

$$
\begin{equation*}
r=a / 2 \tag{9-11}
\end{equation*}
$$

 در مردد سـه كوشهـهاى قائمالزالويه،

$$
\begin{align*}
& =Y a^{\dagger} \tag{v-11}
\end{align*}
$$

اين قطر برابر با حهار شعاع استس:

$$
\begin{align*}
\psi_{r} & =a \sqrt{Y} \tag{A-11}\\
r & =a \sqrt{\lambda^{-1}}
\end{align*}
$$

 نيز برابر

$$
\begin{align*}
& \left(\begin{array}{ll}
4 \\
4 &)^{r}=a^{r}+(a \sqrt{r})^{r}
\end{array}\right. \\
& =r a^{r} \\
& \text { 解 }=a \sqrt{T} \tag{9-11}
\end{align*}
$$

اين تطر برابر با جهار شعـعاع اتمى است:

 $n=1$, r , r r, ...

$$
\begin{aligned}
& \text { V- } 11 \text { مثال }
\end{aligned}
$$

1.)
J
با قرالر دادز اطلاعات داده شـده در معادلّه براگ، ذاريمب
$n \lambda=2 d \sin \theta$
$1(229 \mathrm{pm})=2 d(0.456)$
$d=251 \mathrm{pm}$

[^6]

 اننازi
 برابر با عده: كل طول مو موجها باشدل:
$$
E F+F G=n \lambda
$$

كه در آن، nen ne صحيح است.

$$
\sin \theta=\frac{\mathrm{EF}}{d}
$$

$$
\mathrm{EF}=d \sin \theta
$$

$\mathrm{FG}=d \sin ^{\circ} \theta$

را نيز ميتوان به همين ترتيب به دست آورد، در نتيجه،

$$
\mathrm{EF}+\mathrm{FG}=2 d \sin \theta
$$

جحون EF + FG بابر با

$$
\begin{equation*}
n \lambda=2 d \sin \theta \tag{11-11}
\end{equation*}
$$

$$
\begin{aligned}
& \theta+a=90^{\circ} \\
& \text { زاوية } \\
& \theta^{\prime}+a=90^{\circ}
\end{aligned}
$$

جـدول 11 ــه ساختار بلورى فلزوات

110-10 بلورهاى يونى 10

 نيروهاى دافعيُ الكترؤاستاتيكى غلبه داشته، باثشند.

1 ا 1 ـ ا ساختار بلورى فلزات

NarO آنتى فلوئوريت

TiOr لity
 , (أنا

 متبلور مى شـود.

 تلونُوريت،

 vill 1 17-1 11

 بين آنها (نسبت (enكوس:

$$
\begin{equation*}
P E=\frac{k q_{1} q_{2}}{d} \tag{18-11}
\end{equation*}
$$

كه در آن، k

 يكى در

 Cl ${ }^{\circ}$ CSCl

 ر د Cl^{-}

 "ى

 NaCl

 تمام مواضع شبكه بلورى به وسيله يـونهانهاى

 (1A०V b IV99
 بون
 زيرا بار يون

جلول 11 ـ 9 سايختار بلورى برخي از تركيبات يونى

Jun	
$\mathrm{NH}_{+} \mathrm{I}, \mathrm{AgBr}, \mathrm{AgCl}^{\text {a }}$	
Agl . CuCl . CuBr	4,
	ثكّونويت
$\mathrm{UO}_{\gamma} \cdot \mathrm{ThO}_{r} \cdot \mathrm{ZrO}_{\gamma} \cdot \mathrm{SrCl}_{\gamma} \cdot \mathrm{BaCl}_{\gamma} \cdot \mathrm{Pb}^{\mathrm{r}+}$	
$\mathrm{Rb}^{+} \cdot \mathrm{K}^{+} \cdot \mathrm{Na}^{+} \cdot \mathrm{Li}^{+}{ }^{\text {c/ }}$	
	ركّ

1. Bertholides

2. Claude Louis Berthollet

 حجم خود را حظظ هي كند.

 نــــــت الستوكيو نترى هـنا

 بلور رابا استفاده از مطالمات بـرتو

و Crystal lattice

 (1) Dipole - dipole force

 Enthalpy of condensation

 - 11 , t - 11 Enthalpy of vaporization

 Evaporation, vaporization
 سلول واحـ مكعبى با مراكز وجزه Face - centened cubic unit cell

 (بحّ
 توهال گويئلد.
يبيوند هيلدروثنى (بتش Hydrogen bond

 تأمين شوبد. Instantaneous dipole
 تيروهاي لندن (يراكندگى). .intermolecular forces

(بوضم Interstitial postion

مناهِ

S S

r
Bertholide (i-) Body - centered cubic unit cell
 مركز ساختار. (و) Boiling point

 (بخئى Bragg equation

$$
n \dot{\lambda}=2 d \sin \theta
$$

 (V - 11 (V). تبخير مايع مربو ط مىكند:

$$
\log \left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{\Delta H_{v}}{2.303 R}\right)\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)
$$

ك ك : ΔH_{v}

11-11 بلور تنگا تين (نشوده) (بخششمهاى Closest - packed crystal

 بك يون در يك ساختار بلردى.
Crystal
 Crystal allotrops
 تمصر بلور (بخث Crystal defect

Sloرون Surface tension
 Triple point ج. Unit cell
 (نشار بخار (بخُّ Vapor pressure
 گViscosity

 (يا بازتاب) ترتوها

بن توضعهاى منظم در يكـ سـاختار بـورى. London forces, dispersion forces

 (بخشش Nonstoichiometry

 . سلول واحل مكعيى ساده (بخشّ Simple cubic unit cell
 Sublimation گُ:

كاهش (NaHSO) در آبـ

 |f 11
 . $\mathrm{H}_{T} \mathrm{CO}(2)!\mathrm{H}_{\Gamma} \mathrm{COH}(\tau)!\mathrm{H}_{T} \mathrm{NOH}(ب): \mathrm{NH}_{T}$ ($)$ (الف $\mathrm{H}_{T} \mathrm{NCH}_{Y} \mathrm{CH}_{4} \mathrm{NH}_{r}$ ، 10 - 11

 أين در تركبب هـبـبـت i, 19 , $19 . \mathrm{CHCl}_{r} 11$

$$
\stackrel{\mathrm{O}}{\mathrm{CH}_{3}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{3}}
$$

نسبت به هر بكى از اين بواد به صورت خخالصص بالاتر است

 (ال 11

 ر
(ب) $9: 0$)
$10^{\circ \circ \mathrm{C}}$

 برابر (Y ت - II

病 11

 اكسيردن

 استا أين تتايج را تبيبن كنيد. (11 $\left(11 \Gamma, \Delta^{\circ} \mathrm{C}\right) \mathrm{I}_{Y},\left(-V^{\circ} \mathrm{C}\right) \mathrm{Br}_{Y} \cdot\left(-1 . \mu^{\circ} \mathrm{C}\right) \mathrm{Cl}_{Y} \cdot\left(-Y \mu Y^{\circ} \mathrm{C}\right) \mathrm{F}_{Y}$ 10 ـ 11

پيوند هيلدروزنت

11 ال 11

（A－II
$. \mathrm{CaO}(g): \mathrm{CaCl}_{Y}(\rightarrow): \mathrm{Ca}(\Omega): \mathrm{Cl}_{Y} \mathrm{O}(-): \mathrm{Cl}_{Y}(ب): \mathrm{O}_{Y}$（ H ）
－ 11
： BrCl بالاترى

$$
\begin{aligned}
& \text { 㥩 - } 11
\end{aligned}
$$

بلورها

 II I I I 11
病 11

 سلول آَ لَ
 طو 11

 اتمى اين عنصر هتلدر است؟ كV＝ 11 چكالى كلسيم FA－ 11 ج 11 11

 الو 11
 ．

 ＂ 11 ＂

 XeF ${ }^{Y}$ ， هعقلر است
 جقدراست؟

 جقّلر است؟
 مولماينتركبب

俍 11
 ． 11 آنتالبى تبخير هولى اين تركيب الي جا $00^{\circ} \mathrm{C}$ KV－ 11
 I YA－II

ثمودار فاز
II 11

 ．）$\times 10^{-r}$ atm ． $1 . \mathrm{K}$ K بنار جr 11 11

 ． $1, r \times 10^{-r} \mathrm{~atm},-199^{\circ} \mathrm{C} \mathrm{J}$

 ثايت هي يابلد را توصيف كنيلد．竍 11
 （الف）در دهاى ثابت
 C 11

 （Y 11
 فشار و 11

 ج 11

انواع جاهدهاي بلورى （ 11
，ت H ， Cl^{-}

 بر هسب PbS I 11

 § $\mathrm{F} / \mathrm{cm}^{r}$ كا 4 ＝ 11

 و كاد Vo－ 11
 CdS بوحسبب＂

 ． NiS ， NaBr

 $\mathrm{MnO}, \mathrm{MgS}_{\star} \mathrm{NaI}$

ساختـارهای ناتص
 ．

度
 در نظطر بگيريد．
竍

 Na
 aحاسبه كنيـد

به طول مرج Pm م

竍 11
به طول هوت
 ．

 d d d د 11俍
 و 11

居 11

 برابر ． 91 ـ 11

بلورماى يونى

Mr－ 11 Il 11

 الــه بين يون Yr－II I 11 － 11

病 K^{+}
Yr－ 11 － 11

 r｜

 كلريد در سانتار بلورى متبلور میشود برابـر

 A 1 = 11 *

 I 11
 AY = 11 تنيير آنَ هينشوند را نام يبريد.

 الكتريكى خنئى است. فرمول اين بلور Fe Fe $\mathrm{Fe}^{\mathrm{C}+}$

هسانٌل طبقهبنلدى نشلـه
(11

 . 11
 هيتان جقـدر است؟
VV - 11

 (11 طول موج
 برابر
 مكعبى مركز بر تشكيل دمند. با استفاده از معادلات بخش

مسلولها

 لازم براى اشباع محلول، در آن وجود دازرن، رسوب ميكند.

هستند، نيروهاي بين مولكولى لـي بهطور فير عادى قوى استي

140 لوa

> وجود مى آورد. برايى يكى محلول معين، مقدار مادهُ حلشـده در مقلدار مشخصى از از

 مادء: حل شُوندهُ باقى مانده تعادل برقرار مى شـردد:

شكل با ـ ـ ا انُهُهلال بكا بلمر بونى در آب

بر ا 1 -

 هيلدروزنى باشتد:

$$
\left[\begin{array}{lllll}
\mathrm{H} & & & \\
\mathrm{O}-\mathrm{H} & \cdots & \mathrm{O} & \mathrm{O} & \cdots
\end{array} \mathrm{H}_{-} \mathrm{O}{ }^{2-}\right.
$$

 آب، بهطور ضعيضترى به يكديگر پيو بتهاند.
 مرلكرلهأى آب مىشورد؟

 آب، مولكول لهاى

 هو لكولنهاى متيل الكال بموجريد آلورند.

بُور بُرسـ.

 يون - دو تطبى مى ترا انتد نسبياً قوى بابشند.

 مولكولهاى دوتطبى و يونها باوجود مى آيلـ مرجب می شـود كه يونها

يونها (أترثى شبكه، با تغيير علامت):

$$
\mathrm{KCl}(\mathrm{~s}) \longrightarrow \mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \quad \Delta H=+701.2 \mathrm{~kJ}
$$ يونهاي كازي است:

$\mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta H=-684.1 \mathrm{~kJ}$

 مرحلنٌ دوم مىىباشد:

$$
\mathrm{KCl}(\mathrm{~s}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta \mathrm{Hf}=+17.1 \mathrm{~kJ}
$$

 شكستن سـاختار بلورى (مرحلةٌ ب):

1. $\quad \operatorname{AgF}(\mathrm{s}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \quad \Delta H=+910.9 \mathrm{~kJ}$
2. $\begin{aligned} \mathrm{Ag}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \\ \mathrm{AgF}(\mathrm{s}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})\end{aligned} \frac{\Delta H=-931.4 \mathrm{~kJ}}{\Delta H=-20.5 \mathrm{~kJ}}$

 حالال بوشی میىناميمّ

با Y Y بار الكتريكى در يونها

 آوردن خصلت كوو الانسى تركيبات بريليم دارد (نسبت بالاى بار يون بـ

$$
\mathrm{BeCl}_{2}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Be}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})
$$

$\mathrm{K}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad \Delta H=-684.1 \mathrm{~kJ}$

ل

 بـينهايت ثابت است.

 تركيبات يونى (مانتد

 تغيير دما تغيير جنداتى نمى كندا

1. Henri Le Chatelier

 هH

 3. William Henrv

حلشُوند: :لز لـنده

جـديدي برقراركردد.

سبب افزليش اتححلال بِذ يورى مىشود.

[^0]: 1. Jacques Charles
[^1]: 1. William Thomsen, Lord Kelvin
[^2]: 1. Mean free path
[^3]: 1. Compressibility factor
[^4]: 1. Johannes van der Waals
[^5]: 1. James Joule
[^6]: 1. William Henry Bragg
 2. William Lawrence Bragg
 3. Geiger Counter
