





 تركيبات يونى (مانتد



 تغيير دما تغيير جنداتى نمى كندا


















## 1. Henri Le Chatelier





 هH


 3. William Henrv



















حلشُوند: :لز لـنده




جـديدي برقراركردد.







سبب افزليش اتححلال بِذ يورى مىشود.









$$
\begin{aligned}
X_{\mathrm{O}_{2}} & =\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{He}}+n_{\mathrm{O}_{2}}} \\
& =\frac{0.125 \mathrm{~mol}}{0.625 \mathrm{~mol}}=0.200
\end{aligned}
$$



「
در يكى ليتر أز محلول است است

 غلنلت هستند．در اينجا دو مثال ديگ，نيز مى آوريم．

R－IT R مثال
 （HNO）（ لازم است؟ $\mathrm{HNO}_{\mu} \% \mathrm{v}$ 。
 هجمى الز آن لازم أست

ح
（الْف）ضرايب مـورد استفاهد بـراي حـل مستئله را（بـترتيب）از ，اقعيت هاى تجربى زير بهدست مى آوريم：


$$
\text { اسبيد ( }{ }^{\text {(HNO}} \text { در }
$$

Y Y ب ـ وز

وجود دارد：


$$
=45.0 \mathrm{~g} \text { g غلبط } \mathrm{HNO}_{3}
$$


مورد استفاده قرار ميدهيم.

$=31.7 \mathrm{~mL} \quad \mathrm{HNO}_{3}$
 از نيتروردزن است．

Mand






 درصد را بايد بر مبناى جرم تفسير كـرد، مغكر آنكه خـلالا آن صـربحاً متذكر شود．

 10－10 ارا بيبنيد）：

$$
X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}+n_{\mathrm{C}}+\ldots}
$$




$$
\begin{equation*}
X_{\mathrm{A}}+X_{\mathrm{B}}+x_{\mathrm{c}}+\ldots=1 \tag{باشد.}
\end{equation*}
$$

1－1ヶ 1 بشال ． كسر مولى He و و O در اين مححلول را بمدست آْوريد．


$$
? \mathrm{~mol} \mathrm{He}=2.00 \mathrm{~g} \mathrm{He}\left(\frac{1 \mathrm{~mol} \mathrm{He}}{4.00 \mathrm{~g} \mathrm{He}}\right)=0.500 \mathrm{~mol} \mathrm{He}
$$

$$
? \mathrm{~mol} \mathrm{O}_{2}=4.00 \mathrm{~g} \mathrm{O}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{O}_{2}}\right)=0.125 \mathrm{~mol} \mathrm{O}_{2}
$$



$$
\begin{aligned}
X_{\mathrm{Ht}} & =\frac{n_{\mathrm{He}}}{n_{\mathrm{He}}+n_{\mathrm{O}_{2}}} \\
& =\frac{0.500 \mathrm{~mol}}{0.500 \mathrm{~mol}+0.125 \mathrm{~mol}}=\frac{0.500 \mathrm{~mol}}{0.625 \mathrm{~mol}}=0.800
\end{aligned}
$$

r－R

 I


$2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=1000 . \mathrm{gH}_{2} \mathrm{O}\left(\frac{12.5 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{87.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}\right)$
$=0.794 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

مهحلول نسبت بـ

مثال 1 ـ
 حجقدر است؟
$\downarrow$
 ： $\mathrm{H}_{4} \mathrm{O}$ ；
$? \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\left(\frac{1 \mathrm{molH}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=55.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
بكـ محلول آبى m هـ， 1 شامل：

$$
n^{n_{0}}=1.0 \mathrm{~mol}
$$

$$
\frac{n_{\mathrm{H}_{2} \mathrm{O}}=55.6 \mathrm{~mol}}{n_{\mathrm{is}}=56.6 \mathrm{~mol}}
$$

كسرهاى مولى عبارتندـ از：

$X_{\mathrm{H}_{2} \mathrm{O}}=\frac{n_{\mathrm{H}_{2} \mathrm{O}}}{n_{\mathrm{j}}}=\frac{55.6 \mathrm{~mol}}{56.6 \mathrm{~mol}}=0.982$


مثال
مولاليتئ يكى محالول

竍


 r درصد محلول محاسبه میكتيما
 بـ

$$
? \mathrm{~mol} \mathrm{HCl}=1.00 \times 10^{3} \mathrm{~mL} .
$$

$$
=12.0 \mathrm{~mol} \mathrm{HCl}
$$

 ． 1 Ir，oM



 شـده باشلد．


居据
 （90，9g）






مبناي حجمكالّ محلول بيان شدهاند. درنتيجه بالن هالى حـجمبسنجى وا
 محلولل، مانند مولاريته با تغيير دما، اندكى تغيير مىكند.

Co 1



$$
P_{\mathbb{S}_{S}}=p_{A}+p_{B}
$$





$$
\begin{equation*}
p_{\mathrm{A}}=X_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{*} \tag{0-1Y}
\end{equation*}
$$

كه در آن دماى آزمايش است






 محلول كاهش يانته است.





[^0]1 ــ ابتدا هِّالى محلول را براي بيدا كردن جرم يـى ليـتر مـتلول بـكار میبريم.
? g g لهr

 هrلول برابر است با؛
? $\mathrm{g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=0.5000 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\left(\frac{342.3 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}\right)$

$$
=171.2 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}
$$

r

$1064 \mathrm{~g}-171 \mathrm{~g}=893 \mathrm{gH}_{2} \mathrm{O}$

looog

$$
\begin{aligned}
& \text { ? } \mathrm{mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\left(\frac{0.5000 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}{893 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right) \\
& =0.560 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \\
& \text { محلول نسبت بـ }
\end{aligned}
$$



 هر هحلول


 در يك كيلوكم مآب متمارت است.









شكال Ir













V

首 بخار اكتان در همين دما، انـ،

$$
\begin{aligned}
& \text { J }
\end{aligned}
$$

$$
\begin{aligned}
& X_{\text {- } 4 \text { He }}=\frac{3.00 \mathrm{~mol}}{8.00 \mathrm{~mol}}=0.375 \\
& X_{\text {UIES! }}=\frac{5.00 \mathrm{~mol}}{8.00 \mathrm{~mol}}=0.625
\end{aligned}
$$



$$
p_{\mathrm{B}}-X_{\mathrm{B}} P_{\mathrm{B}}^{\theta}
$$



 بخار B تخالص است.



$$
P_{j}=X_{\mathrm{A}} P_{\mathrm{A}}^{\circ}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ}
$$

درنتيجه، فشار بخار يكى محلول /يلهآل , امى توان از فشار بتار اجزا :الص، با بهحساب أوردن نسبت أجزاي هـوجود (بـرحسب مــون) در هحلو ل بهدست آورد d












شكل
برير

يعنى فشار بخار A خالص، ين ينى







## n = Ir


 فشار بخار آب در $000^{\circ} \mathrm{C}$ بوابر با


$$
\begin{aligned}
P_{\mathrm{J}} & =X_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{H}_{2} \mathrm{O}}^{\circ} \\
& =(0.982)(0.122 \mathrm{~atm})
\end{aligned}
$$

$$
=0.120 \mathrm{~atm}
$$

I ها












 متناسب است. افزايش دماى جـوش،






(.3icula

فشار بخار برابي است با،

$=0.375(0.121 \mathrm{~atm})+0.625(0.041 \mathrm{~atm})$
$=0.045 \mathrm{~atm}+0.026 \mathrm{~atm}$
$=0.071 \mathrm{~atm}$






$$
P_{J}=X_{\mathrm{A}} P_{\mathrm{A}}^{*}
$$

$$
\begin{equation*}
P_{j S}=\left(1-X_{\mathrm{B}}\right) P_{\mathrm{A}}^{\circ} \tag{9-1Y}
\end{equation*}
$$

4

$$
P_{j 5}=P_{\mathrm{A}}^{\circ}-X_{\mathrm{B}} P_{\mathrm{A}}^{\circ}
$$



| $\begin{gathered} k_{\mathrm{f}} \\ \left(^{\circ} \mathrm{E} / \mathrm{m}\right) \end{gathered}$ | دماي انتجهاد <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} k_{\mathrm{b}} \\ \left({ }^{\circ} \mathrm{C} / m\right) \end{gathered}$ | إي جوث <br> ( ${ }^{\circ} \mathrm{C}$ ) | dvor |
| :---: | :---: | :---: | :---: | :---: |
| -r, 90 | 18,9 | $+r, T \cdot V$ | \|14, ${ }^{(1)}$ | الستيكاسيلـ |
| $-2,1 T$ | 0.0 | + r jor | A0, 1 | بنّ |
| -ra, r | $1 \mathrm{Va}^{\text {a }}$ | - | - | ك كا |
| -ra, | - rres | + D, er | vest |  |
| $-4,81$ | -crje | $+r, 5 r$ | ci, ${ }^{\text {r }}$ | كاركرينرم |
| $-1,99$ | $-114.5$ | + 1 , | va, ${ }^{\text {r }}$ | انيل الككل |
| $-9,10$ | A0, | - | - | نُثـلن |
| - ! jas | - $0^{\circ}$ | +0,015 | $1000^{\circ}$ | بآ |

$$
\begin{equation*}
\Delta t_{f}=m k_{f} \tag{1r-Ir}
\end{equation*}
$$


 نخواهـ آهلـ.

9-1r 1 -
r, Hog gis
 . $10 \%$
 بنزن است:
$? \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}=1000 \mathrm{~g}$ ن بتر ب ب ب $\quad\left(\frac{2.40 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{10}}{75.0 \mathrm{~g}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}}{154 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{10}}\right)$

$$
=0.208 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{10}
$$

+ ثابت أفزايش


$$
\begin{aligned}
\Delta t_{b} & =m k_{b} \\
& =(0.208 m)\left(+2.53^{\circ} \mathrm{C} / m\right) \\
& =+0.526^{\circ} \mathrm{C}
\end{aligned}
$$

 دماى جوشن محلو ل برابر است با

$$
80.1^{\circ} \mathrm{C}+0.5^{\circ} \mathrm{C}=80.6^{\circ} \mathrm{C}
$$





Los


 ، ا ا 1 Y
 بيشبينى می شود دهاى جوش




$$
\begin{equation*}
\Delta t_{b}=m k_{b} \tag{11-1r}
\end{equation*}
$$















 ( $\Delta t_{f}$ حالJ

fant 9 - Ir لمكل

 أسـز








 بهدست هي







[^1]\[

$$
\begin{aligned}
\Delta t_{f} & =m k_{f} \\
& =(0.208 \mathrm{~m})\left(-5.12^{\circ} \mathrm{C} / m\right) \\
& =-1.06^{\circ} \mathrm{C}
\end{aligned}
$$
\]


 $5.5^{\circ} \mathrm{C}-1.1^{\circ} \mathrm{C}=4.4^{\circ} \mathrm{C}$

## مثال 10 I I





هقدار


$$
\begin{aligned}
\Delta t_{b} & =m k_{b} \\
+0.392^{\circ} \mathrm{C} & =m\left(+5.02^{\circ} \mathrm{C} / \mathrm{m}\right) \\
m & =0.0781 \mathrm{~m}
\end{aligned}
$$

ســـس هعقدار مـاده: حـل ثــنه در

 خرّ از مادة حا حل شده است:


jow $9-11$

 براى هحلول











 برأبر باشـــد).

11-17
 صسرتىكه محالب, لـ

$$
\begin{equation*}
\pi=M R T \tag{10-1Y}
\end{equation*}
$$

$=(0.296 \mathrm{~mol} / \mathrm{L})[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{mol})](310 \mathrm{~K})$
$=7.53 \mathrm{~atm}$

 محلو ل در TO $10{ }^{\circ} \mathrm{C}$ حا بـدستـت آوربد.
$\downarrow$
 مهحلرل وا بمدست میآوريم:

$$
\pi=\left(\frac{n}{V}\right) R T
$$

2. Jacobus van't Hoff
3. Reverse Osmosis 3. Isotonic






 هو ه

$$
\pi V=n R T
$$

(ir-iv)
 حلشـده دز حهج V V (برحسب ليتر)،



موتوانانرشت،

$$
\begin{align*}
& \pi=\left(\frac{n}{V}\right) R T  \tag{1+-1T}\\
& \pi=M R T \tag{10-1Y}
\end{align*}
$$



 .
初







 درنتيجه فششار بخارو،
$X_{A: ~ م ح ل و ل ى ~}^{\text {A }}$

















 ك




 استر. دماى جوش HCl خالص HC



 b,rv cm L.



2. Minimum boiling azeotrope
3. Maximum boiling azeotrope

$$
\begin{aligned}
0.0167 \mathrm{~atm} & =\left(\frac{n}{1.00 \mathrm{~L}}\right)[0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{K} \cdot \mathrm{~mol})](298 \mathrm{~K}) \\
n & =6.83 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$


$? \mathrm{~g}$ بر
برو تلبن

وزن مورلكرلى تقريبى برو تُتين،



 -, 0.0 با -0,0001 YV ${ }^{\circ} \mathrm{C}$ كاهس دماى انجماي -, 019 Vatm نشار اسمزي


 كه به آسانى قابل اندازن كيرى است



 تقطير باقى مبيماند.





مرلى آنَ جزء در فشار بخار آنذا در حالت خالص (

$$
\begin{equation*}
P_{J S}=X_{\mathrm{A}} P_{\mathrm{A}}^{0}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ} \tag{V-IT}
\end{equation*}
$$


 خالصصبرإير

$$
\begin{align*}
P_{j S} & =X_{\mathrm{A}} P_{\AA}^{\circ}+X_{\mathrm{B}} P_{\mathrm{B}}^{\circ}  \tag{V-ir}\\
& =0.75(1.20 \mathrm{~atm})+0.25(0.40 \mathrm{~atm}) \\
& =0.90 \mathrm{~atm}+0.10 \mathrm{~atm} \\
& =1.00 \mathrm{~atm}
\end{align*}
$$



















 غيرالكتروليت با همان غلظت است.

## 



 مئلاً درموردكا هش دماى انجماند،

$$
\begin{equation*}
i=\frac{\Delta t_{f}}{m k_{f}} \tag{19-1Y}
\end{equation*}
$$

معادلة بالا ارا میترانة بهصروت زير درآّورد

$$
\Delta t_{f}=i m k_{f}
$$



 .




$$
g:=m \circ, 0 \circ 1 m
$$

$$
\Delta t_{f}=2(0.001 \mathrm{~m}) k_{f}
$$


(19ryt livaq) (آرينيوس
 هحلولنهاى آبى و معايسه آن با مقادير محاسبه شدهـ"

| غلكّ |  |  | هادهٔ حل شـه. |
| :---: | :---: | :---: | :---: |
| $0,001 m$ | $0{ }^{\circ} 1 \mathrm{~m}$ | - $11 m$ |  |
| $0 \cdot 01 \wedge 9^{\circ} \mathrm{C}$ | -1190 $0^{\circ} \mathrm{C}$ | ر119 $9^{\circ} \mathrm{C}$ | (1) |
|  | -301ar | - joss | س |
| - jootyr | -2.rvr | - jur |  |
| - jout99 | -jorco | - $\mathrm{j}^{\text {reA }}$ A | NaCl |
| - ,00000A | - 0.001 | - $0 \Delta 0 \wedge$ |  |
| -0.00ts | $0 \cdot 0001$ | - jety | $\mathrm{K}_{\gamma} \mathrm{SO}_{*}$ |
| - , oovfy | 0 -0.Vff | - juay | - |
| - رoovto | -0.979 | - pr. | $\mathrm{K}_{\mathrm{r}}\left[\mathrm{Fe}\left(\mathrm{CN}_{¢}\right)\right]$ |
| - ال/x9 $9^{\circ} \mathrm{C} / \mathrm{mol}$ \% |  |  |  |
|  |  |  | حكَذارند |



 اكير يك محلول آبى حاوى يونهايّى باشد جريان الكتريسيته را هـايت
 ضعيفي مى باشُدا:

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$







مواد استر.

1 ـ الكتروليتهايى قوى كه، در آب، بيطور ركامل يونى هستـند.

＂ا


 كاهش الكت，

$$
\begin{align*}
& \Delta t_{f}=i m k_{f}  \tag{IV-1Y}\\
& \Delta t_{b}=i m k_{b}  \tag{MA-IY}\\
& \pi=i M R T \tag{19-18}
\end{align*}
$$


去少 ． با أززإي
 بـ

（M） 3 （
（N）（N） Uै ．
 ．
＊＊

| dran－ |  |  |  |
| :---: | :---: | :---: | :---: |
| －」lm | －Jolm | $0,001 \mathrm{~m}$ |  |
| $1, A Y$ | 1，94 | 1，98 | NaCl |
| 1，YY | l jar | 1，AT | $\mathrm{MgSO}_{\text {\％}}$ |
| Y，Mr | $r, y 9$ | $r$ ，${ }^{\text {r }}$ | $\mathrm{K}_{T} \mathrm{SO}_{*}$ |
| $r, 10$ | r， 54 | renr | $\mathrm{K}_{\mathrm{r}}\left[\mathrm{Fe}(\mathrm{CN})_{8}\right]$ |

i $i$ ． 1 Y





 و






 ل ji أنك ى


 الـ定较



 حال和思 ．（1）${ }^{2}+{ }^{2}$

 （J）（J．










 مربر ط به حالٍ خالل خالص الست

 دماى جوش، و نشار اسمزیى الست.


 Le Chatelier's principle
 ك. با آلن تغيير متابابله كند. ثابت افنزايش دمـاى Molal boiling - point elevation constant, $k_{b}$ جوش مولى، (

 Molal freezing - point depression constant, $k_{f}$ انحهـاد مولى،






 Raoult's law
 جزء خالص انـيت
ضر ضan't Hoff factor, $i$




## 

Azeotrope

 , ا, هسجوش با داى جوش بيشيـن كويند. Colligative property



 Electrolyte



Enthalpy of hydration

 Enthalpy of solution

 قانون هنرى (بخشّ Henry's law

 Hydration



فرايشد اندحلال

 Pتص

 H IY的 IY
 $\mathrm{CH}_{T} \mathrm{Cl}_{4} \mathrm{CH}_{r} \mathrm{~F}(\underset{\sim}{( }): \mathrm{NaCl}$

或










 مー




 （ 100 mL HF－ 1 K



 جتلدر است


 ？
 9－ $J$－ا 1 ，با سبكلوهگزان



 $0 .{ }^{\circ} \mathrm{C}, 2, \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{OH}$ ，
 و نشار بخار اتيل الكال خالص الص
\＆


 جققدر إس

 محلر در دو Y Y＿IY
 ．برابر $10{ }^{\circ} \mathrm{C}$



 （ 11 － 1 Y آَبيوشّ آنتالِّ انحهلال ل
 آَبهوش آبی
位 － $1 \mathrm{AkJ} / \mathrm{mol}$








而









غلظت محلولوها






برابر（C，（C，HA）
 الست．هزصلد جرهى أوره

بايلد به كار برد؟
 بايد بدكار بروء؟


 بك بار برده






#### Abstract

   ． $1+959^{\circ} \mathrm{C} / m$ S 91 I I I X  الستات   


فشار اسهزيك
（C， $\mathrm{C}_{4} \mathrm{H}_{9}$ ） PEس



 جقدر است؟
 G جثلر است؟ （ الكــل در Y Y بـرابـر جقلد است

 جقلر است؟



 كـــئين در آب در
 جقـر استی

محلولهایى الكتروليت
－0，$\wedge \wedge 0^{\circ} \mathrm{C}$ C
 هقدر است؟ ，VY＿IY隹－ر $10 .{ }^{\circ} \mathrm{C}$ عحلول جقّدر است؟ بها Vr＿I Y

 Or VF＿IY



 نيروهاى جاذبئ بين يونى صرتـنـنـلر كنيل．














 تشكيل ميدهند يا بئينهنه











㫙－ 1 Y

 ．برابر V $V \Delta^{\circ} \mathrm{C}$ بَ


 محلبل حاصل در ه
 دى位 $9 \times 9^{\circ} \mathrm{C}$和俍
 د $\mathrm{C}_{1 Y} \mathrm{H}_{Y Y} \mathrm{O}_{11}$ ， froog
射 د CCI roog در OV＿Ir M $\mathrm{T}_{\mathrm{K}}{ }^{\circ} \mathrm{C}$
 آب در Y Y Y ,$د \mathrm{C}_{\mathrm{r}} \mathrm{H}_{0}(\mathrm{OH})_{r}$ ．

 P＝KX فشُـار كل

 بهترنتب
 انجحماد اين محلول تهقلدر است؟



路



ديهرى با رزj شـامل

 جكالى جيوه

هV A＿IY尾
艮


俍

 VV KV IY

 LLF LiF آر ．


 OV ＝IY


 \％
 هولالتّة：هعلول،


 M K K IY＊





## IF

## واكنش هاى شيميا يـي دو مسلول آبى

به كار میروند.





$\mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}$
 (



دز محلو ل باقى

اكگر يونهاى تماشاكُ در دو طرن


$$
\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{~s})
$$

معادلة بالاكلى ترين شكل معادله است. اين معادله به مـا مسى موريد از منلو طكردن محلول هر نمكا انحالول بِلذير


يونى "اكتـى") بهصورات زير خوراهد بوده،
$\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$




$$
\mathrm{Na}^{+}+\mathrm{Cl}^{-}+\mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{N} \cdot \mathrm{R}
$$




[^2]





 قابل اتجام در محلول آبى را موردبحث قرار ميدهيهم.


$$
\mathrm{AB}+\mathrm{CD} \longrightarrow \mathrm{AD}+\mathrm{CB}
$$



$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$



 $\mathrm{OH}^{-}$ د $\mathrm{Mg}(\mathrm{OH})_{Y}$, مبرط بـ


در جلدول با - ـ آملهه است درمورد تركيبات حاصل از كاتيونهاى زير مادق است:

 $\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$ $\mathrm{Fe}^{3+}, \mathrm{Al}^{3+}, \mathrm{Cr}^{3+} \cdot \mathrm{r}^{+}$, تركيباتي كه در دماى







> تشكيل مىدهند (بحش با ـ بَ را ببينيد).





جدول


تمام بْبراتها $\mathrm{NO}_{r}^{-}$

Clo

 . $\mathrm{HgBr}_{\mathrm{r}}{ }^{*}$




 $\left(\mathrm{NH}_{\psi}\right)_{r} \mathrm{CO}_{\mu}$, IA $\mathrm{IA}_{\text {, }} \mathrm{CO}_{r}^{r-}$ $\left(\mathrm{NH}_{+}\right)_{Y} \mathrm{SO}_{r}$, 1 IA ,
眝 ${ }^{-}$ $\mathrm{Ca}(\mathrm{OH})_{T}^{*} \cdot \mathrm{Sr}(\mathrm{OH})_{T}{ }^{\#} \cdot \mathrm{Ba}(\mathrm{OH})_{+} \cdot \mathrm{IA}$






هيلروكلريكا اسيد و يكى محلول سديم سولفيد را درنظر بـبريد: فرمول كامل تركيبات:

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{~S} \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{NaCl}
$$

فرمولهاي يونى: $2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+2 \mathrm{Na}^{+}+\mathrm{S}^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$






 نمونهاى از اين نوع واكثشت تراساختى است:

فرمول كامل تركبيات:
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
'ترمولمهاى يونى:

$$
\begin{aligned}
\mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+ & \mathrm{OH}^{-}
\end{aligned} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}+\mathrm{Cl}^{-} .
$$

 OH

 بونى اين واكثشهـهـ)

تركيب نشان داده مىشو د.
 تركيب و ن نماد (s) مشخصى میشتود.

 F

 وجود دارند.

 بهكار مى بنديم:








 (هيلدروكسيدهاي مربوط به اغلب هيلروكسيلهاي ديگر، انحالالنايـاي يرند.
 د ـ آبب. آب، الكتروليت ضصعيفى است.

مثال معادلهماى يونى موازته شده براي واكتشمهاى مربوط به مخلو طشدن
 فراوردمها) را به صورت حقيقىى شـان بنريسيلد:
(الـ) $\mathrm{FeCl}_{3},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
(ب) $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CuCl}_{2}$
(e) $\mathrm{ZnSO}_{4}, \mathrm{Ba}(\mathrm{OH})_{2}$
(ص) $\mathrm{CaCO}_{3}, \mathrm{HNO}_{3}$
(2i) $\mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-}+3 \mathrm{NH}_{4}^{+}+\mathrm{PO}_{4}^{3-} \longrightarrow$
$\mathrm{FePO}_{4}(\mathrm{~s})+3 \mathrm{NH}_{4}^{+}+3 \mathrm{Cl}^{-}$
(ب) $2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}+\mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{N} . \mathrm{R}$.
(c) $\mathrm{Zn}^{2+}+\mathrm{SO}_{4}^{2-}+\mathrm{Ba}^{2+}+2 \mathrm{OH}^{-} \longrightarrow$

$$
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{BaSO}_{4}(\mathrm{~s})
$$

(د) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-}
$$



 زير توجه كنيد:

$$
\begin{aligned}
& \mathrm{CaF}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{~g}) \\
& 2 \mathrm{NaNO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{~g})
\end{aligned}
$$




 به اين واكنثشها، با مفهوم عدد اكسايش كه يـيمانى اختـيارى و مـفيد
 تراساختى
 4x


 (H20

地
 $2 \mathrm{Na}^{+}+\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}$


$$
\mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})
$$

به أين ترتيب؛ معاللهُ يونى واكنش كامل به قراز زير است: $2 \mathrm{Na}^{+}+\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{Na}^{+}+2 \mathrm{Cl}^{-}
$$

معادلهٌ بونى خالص براي واكثنى جَنين است:

$$
\mathrm{SO}_{3}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}(\mathrm{~g})
$$

تمونهاى از واكثش يكـكربنات با اسيد بهصورت زير است:
$2 \mathrm{~K}^{+}+\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{~K}^{+}+2 \mathrm{NO}_{3}^{-}
$$

معادله يونى خالص برايى اين واكنش به قرال زير است:

$$
\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})
$$


 $\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

معادلة يونى خالصى برای واكنش يك نمك آهونيوم و يكـ باز قوى به قرار زير است:

$$
\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}
$$

 صادق است (بتش


 هيلدرورن - ا مىيانشد.



 .

> r-1r
> علد اككسايش P در P
$\downarrow$
جبع جيرى اعداد أكسايش شولكول بايال صفر شود. بنابراين، $r(H$ H $H$ 负

 خواميم داشت:
$\psi(1+)+x+\psi(\psi-)=0$
$x=0+$

مثال
عدد اكسايش Cr در بر ن دیكرومات،
 بار يون، يعنى - r شود، عده اكسايش 0 برابر با - Y (قاعده و) است:
$r\left(C_{r}\right.$ )

$$
\begin{aligned}
r x+y(r-) & =r- \\
r x & =1 r+ \\
x & =9+
\end{aligned}
$$


 SO تركيب - r| است.

F-1r F عدد اكسايش Cl در كلنسيم يركلرات،



 - 1 - أست.
 الكترونهاي هر بيوند به اتم الكترونگاتيو بهدست آورد. برايى مولكول

## $\mathrm{H}: \ddot{\mathrm{C}} \mathrm{l}:$



 هيلروزذن، به علت التصصاص يانتّن تنها الكتوون آن به اتم كلر، برابر با با + 1 +


 اكـايشش هو دو اتم كلل در مولكوليل زير، صفر است

## : $\ddot{C}|: \ddot{C l}|$

براساس اين ايدهها قو اعد زير را مى تو ان براى تعيين عدد اكسايش بيان كرد:





 اكسايش + 1 اكو عناصر گروه





فلوئوردار - الست. 9 ــعدد اكسـايش اكسيزن در اغلب تركيبهاى اكسيرْندارو، - باست. ولى تخند مورد استثنا ينيز وجرد دارد:



 ج ج - در -






 اكسا يش ــاها هش بهكار كرفت.

## 育

 با باكسيرن تركيب مىشـلند، وكاهش نيز بهصورت حلف اكسيرّن از يكى
 كُسترش يافت. اهروزه، اكسا يش و كاهشُ بر مبناى تغيبر علد اككسا يشّ تعريف ميشرند.




$$
\underset{0}{\mathrm{~S}}+\underset{0}{\mathrm{O}_{2}} \longrightarrow \underset{4+2-}{\mathrm{S}_{2}}
$$






$$
\underset{4+2-}{\mathrm{SOO}_{2}}+\underset{1+2-}{\mathrm{H}_{2} \mathrm{O}} \longrightarrow \underset{1+4+2-}{\mathrm{H}_{2} \mathrm{SO}_{3}}
$$






 است.



 اكسيله مىشود عامل كاهش با كاهنده نام دارد. بنابرايزن


موازنهكردن معادلات واكنش هاى اكسايشى - كاغشیى كه مـعمولاً





$$
(Y+)+Y x+\Lambda(Y-)=0
$$

$\gamma x=1 F+$
$x=\vee+$
 با


است. به اين ترتيب!

$$
\begin{aligned}
& x+Y(r-)=1- \\
& x=\mathrm{Y}+
\end{aligned}
$$

 فيزيكى است؛ اعداد اكسايش الم صرفاً قراردادىانـ.

برخد از عناصر، كسترواى از اعداد اكسايش را در تركيبات خود نشان
 (HNO



 بالاترين بار مهكن حتي فرضى، برابر با شهماره گروه است است. Y Y ـ


 در Na

 دارد (مثالُّ فلوثور و و اكسيزِن) .





روش يون -الكترون

 می


 جزُ تُى كه كمبود 0 دارد اضضافن كنيلا


 جزنُى كه كمبود O مارد اضافه كنيا
 جزنى كه كمبود H دارد اضافه كنيلد و يكـ OH هقابل قرار دهيهد.

 هع


 برابر شو 2.

- 8


$$
\begin{aligned}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} & \longrightarrow 2 \mathrm{Cr}^{3+} \\
2 \mathrm{Cl}^{-} & \longrightarrow \mathrm{Cl}_{2}
\end{aligned}
$$




 در سمـت راستت معادله جزنُى اول بل به هفت اتم O نياز داريم؛ درنتيجه

 صروت موازنهشده استا.

$$
14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}
$$

"


## 1. Redox reactions







 استفاده خوراهد شـر.

روش يون = الكترون برای موازنه واكنش ها ها كاكس




$$
\underset{0}{2 \mathrm{Na}}+\underset{0}{\mathrm{Cl}_{2}} \rightarrow \underset{1+}{2 \mathrm{Na}^{+}}+\underset{1-}{2 \mathrm{Cl}^{-}}
$$

 دست دادن الكتر ون نوعى اكسا يشن است، و گرفتن الكترون تيبز گونهانى از
 نيمواك:ش هاه هستند، تقسيم كرد:

$$
\begin{aligned}
& \text { 낸: } 2 \mathrm{Na} \longrightarrow 2 \mathrm{Na}^{+}+2 e^{-} \\
& \text {كاهـ }: 2 e^{-}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl}^{-}
\end{aligned}
$$







الكترونهانى



 شيوب، مثالى مى آلوـيم:
 زير است،

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Cl}_{2}
$$

در اين معادلةٌ هوازنهنشُله

 هعادله تعيين میشود: 1 مركزى

 را با جالبى نكردمايم:

$$
24 \mathrm{H}^{+}+18 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{As}_{4} \mathrm{O}_{6}+8 \mathrm{MnO}_{4}^{-} \longrightarrow
$$

$$
20 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{Mn}^{2+}
$$





 انجام میئتود:

$$
\mathrm{MnO}_{4}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{MnO}_{2}+\mathrm{N}_{2}
$$



$$
\begin{gathered}
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2} \\
\mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{~N}_{2}
\end{gathered}
$$

, $\mathrm{OH}^{-}$



 دارد اضافه ميشودو و يكا يون مـي



$$
\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

 حهار اتم هيلدورئن، اضافه ميكتيم:

$$
4 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-}
$$

با حـذ HYO Y |ز دو طرف معادلd جزئى داريم:

$$
2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}
$$


 به سمتى كي كمبود H دارد و يكى



$$
4 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$



 مى توان از لحاظ الكتونونى مرازنه كرد:

$$
\begin{aligned}
6 e^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} & \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{Cl}^{-} & \longrightarrow \mathrm{Cl}_{2}+2 e^{-}
\end{aligned}
$$




$$
6 e^{-}+14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

$$
6 \mathrm{Cl}^{-} \longrightarrow 3 \mathrm{Cl}_{2}+6 e^{-}
$$


مى آوربم. ضمنن اين افزايشَ الكترونها حذف ميشوند:
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Cl}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cl}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
دومين مثال ما واكنش زير است كه در مسلول اسيلى انجام مىشُود.
$\mathrm{MnO}_{4}^{-}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{3} \mathrm{AsO}_{4}$
همان مراحل قبلى ر ا براى اين واكنث نيز انجام ميدهيم:



$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+} \\
& \mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}
\end{aligned}
$$




 ب H 1 Y 1 H

$$
\begin{gathered}
8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
10 \mathrm{H}_{2} \mathrm{O}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{H}^{+}
\end{gathered}
$$

「

$$
\begin{aligned}
& 5 e^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \\
& \quad 10 \mathrm{H}_{2} \mathrm{O}+\mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 4 \mathrm{H}_{3} \mathrm{AsO}_{4}+8 \mathrm{H}^{+}+8 e^{-}
\end{aligned}
$$




$40 e^{-}+64 \mathrm{H}^{+}+8 \mathrm{MnO}_{4}^{-} \longrightarrow 8 \mathrm{Mn}^{2+}+32 \mathrm{H}_{2} \mathrm{O}$

$$
50 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{As}_{4} \mathrm{O}_{6} \longrightarrow 20 \mathrm{H}_{3} \mathrm{AsO}_{4}+40 \mathrm{H}^{+}+40 e^{-}
$$






نه، دشو ار است. واكنشى زير را دربظر بغيريد:

$$
\underset{4+}{\mathrm{SO}_{3}^{2-}}+\underset{5+}{\mathrm{ClO}_{3}^{-}} \longrightarrow \underset{6+}{\mathrm{SO}_{4}^{2-}}+\mathrm{ClO}_{2+}^{-}
$$





اكسيون( (از



 قرار زير است.

$$
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}
$$




$$
\underset{5+}{\mathrm{HNO}_{3}}+\underset{2-}{\mathrm{H}_{2} \mathrm{~S}} \longrightarrow \underset{2+}{\mathrm{NO}}+\underset{0}{\mathrm{~S}}+\mathrm{H}_{2} \mathrm{O}
$$


اكيسيدشـده (از - r بي صفر، افزإشي برابر با ب).






$$
2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{NO}+3 \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}
$$







$$
2 \mathrm{HNO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{NO}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}
$$

[^3]r - بـراى مو ازنهُ بار الكتريكى الكتتورن اضافهس میكتيم:
\[

$$
\begin{aligned}
3 e^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-} & \longrightarrow \mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \\
4 \mathrm{OH}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} & \longrightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 e^{-}
\end{aligned}
$$
\]

F

$12 e^{-}+8 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{MnO}_{4}^{-} \longrightarrow 4 \mathrm{MnO}_{2}+16 \mathrm{OH}^{-}$

$$
12 \mathrm{OH}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow 3 \mathrm{~N}_{2}+12 \mathrm{H}_{2} \mathrm{O}+12 e^{-}
$$

$\mathrm{OH}^{-}$- ه ا , بهدست میآوربم:
$4 \mathrm{MnO}_{4}^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \longrightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{OH}^{-}$
 اتجام مىشود:

$$
\mathrm{Br}_{2} \longrightarrow \mathrm{BrO}_{3}^{-}+\mathrm{Br}^{-}
$$




1) $\begin{aligned} \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{BrO}_{3}^{-} \\ \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{Br}^{-}\end{aligned}$
r) $\begin{aligned} 12 \mathrm{OH}^{-}+\mathrm{Br}_{2} & \longrightarrow 2 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O} \\ \mathrm{Br}_{2} & \longrightarrow 2 \mathrm{Br}^{-}\end{aligned}$
r) $\begin{aligned} & 12 \mathrm{OH}^{-}+\mathrm{Br}_{2} \\ & 2 e^{-} \longrightarrow 2 \mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}_{3}^{-}+6 \mathrm{Br}_{2} \mathrm{O}+10 e^{-} \\ &\end{aligned}$
2) $12 \mathrm{OH}^{-}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{BrO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}+10 e^{-}$
$10 e^{-}+5 \mathrm{Br}_{2} \longrightarrow 10 \mathrm{Br}^{-}$
Q) $12 \mathrm{OH}^{-}+6 \mathrm{Br}_{2} \longrightarrow 2 \mathrm{BrO}_{3}^{-}+10 \mathrm{Br}^{-}+6 \mathrm{H}_{2} \mathrm{O}$





$6 \mathrm{OH}^{-}+3 \mathrm{Br}_{2} \longrightarrow \mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
اغلب معادلهـهاى اكسايش -كاهش را بايد با با روش بون ـ ـ الكترون





 در حالىك، معادلات جزئى احتمالاً نمايشگر يكى ديدگاه كلى، و نه







 مرلكرل H شو اهل تجربى نشان



 HCl

$$
\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$


 : توليدكندن $\mathrm{OH}^{-1}$ (aq)

$$
\begin{gathered}
\mathrm{NaOH}(\mathrm{~s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
\end{gathered}
$$

 .


مربرط بم دو واكنشُ خنثـشدن بهقراز زير استت:

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow
$$

$$
\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \longrightarrow$

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}
$$

بريليم كلريد (
 آَنير نشان از اسيد كُرفته شده انست: معادله يرنى خالص براي هر دو واكنش ختثششدن به قرازذيراست:



$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
& \text { كـ ممكن است به صررت زير نوشته شود: } \\
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$





 درنظر بغيريد:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-}+\mathrm{H}^{+}
$$




$$
\mathrm{H}_{2} \mathrm{O}+\underset{0^{2}}{\mathrm{I}_{2}}+\underset{5+}{\mathrm{ClO}_{3}^{-}} \longrightarrow \underset{5+}{\mathrm{IO}_{3}^{-}}+\underset{1-}{\mathrm{Cl}^{-}}+\mathrm{H}^{+}-1
$$








$$
\mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}+5 \mathrm{ClO}_{3}^{-} \longrightarrow 6 \mathrm{IO}_{3}^{-}+5 \mathrm{Cl}^{-}+\mathrm{H}^{+}
$$




 موازنه شوند:
$3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}+5 \mathrm{ClO}_{3}^{-} \longrightarrow 6 \mathrm{IO}_{3}^{-}+5 \mathrm{Cl}^{-}+6 \mathrm{H}^{+}$ بك معادله يونى، علاوه بر موازنه جرم، بايل مو ازنه بار بار را نيز نشان دن دهد. جون جمع جبرى بار در سمت جیث ( - ه ) برابر بار در سـمت راست





 $\underset{\substack{\mathrm{H} \\ \mathrm{H}}}{\ddot{\mathrm{O}}:+\mathrm{H}-\ddot{\mathrm{C}} \mathrm{l}:(\mathrm{g})} \longrightarrow\left[\begin{array}{c}\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H} \\ \mathrm{O} \\ \mathrm{H}\end{array}\right]^{+}(\mathrm{aq})+: \ddot{\mathrm{C}}:^{-}(\mathrm{aq})$



 سولفوريكاسياد مىتواند دو يروتون از دست بلهـد:

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{aligned}
$$

طى واكنش يك مول ختثى میشود:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

 نمك اسيلـى نامند. اكر يكى مول
 واكنش نهك نرمال يعني

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

نمكـ اسيدى مى تواند با NaOH واكشش داده و نمكَ نرمال بمدست دهـ:

$$
\mathrm{NaHSO}_{4}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$




"ى تواند سه نمك (دو نمكا اسيلدى و يك نمكا نرمالل) توليد كند: $\mathrm{NaH}_{2} \mathrm{PO}_{4} \quad \mathrm{Na}_{2} \mathrm{HPO}_{4} \quad \mathrm{Na}_{3} \mathrm{PO}_{4}$

## |



 میشود، يون اكسيد با بآب واكنث مىدهدل:

$$
\mathrm{O}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{OH}^{-}(\mathrm{aq})
$$

اكسيدها و هيدروكسيدهاى سائير فلزات در آب انحالالناباذي يرند.

 اثر كرما به اكسيد تبديل مىشوند:

$$
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \longrightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

 خشثى كرد:

$$
\begin{gathered}
\mathrm{MgO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$


|
تركيبات دوتايى

| تركيبات دوتايى |  |
| :---: | :---: |
| اسيدهاى هجا | اسيلههاى يكهيروتونى |
|  |  |
|  | (HCI |
|  |  |
|  | \% ها |
| تركيبات ساتى |  |
|  | اسيلمالى يك يكروتونى |
|  |  |
|  |  |
|  | - |
| كر $\mathrm{H}_{+} \mathrm{CO}_{+}{ }^{\text {\# }}$ |  |
|  |  |
|  | ميبوكلرواسيد ${ }^{\text {HoCi* }}$ |
|  |  |
|  | "ا |

 0مبولى عبارتند از

 كمتر ز

## ضعين است:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$






 از أنهاست:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$


 حدود يونش استبكا اسبيد برگشت يذ ير است.



 طو لانى، ملاط با با جذب (g) سخت میشود:

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}
$$



 بين نلزات و نافلزاتص، بهوجر د مي آينتن:

$$
\begin{aligned}
& \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O} \\
& \left.\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{AllOH}\right)_{4}^{-}(\mathrm{aq}) \\
& \text { برن آلوبينات } \\
& \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{ZnO}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(\mathrm{aq}) \\
& \text { بيرن زنكات }
\end{aligned}
$$



 فرإيند، ${ }^{\text {فـ }}$

 جذا ميكند:

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{SiO}_{2}(\mathrm{~s}) \longrightarrow \mathrm{CaSiO}_{3}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

 MgO (اك اكسيلهاى MaO

 ( $\mathrm{SiO}_{\mu}$ )
 اكـيـيداسيدى نيز سديم و كلسيم مى باشد. در مواردي اين اكسيدها را با با اكسيدهاي ديخرى جاي جايگزين مي كتنـد.





تيره)، و COO (آبى).




الــالاكتـت ما (از بالا)
 ، $\mathrm{Ca}\left(\mathrm{HCO}_{\mathrm{Y}}\right.$ )

توليد بُدهدأندا

$$
\mathrm{Ca}^{\gamma+}(\mathrm{aq})+\mathrm{YHCO}_{\mathrm{r}}^{-(\mathrm{aq})} \longrightarrow \mathrm{CaCO}_{\Gamma}(\mathrm{s})+\mathrm{H}_{T} \mathrm{O}+\mathrm{CO}_{\gamma}(\mathrm{g})
$$


 توليد نهى كند:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}
$$




$$
\begin{array}{r}
\mathrm{Cl}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HOCl} \\
\mathrm{Cl}_{2} \mathrm{O},+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HClO}_{4} \\
\mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{HNO}_{3} \\
\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4} \\
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3} \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
\end{array}
$$







$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{SO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})
\end{gathered} \mathrm{SO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$



$$
\begin{aligned}
& \text { so } \\
& \text { (از مهيوكلرواسيد) يوذ هيبوكلربت ، OC1- }
\end{aligned}
$$

نام نمك را با افزودن نام كاتيون به نام آنيون بهدست مى آورند:

$$
\begin{aligned}
& \text { NaNO }{ }_{\gamma} \\
& \text { (III) (III) }
\end{aligned}
$$


 حذن میكنّن.
$\mathrm{HPO}_{\mathrm{F}}^{-}$
HPOT-

2ر بیى سيستم نامگذا
 به كار میبردند.

HCOF HSO ${ }_{\mu}^{-}$

Y - 11 سنجش حجمىى بر اندازد كيرى دقبت حجم يحى محلون استوا إر است. در









نامگذارى اين تركيبات و نمكاهاى حاصل از آنها بَهقرار زير است:




HCl H
 نامخذل ارى ميكنيم:







$$
\text { Hr } \mathrm{H}_{r} \mathrm{BO}_{r}
$$





$$
\begin{aligned}
& \text {. } \mathrm{HNO}_{r} \\
& \text {. } \mathrm{HNO}_{\mu}
\end{aligned}
$$



 مركزى را نمايشى دهد:
 HOCl
 اكسايش بالاتر اتم مركزى را نسبت به اسيد ـ يكى نشـان دهد:

$$
\begin{aligned}
& \text {. } \mathrm{HClO}{ }_{r}
\end{aligned}
$$


 مىشـود. يبشُوندها، در صورت وجود، حنظ مى شوند:

جون وزن اتمى ${ }^{\text {تم }}$ نـونه رأ به طريت زير به دست آوردد:

$$
\left.\begin{array}{rl}
\therefore 0.1 & =3.171 \times 10^{-3} \mathrm{~mol}^{\mathrm{AgNO}_{3}}\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{AgNO}}\right)\left(\frac{5.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CT}}\right.
\end{array}\right)
$$

جرم ${ }^{\text {Cl }}$ موجود در نمونه، برابر است با:

$$
\left(\frac{0.1124 \mathrm{~g} \mathrm{Cl}^{-}}{10.00 \mathrm{~g} \mathrm{\& نom}}\right) 100 \%=1.124 \% \mathrm{Cl}^{-}
$$

- 9 - مثال

نمونهاي از سركه به ورز



صورت مییيرد:
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ يس از افزايش
 استيكاسيل مو:جود در نمونئ سركه را بيدا كينيد.

ح
تعداد مولهاى NaOH مصرفششده را بـه مـريت زيـر مــوتوان محاسبـب كرد:


$$
1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \approx 1 \mathrm{~mol} \mathrm{NaOH}
$$

? $\mathrm{g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.725 \times 10^{-2} \mathrm{~mol} \mathrm{NaOH}\left(\frac{1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{NaOH}}\right)$

$$
\left(\frac{1.036 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{25.00 \mathrm{~g} \mathrm{~S}_{\mathrm{J}}}, 100 \%=4.144 . \% \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~S}_{5}-\right.
$$

$$
\begin{aligned}
& \left(\frac{60.05 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{O}}\right)=1.036 \mathrm{~g} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \text { رصد جبرى }
\end{aligned}
$$

$$
\begin{aligned}
& =1.725 \times 10^{-2} \mathrm{~mol} \mathrm{NaOH}
\end{aligned}
$$

بورت قرار میدهند. درقسمت پايين بورت شيرى قرار دارد تا به كمكى







 روشهاى تيتركردن حجم معينى إذ محلول استاندارد يا جرم مر معينى از

 نتطهُ هم راز بهدست آيد.

 استوارنل. در مثالهاى زير، با الين سه روش آشنا میشويم.

## مثال



 AgNO

$$
\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

جّس از آنكه بخش قابل توجهي از
سفيد) درآمل، در اثو افزايش مقدار كمى Ag تشكيل خراهد شد:

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-} \longrightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
$$


 موجود در يساب جقفدر است؟

$$
\begin{aligned}
& \text { ح } \\
& \text { أبتدا تعداد مول AgNO } \\
& ? \mathrm{~mol} \mathrm{AgNO}_{3}=30.20 \mathrm{~mL} \int \operatorname{lan}\left(\frac{0.1050 \mathrm{~mol} \mathrm{AgNO}}{3}\right) \\
& =3.171 \times 10^{-3} \mathrm{~mol} \mathrm{AgNO}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{~mol} \mathrm{Cl}^{-} \approx 1 \mathrm{~mol} \mathrm{AgNO}_{3}
\end{aligned}
$$


 از يك تركيب را وزن همارز نامنلد. بسطور كلى:
g وزن فرمر



انكتش مسدهـد:

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}
$$


 a باز است كه يك مول يون در در H
 مورد نظر است. ال r






 نيمواكثش زيو:

$$
5 e^{-}+8 \mathrm{H}^{+}+\underset{7+}{\mathrm{MnO}_{4}^{-}} \longrightarrow \underset{2+}{\mathrm{Mn}^{2+}}+4 \mathrm{H}_{2} \mathrm{O}
$$




$$
6 e^{-}+14 \mathrm{H}^{+}+\underset{6+}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \underset{3+}{2 \mathrm{Cr}^{3+}}+7 \mathrm{H}_{2} \mathrm{O}}
$$

a برابر 9 است a وزن همراز


 جزئى الهت).

 (M) آن رابطة زير برقَرار است:

$$
N=a M
$$




V




$8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} \longrightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

 اضافی از از بحلول
设 شو جود در كانها را بهدست آوريد.

ابتدا تعداد مر لنهاى


$$
=6.827 \times 10^{-4} \mathrm{~mol} \mathrm{KMnO}_{4}
$$

جا
$5 \mathrm{~mol} \mathrm{Fe}^{2+} \approx 1 \mathrm{~mol} \mathrm{KMnO}_{4}$
و وز اتمدي Fe نيز
$\because \mathrm{g} \mathrm{Fe}=6.827 \times 10^{-+} \mathrm{mol} \mathrm{KMnO}_{4}\left(\frac{5 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{KMnO}_{4}}\right)$ $\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{molFe}}\right)$

$$
\begin{equation*}
=0.1906 \mathrm{~g} \mathrm{Fe} \tag{1molFe}
\end{equation*}
$$

 $\left(\frac{0.1906 \mathrm{~g} \mathrm{Fe}}{0.4308 \mathrm{~g} \mathrm{a} 5}\right) 100 \%=44.24$.

4






 واكت

## 

 تمونهاى از سنگگ آثهن به وزن

 آهن موجود در اين كانه جانلر است
$\downarrow$
ايت مسنُله با مثال


$$
\begin{aligned}
e_{\mathrm{A}} & =V_{\mathrm{A}} N_{\mathrm{A}} \\
& =(0.02735 \mathrm{~L})(0.1248 \text { equiv } / \mathrm{L}) \\
& =3.413 \times 10^{-3} \text { equiv }
\end{aligned}
$$

تعلاد هم الرزهاى ${ }^{\text {تا }}$ نمونئ كاته استا
 (أز + يعنى
$? \mathrm{~g} \mathrm{Fe}=3.413 \times 10^{-3}$ equiv $\mathrm{Fe}\left(\frac{55.85 \mathrm{~g} \mathrm{Fe}}{1 \text { equiv } \mathrm{Fe}}\right)=0.1906 \mathrm{~g} \mathrm{Fe}$
درصد جرمى Fe در نمونه، بوابي است با:

$$
\left(\frac{0.1906 \mathrm{~g} \mathrm{Fe}}{0.4308 \mathrm{~g} \mathrm{~s} .5 \mathrm{~s}}\right) 100 \%=44.24 \% \mathrm{Fe} \text { در كانه }
$$


محاسبه مىشبد:

$$
\begin{equation*}
V_{\mathrm{A}} N_{\mathrm{A}}=V_{\mathrm{B}} N_{\mathrm{B}} \tag{f-1H}
\end{equation*}
$$

خرن در دو طرف
 بـ كاررفته برایى هر دو يكسان باشد.

A - IF مثال
(الف)符

$$
\begin{align*}
V_{\mathrm{A}} N_{\mathrm{A}} & =V_{\mathrm{B}} N_{\mathrm{B}}  \tag{الa}\\
(50.00 \mathrm{~mL}) N_{\mathrm{A}} & =(37.52 \mathrm{~mL})(0.1492 \mathrm{~N}) \\
N_{\mathrm{A}} & =0.1120 \mathrm{~N}
\end{align*}
$$

(ب)

$$
\begin{aligned}
N & =a M \\
0.1120 \text { equiv } / \mathrm{L} & =(2 \text { equiv } / \mathrm{mol}) M \\
M & =0.05600 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

(ب)



$$
\mathrm{AB}+\mathrm{CD} \longrightarrow \mathrm{AD}+\mathrm{CB}
$$





الكتروليتهاي قوى و ضفميف هى توان بـئنيبني كرد.







 موازنه كرد.

$$
\begin{aligned}
& \text { كامل ختشى میشود. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { طبق تعريف، ، }
\end{aligned}
$$

Normality
 نهكى ثرمال (بخشى Normall salt
 Oxidation
 Oxidation number

 Oxidizing agent
 Soxyacid بكى ازا كان ســ الست.



 Precipitation
 عامل كاهث (بخش Reducing agent
 Reduction


 Spectator ion
 Standard solution نـامل غلظت معينى از مادهٌ حل شـرنده الست.

 تيتر كردن (بـخشّ Titration
 مجهرل تعيين شـود. Volumetric analysis
 Weak acids and bases


Acid امسيد (بنخ

Acidic oxide آب واكثّن داده و اسيد توليد كثنل. Acid salt



 نـكـا توليد كند. Base تفكيك شود و يونهاي (aq) Disproportionation


 وزن همرارز (بختّ Equivalent weight





 - نيمو Half reaction كاهش؛ بكا فرايند اكسايش با كامش. Hydronium ion بكا يروتون و يك مولكول آب؛
 به وسبلة تغيير رنگ است. Metathesis reaction
 Monoprotic acid
 مسادلة Net ionic equation
 واكتش الست. Neutralization يك باز يا بين اكسيلدهاى آنها رن دهد.

## *

$. \mathrm{CdI}_{\gamma}, \mathrm{AgNO}_{\Gamma}(\uparrow): \mathrm{HCl}, \mathrm{ZnSO}_{\Gamma}(\rho)!\mathrm{AlCl}_{\Gamma}, \mathrm{LiClO}_{r}(\tau)!\mathrm{NiSO}_{\Gamma}$,
 $\left.{ }_{9} \mathrm{Mg}\left(\mathrm{NO}_{\mu}\right)_{\gamma}\right) ؛ \mathrm{HBr}$, $\mathrm{Na}_{\gamma} \mathrm{PO}_{\varphi}$ (الكنش بين ترك $!\operatorname{Sr}\left(\mathrm{C}_{Y} H_{\gamma} \mathrm{O}_{Y}\right)_{Y}, \mathrm{Na}_{Y} \mathrm{CO}_{\gamma}(\Omega)!\left(\mathrm{NH}_{Y}\right)_{Y} \mathrm{SO}_{\psi}, \mathrm{SnCl}_{\gamma}(\tau): \mathrm{Ba}(\mathrm{OH})_{Y}$ . $\mathrm{HCl}_{,} \mathrm{ZnS}(\mathrm{A})$
 فرد در ريوست أخر كتاب آملمه استا

واكنش هاى تراساختى و ا - Ir $\left.!\mathrm{H}_{4} \mathrm{PO}_{4}, \mathrm{Fe}(\mathrm{OH})_{\Gamma}\right)$ (الف $)$ $!\mathrm{ZnSO}_{+}, \mathrm{BaS}(2)!\mathrm{BaCl}_{Y}, \mathrm{Na}_{\Gamma} \mathrm{PO}_{\%}()!\mathrm{HCl}, \mathrm{Hg}_{\gamma} \mathrm{CO}_{\mu}$ (ب)

$$
. \mathrm{H}_{Y} \mathrm{~S}, \mathrm{~Pb}\left(\mathrm{NO}_{r}\right)_{r}(A)
$$

(世


$$
\begin{align*}
& \text { (il) } \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}+\mathrm{ClO}_{2}^{-} \xrightarrow[\mathrm{MnO}_{2}]{\longrightarrow}+\mathrm{ClO}_{4}^{-}+\mathrm{OH}^{-} \\
& \mathrm{H}^{+}+\mathrm{CrO}_{7}^{2-}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O} \\
& \text { (ب) } \\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{P}_{4}+\mathrm{HOCl} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}^{-}+\mathrm{H}^{+} \\
& \text {( } \tau \\
& \mathrm{Cu}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}  \tag{د}\\
& \mathrm{PbO}_{2}+\mathrm{HI} \longrightarrow \mathrm{PbI}_{2}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { " } \\
& \begin{array}{l}
\mathrm{Fe}^{2+}+\mathrm{H}^{+}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \quad(ب) \\
\mathrm{Pt}+\mathrm{H}^{+}+\mathrm{NO}_{-}^{-}+\mathrm{Cl}^{-} \xrightarrow{(ب)}
\end{array}  \tag{الف}\\
& \mathrm{Pt}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+\mathrm{Cl}^{-} \xrightarrow[\mathrm{PtCl}_{6}^{--}]{\longrightarrow}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Cu}+\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~Pb}+\mathrm{PbO}_{2}+\mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}  \tag{s}\\
& \mathrm{MnO}_{2}+\mathrm{HI} \longrightarrow \mathrm{MnI}_{2}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

$$
\begin{align*}
& \text { بوازنه كيدن: } \\
& \mathrm{ClO}_{3}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{I}_{2}  \tag{الفـ}\\
& \mathrm{Zn}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}  \tag{ب}\\
& \mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{Br}  \tag{e}\\
& \mathrm{ReO}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{HReO}_{4}+\mathrm{Cl}^{-} \tag{s}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}  \tag{الف}\\
& \mathrm{HNO}_{2}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+} \\
& \mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{ClO}_{3}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{S}+\mathrm{Cl}^{-}  \tag{๕}\\
& \mathrm{IO}_{3}^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{I}^{-}+\mathrm{N}_{2} \\
& \mathrm{Cu}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { كنيل. تمام واكنشهما در محلون اسبدى صـورت مىيكّرند. } \\
& \mathrm{AsH}_{3}+\mathrm{Ag}^{+} \longrightarrow \mathrm{As}_{4} \mathrm{O}_{6}+\mathrm{Ag}  \tag{الف}\\
& \mathrm{Mn}^{2+}+\mathrm{BiO}_{3}^{-} \longrightarrow \mathrm{MnO}_{4}+\mathrm{Bi}^{3+}  \tag{ب}\\
& \mathrm{NO}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4} \xrightarrow{\mathrm{Mn}^{2+}+\mathrm{ICN}}  \tag{c}\\
& \mathrm{MnO}_{4}^{-}+\mathrm{HCN}+\mathrm{I}^{-} \xrightarrow[\mathrm{Zn}^{2}+]{\longrightarrow} \mathrm{Mn}^{2+}+\mathrm{M} 0^{3+} \\
& \text { (د) }
\end{align*}
$$

$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{ICl}_{2}^{-} \quad$ (الن)
$\mathrm{Se}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{SeO}_{3}+\mathrm{Br}^{-}$
$\mathrm{H}_{3} \mathrm{AsO}_{3}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{Mn}^{2+} \quad(\underset{ }{2})$
$\mathrm{H}_{5} \mathrm{IO}_{6}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}$
$\mathrm{~Pb}_{3} \mathrm{O}_{4} \longrightarrow \mathrm{~Pb}^{2+}+\mathrm{PbO}_{2}$

$$
\begin{aligned}
& \mathrm{HClO}_{2} \longrightarrow \mathrm{ClO}_{2}+\mathrm{Cl}^{-}
\end{aligned}
$$



 را
 $: \mathrm{CoSO}_{\mu}, \mathrm{MnCl}_{\Gamma}(2)!\mathrm{K}_{\Gamma} \mathrm{S}, \mathrm{Cd}\left(\mathrm{ClO}_{\Gamma}\right)_{\Gamma}(\tau)!\mathrm{HNO}_{\Gamma}!\mathrm{Fe}_{\Gamma}\left(\mathrm{CO}_{\mu}\right)_{\Gamma}(ب)$ $. \mathrm{Ca}(\mathrm{OH})_{Y},\left(\mathrm{NH}_{Y}\right)_{Y} \mathrm{SO}_{\gamma}(\Delta)$ (4



اعداد اكـايش
V. $1 T$ ت تميين كنيب:
 $\mathrm{Mg}\left(\mathrm{BF}_{\mathrm{F}}\right)_{\mu}$
 W (ج)
 $\cdot \mathrm{Na}_{\mathrm{r}} \mathrm{TaF}_{\text {人 }} \mu \mathrm{Ta}(\mathrm{j}): \mathrm{K}_{\mathrm{r}} \mathrm{ZrO}_{0} \mu$


 $\mathrm{Ca}_{\mathbf{Y}} \mathrm{VO}_{4}$

CoxeF $. \mathrm{Bi}_{g} \mathrm{O}_{\xi}^{9+}, \mathrm{Bi}(g)!\mathrm{BrF}_{\xi}^{-} \mu \mathrm{Br}(\mathrm{A}): \mathrm{Li}_{\mathrm{T}} \mathrm{U}_{\mathrm{Y}} \mathrm{O}_{\mathrm{V}} \rho \mathrm{U}(\rho)$




 $. \mathrm{OPF}_{\mathrm{r}}, \leadsto \mathrm{P}(\rho): \mathrm{P}_{\mathrm{r}} \mathrm{O}_{\wedge} \mu \mathrm{P}(\Omega): \mathrm{H}_{\boldsymbol{\rho}} \mathrm{TeO}_{\boldsymbol{\gamma}} \rho \mathrm{Te}(\rho)$


| $\mathrm{Zn}+\mathrm{Cl}_{2} \longrightarrow \mathrm{ZnCl}_{2}$ | (الف) |
| :---: | :---: |
| $2 \mathrm{ReCl}_{5}+\mathrm{SbCl}_{3} \longrightarrow 2 \mathrm{ReCl}_{4}+\mathrm{SbCl}_{5}$ | () |
| $\mathrm{Mg}+\mathrm{CuCl}_{2} \longrightarrow \mathrm{MgCl}_{2}+\mathrm{Cu}$ | (\%) |
| $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$ | (a) |
| $\mathrm{WO}_{3}+3 \mathrm{H}_{2} \longrightarrow \mathrm{~W}+3 \mathrm{H}_{2} \mathrm{O}$ | (a) |

 عامل اكسنـهم و عامل كاهنده را تعيين كنيد:

| $2 \mathrm{NaBr} \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$ |  | (الف) |
| :---: | :---: | :---: |
| $\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ |  | (ب) |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$ |  | (c) |
| $\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+2 \mathrm{HF}$ |  |  |
| $2 \mathrm{HgO} \longrightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$ |  |  |
|  |  |  |

بنويسبـ: (الف) (
 بــنو يسبلد: (الف) (
 با توليا تـركيبات زيـر هـى . $\mathrm{K}_{4} \mathrm{PO}_{4}(\underset{ }{( })$
( NaOH با ها هر يك از تركيـات زير بتو بسبل: (الف) (ب)



SO


$\mathrm{Al}(\mathrm{OH})_{\mu}(\mathrm{a})!\mathrm{H}_{\gamma} \mathrm{BO}_{\mu}(a)!\mathrm{H}_{\gamma} \mathrm{SO}_{\mu}(\tau)!\mathrm{HNO}_{\gamma}(ب)$

$. \mathrm{H}_{Y} \mathrm{SeO}_{\sim}(\Delta): \mathrm{Fe}(\mathrm{OH})_{\mu}(2)!\mathrm{HIO}_{r}(\tau)!\mathrm{KOH}(ب)$
 $\mathrm{Cu}\left(\mathrm{ClO}_{\mu}\right)_{\mu}(\rho): \mathrm{K}_{\mu} \mathrm{SO}_{\mu}(\varsigma): \mathrm{KHSO}_{\mu}(\rho): \mathrm{H}_{\psi} \mathrm{SO}_{\mu}(\tau)$
 $\mathrm{H}_{\mathrm{T}} \mathrm{BO}_{\Gamma}(\mathrm{g})!\mathrm{NaHCO}_{r}(\mathrm{~m})!\mathrm{NaNO}_{Y}(\mathrm{~s})!\mathrm{HBr}(\mathrm{aq})(\mathrm{r})$ "



 نساتاء؛ (و) آهن (III) نيّنرات.

ج ج

 TQ, 0 . mL ( $10, \mathrm{Y} Y \mathrm{YLL}$, $\mathrm{Ba}(\mathrm{OH})_{Y}$ محلول باز حقدر است؟ -Mg(OH) $)_{r}$. .





 در اين $\mathrm{KHC}_{\lambda} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{O}_{4}$ ها ها






$$
\begin{align*}
& \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{MnO}_{4}^{2-}+\mathrm{IO}_{4}^{-} \\
& \mathrm{P}_{4} \longrightarrow \mathrm{HPO}_{3}^{2-}+\mathrm{PH}_{3} \\
& \mathrm{SbH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Sb}(\mathrm{OH})_{4}^{-}+\mathrm{H}_{2} \\
& \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{OBr}^{-} \longrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{N}_{2}+\mathrm{Br}^{-}
\end{align*}
$$

K ـ IH


$$
\begin{align*}
& \mathrm{Mn}(\mathrm{OH})_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{Mn}(\mathrm{OH})_{3}  \tag{الف}\\
& \mathrm{Cl}_{2} \longrightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}  \tag{ب}\\
& \mathrm{HXeO}_{4}^{-} \longrightarrow \mathrm{XeO}_{6}^{4-}+\mathrm{Xe}+\mathrm{O}_{2}  \tag{ج}\\
& \mathrm{As}+\mathrm{OH}^{-} \longrightarrow \mathrm{AsO}_{3}^{3-}+\mathrm{H}_{2}  \tag{2}\\
& \mathrm{~S}_{2} \mathrm{O}_{4}^{2-}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3}^{2-}+\mathrm{OH}^{-}
\end{align*}
$$

ش゙


$$
\begin{align*}
& \mathrm{S}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+1^{-} \\
& \mathrm{CN}^{-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{CNO}^{-}+\mathrm{MnO}_{2}  \tag{ب}\\
& \mathrm{Au}+\mathrm{CN}^{-}+\mathrm{O}_{2} \longrightarrow \mathrm{AulCN}_{2}+\mathrm{OH} \\
& \mathrm{Si}+\mathrm{OH}^{-} \longrightarrow \mathrm{SiO}_{3}^{2-}+\mathrm{H}_{2}  \tag{a}\\
& \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{BrO}^{-} \longrightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{Br}^{-}
\end{align*}
$$

ك


$$
\begin{align*}
& \mathrm{Al}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}+\mathrm{H}_{2}  \tag{الند}\\
& \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{OCl}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{Cl}^{-}  \tag{ب}\\
& \mathrm{I}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{H}_{3} \mathrm{IO}_{6}^{2-}+\mathrm{Cl}^{-} \\
& \mathrm{Bi}(\mathrm{OH})_{3}+\mathrm{Sn}(\mathrm{OH})_{4}^{2-} \longrightarrow \mathrm{Bi}+\mathrm{Sn}(\mathrm{OH})_{6}^{2-} \\
& \mathrm{NiO}_{2}+\mathrm{Fe} \longrightarrow \mathrm{Ni}(\mathrm{OH})_{2}+\mathrm{Fe}(\mathrm{OH})_{3} \tag{د}
\end{align*}
$$

K كنبـ. تهام واكنشّ ها در محلول اسبدلى صورت میگيرند.

$$
\begin{align*}
& \mathrm{P}_{4}+\mathrm{HOCl} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cl}^{-}  \tag{الفـ}\\
& \mathrm{XeO}_{3}+\mathrm{I}^{-} \longrightarrow \mathrm{Xe}+\mathrm{I}_{3}^{-} \\
& \mathrm{UO}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{UO}_{2}^{2+}+\mathrm{Cr}^{3+} \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{CO}_{2}+\mathrm{Br}^{-}  \tag{s}\\
& \mathrm{Te}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{TeO}_{2}+\mathrm{NO} \tag{A}
\end{align*}
$$

范


$$
\begin{align*}
& \mathrm{Al}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}+\mathrm{NH}_{3}  \tag{الف}\\
& \mathrm{Ni}^{2+}+\mathrm{Br}_{2} \longrightarrow \mathrm{NiO}(\mathrm{OH})+\mathrm{Br}^{-} \\
& \mathrm{S} \longrightarrow \mathrm{SO}_{3}^{2-}+\mathrm{S}^{2-} \\
& \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{I}^{-} \\
& \mathrm{S}^{2-}+\mathrm{HO}_{2}^{-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{OH}^{-} \tag{s}
\end{align*}
$$


 ا
 مسمولى و نحكا

 ر ，ااكتئ اخرير
 （ب）（ب）نرماليتئ سلولول
竍




## مسابأل طبقهبندى نشـده




 © $\mathrm{Ge}_{\mathrm{T}} \mathrm{a}^{\%-}, \mathrm{Ge}(\mathrm{g}) ؛ \mathrm{XeOF}_{4}, 2 \mathrm{Xe}(\Omega)$ （H）اr
 $\mathrm{Al}_{\Gamma} \mathrm{O}_{\Gamma}: \mathrm{OH}^{-}(g): \mathrm{H}^{+}, \mathrm{FeO}(A): \mathrm{SO}_{\Gamma}, \mathrm{BaO}(\rho): \mathrm{H}^{+}, \mathrm{ZnO}\left(\underset{\sim}{(\tau)}: \mathrm{OH}^{-}\right.$ $\mathrm{OH}^{-}, \mathrm{SO}_{4}(\mathrm{j}): \mathrm{H}_{\mathrm{Y}} \mathrm{O}$ 子


$$
\begin{align*}
& \mathrm{Sb}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Sb}_{4} \mathrm{O}_{6}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}  \tag{الف}\\
& \mathrm{NaI}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{I}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{IO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \longrightarrow \mathrm{I}_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{H}^{+} \\
& \mathrm{NF}_{3}+\mathrm{AlCl}_{3} \longrightarrow \mathrm{~N}_{2}+\mathrm{Cl}_{2}+\mathrm{AlF}_{3}  \tag{د}\\
& \mathrm{As}_{4} \mathrm{O}_{6}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{HCl} \tag{A}
\end{align*}
$$

 تمام واكتشما در محلول اسبثى صبرت ميكيرند：
$\mathrm{Hg}_{5}\left(\mathrm{IO}_{6}\right)_{2}+\mathrm{I}^{-} \longrightarrow \mathrm{HgI}_{4}^{2-}+\mathrm{I}_{2}$
$\mathrm{MnO}_{4}^{-}+\mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\right)_{3}^{3-}$
$\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{BrO}_{3}^{-} \longrightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+\mathrm{SO}_{4}^{2-}+\mathrm{Br}^{-}$
$\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}^{3-}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Co}^{2+}+\mathrm{NO}_{3}^{-}+\mathrm{Mn}^{2+}$
$\mathrm{CNS}^{-}+\mathrm{IO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{CN}^{-}+\mathrm{SO}_{4}^{2-}+\mathrm{ICI}_{2}^{-}$
$\mathrm{CrI}_{3}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CrO}_{4}^{2-}+\mathrm{IO}_{3}+\mathrm{Cl}^{-}$






 اسيوي؛（ب）اكسايش

斯 $\mathrm{O}_{\mathrm{r}}$（aq）， $\mathrm{O}_{\gamma}(\mathrm{g})$（ $\mathrm{H}_{Y} \mathrm{O}_{Y}$ ． －KMnO


侵



 $\mathrm{N}_{\mathrm{r}}$ g
 ，
廆
 ازاز اين دوش نيخر，كردن． تينر كرد 3 الين نمونه


وزنهاي همارز و محلولهایى نرمال




 توليد میشيود．


 HIO


 $\mathrm{H}_{r} \mathrm{PO}_{4}$ ، $9,00 \mathrm{NH}_{4} \mathrm{SO}_{4} / 9,00 \mathrm{~N}$ ، HCl N

病 $N$苃

> ؟


院



隹




 $\mathrm{Fe}^{\mathrm{r}+} \mathrm{Fe}^{\mathrm{Fe}} \mathrm{F}^{\text {Y }} \mathrm{C}$


$$
A_{2}=\frac{-\Delta\left[A_{2}\right]}{\Delta t}
$$

جون غلظّت

 |ساس غلظذ




$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{~g})
$$



 ترتيب، سرعت افزايش غلظت AB برابر با AB (L.s.) با دو مقلار، يعنى سرعت نإيديد شدن




 اب ا - ال، غلظلت AB او ليه برحسب زمان با منحنى تشان داده شده بـه براى خراهد بود.

 مادهُ واكنشدهنـنـه يعنى


 سرعت در ابتداى واكتش را سرعت اوليه میى انـامنـد.
 منحنى [A.








 سينتيكى الست.

, ااكتث فرضى زير را در نظر بطيريد:

$$
\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{AB}(\mathrm{~g})
$$




 تغييرات است.



به اين ترتيب، نماد ديار
 يعنى افزايش غلظت AB در فاصله زمانى معين،

$$
A B \text { سرعت بيدائى }=\frac{\Delta[A B]}{\Delta t}
$$

أكر غلظت AB بر حسب mol/L و زمان بر حسب ثانيه بيان شو د، سرعت
واكنش داراري والحدهاى زير خو اهد برد،

$$
\frac{\mathrm{mol} / \mathrm{L}}{\mathrm{~s}}=\operatorname{mol} /(\mathrm{L} \cdot \mathrm{~s})
$$

سرعت واكنش رامى توان بر حسبب كاهش غلظت

به صورت زير خراهل بود:


شـك بر حسب زمان

براى هر واكنش شيميايم، معادلهالى رياضى بهي نام معادلهُ سرعت يا
 واكتشن هربوط مى سازد. برايى واكنش

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \text { معادلئٌ سرعت زير رُ میتوانْ نوشت: }
\end{aligned}
$$

اين معادله به ما مى مويلد كـ سرعت واكـنش بـا غـلظت مستقيم دارد. اكر غلظت دو برابر شودي، سرعت دو دو برابر مسى مددد. اگحر


 مبناى آنها بيان میشود بستگى دارد. سرعت واكنی

$$
\mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

با غلظت NO و ضرب در غلظّت HCl متناسب است:

$$
\text { k[ } \mathrm{NO} \mathrm{O}_{2}[\mathrm{HCl}]
$$



 سرعت واكنش جهار برابر میشود.

 : $\Delta t$ ) (

$$
A_{2} 0 .
$$

$$
=\frac{-(-0.05 \mathrm{~mol} / \mathrm{L})}{10 \mathrm{~s}}=0.005 \mathrm{~mol} /(\mathrm{L} . \mathrm{s})
$$

 در
 كاهش يافته است:

$$
\mathrm{A}_{2} \text {. }
$$

بهدست آَرردن دادهمالى لازم برايى رسم منخنى غلظت، معمر لاً دشـوار



 قدرت اسِيدى، رسانابي، محهـ، كانروى مورد استفاده قرإر كرفته است.

居 سرعت واكنثى اكها معمرلاً، به غلظت مواد واكثشث دهنده بسـتگى دارد.




 تبديل آنها بي فراورده مىشود، نسـبتاًا بـالاست و در نـتيجه، واكـنـن سريع است.


A A A $\mathrm{A}_{2}+\mathrm{B}_{2} \longrightarrow 2 \mathrm{AB}$

5:51,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HBr}(\mathrm{g}) \quad \quad \quad . \quad=\frac{k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}}{k^{\prime}+[\mathrm{HBr}] /\left[\mathrm{Br}_{2}\right]}$

 (يعنى HBr) است.



آملههامت:


| سرعت اوليم | غأظت اوليه |  | آزهايث |
| :---: | :---: | :---: | :---: |
| NO <br> mol)/(L.s) | $\begin{gathered} O_{\psi} \\ \text { mol } / 2 \end{gathered}$ | $\begin{gathered} \mathrm{NO} \\ \mathrm{~mol} / 2 \end{gathered}$ |  |
| $\mathrm{V} \times 10^{-9}$ | $1 \times 10^{-+}$ | $1 \times 10^{-r}$ | A |
| $19 \times 10^{-9}$ | $r \times 10^{-r}$ | $1 \times 10^{-r}$ | B |
| $\mathrm{Y} \times 10^{-9}$ | $r \times 10^{-r}$ | $1 \times 10^{-r}$ | c |
| AF $\times 10^{-8}$ | $r \times 10^{-r}$ | $r \times 10^{-r}$ | D |
| $1 \wedge 9 \times 10^{-8}$ | $\times \times 10^{-r}$ | $r \times 10^{-r}$ | E |

> فرم معادلدٌ سرعت و مقدار ثابت سرعت، حنين است:






积



 غلظت NO در آزمايش Dه دو براير غـلظت NO در آزمـايش C C است است.

 معادله سرعت ظاهر شود زيرا

براي واكنش

$$
\text { k } k \text { = } \text { = } \mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]
$$






$$
\text { (زيرا })
$$

 سرعت است. تجزيه معادلثّ سرعت 1 است:

$$
\text { تسرع }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$

, واكثش بين اولن و بـ طور كلّى، مرتبهُ دوم است:

$$
\text { k[NO2 }=\text { = سرعت }
$$

 اول، و به طور كلى، مرتبُ سرم است

$$
\text { = }=k\left[\mathrm{NO}^{2}{ }^{2}\left[\mathrm{H}_{2}\right]\right.
$$




 استالدهيد (CHO)

$$
\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

در

$$
=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}
$$

در نتيجه، مرتبئ واكنش برابر با باب اساست. تجزيهُ صفر است:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \xrightarrow{\mathrm{Au}} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \text {. }
$$


 معادله سرعت يكسان ندارند. دو واكنث زير را در نظر بغيريد:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{~g}) \quad \text { س }=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]
$$

$$
\begin{aligned}
& 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { معادلد سرحت بـ صورت زير است: }
\end{aligned}
$$

$$
-\frac{\Delta[\mathrm{A}]}{t}=k[\mathrm{~A}]
$$

با تغيير آرايش هe

$$
-\frac{\Delta[\mathrm{A}]}{[\mathrm{A}]}=k \Delta t \quad(r-1 \psi)
$$

كه نرم ديفرأنسيلى آن، جنين إست:

$$
-\frac{d[\mathrm{~A}]}{[\mathrm{A}]}=k d t
$$



$$
\begin{equation*}
\log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right)=\frac{k t}{2.303} \tag{c}
\end{equation*}
$$

كه در آن، هـ زمان to

تحون:

$$
\log (a / b)=\log a-\log b
$$

$$
\log \left([\mathrm{A}]_{0} /[\mathrm{A}]\right)=\log [\mathrm{A}]_{0}-\log [\mathrm{A}]
$$



$$
\log [\mathrm{A}]=-\frac{k t}{2.303}+\log [\mathrm{A}]_{0} \quad(0-14)
$$



$$
y=m x+b
$$

Sl أر

 هن أ

 log [A]




$$
t ، \text { زمان }
$$



 رأبررسى كرد. غلنات NO سه برابر شدها است: $\frac{3 \times 10^{-3} \mathrm{~mol} / \mathrm{L}}{1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}}=3$

سرعت 9 برابر شده است:

$$
\frac{189 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})}{21 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})}=9
$$

「 ${ }^{\text {+ }}$

$$
\mathrm{NO}_{2} \text { = سرعت بيدايش }=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
$$



 محاسببه ميكنيم: بري

$$
\begin{aligned}
\left(7 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})\right. & =k\left(1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)^{2}\left(1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right) \\
\left(7 \times 10^{-6} \mathrm{~mol} /(\mathrm{L} . \mathrm{s})\right. & =k\left(1 \times 10^{-9} \mathrm{~mol}^{3} / \mathrm{L}^{3}\right) \\
k & =\frac{7 \times 10^{-6}(\mathrm{~mol} / \mathrm{L} . \mathrm{s})}{1 \times 10^{-9} \mathrm{~mol}^{3} / \mathrm{L}^{3}} \\
k & =7 \times 10^{3} \mathrm{~L}^{2} /\left(\mathrm{mol}^{2} \cdot \mathrm{~s}\right)
\end{aligned}
$$

سرحت واكنش (يا قانون سرعت) يكى واكتش شيميايى عبارت است





$$
\begin{aligned}
& \text { واكنش هاى مرتبهُ اول } \\
& \text { : } \mathrm{N}_{Y} \mathrm{O}_{0} \\
& 2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

نمونهاى از يكى واكنش مرتبةً اول الست. معادلهُ سرعت برأى اين واكتش به صورت دير است:

$$
\text { mem } \left.=k \mathrm{~N}_{2} \mathrm{O}_{5}\right]
$$


رانوشت:

$$
\text { = }=k[\mathrm{~A}]
$$



J

 $k=\left(\frac{1.35 \times 10^{-4}}{1 \mathrm{~s}}\right)\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=8.10 \times 10^{-3} \mathrm{~min}$

$\log \left(\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}\right)=\frac{k t}{2.303}$
$\log \left(\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}\right)=\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right)(30.0 \mathrm{~min})}{2.303}$ $=0.1055$
$\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}=\operatorname{antilog} 0.1055$
$=1.275$
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{1.275}$
$=0.0235 \mathrm{~mol} / \mathrm{L}$


$$
\log \left(\frac{0.0300 \mathrm{~mol} / \mathrm{L}}{0.0200 \mathrm{~mol} / \mathrm{L}}\right)=\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right) t}{2.303}
$$

$2.303 \log 1.50=\left(8.10 \times 10^{-3} / \mathrm{min}\right) t$

$$
\begin{aligned}
t & =\frac{2.303 \log 1.50}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =\frac{2.303(0.176)}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =50.0 \mathrm{~min}
\end{aligned}
$$


 غلظّت اوليه، يعنى .

$$
\begin{aligned}
{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] } & =0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0} \\
& =0.100(0.0300 \mathrm{~mol} / \mathrm{L}) \\
& =0.00300 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$




$$
\begin{aligned}
{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] } & =0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0} \\
\frac{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]} & =\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{0.100\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{0}} \\
& =10.0
\end{aligned}
$$




 .

واكنشد دهنده بر حسب زمان، يكى خطط راست به دست آيـــ، واكـنش هرتبٌ اول است. علاوه بر اين، مقدار ثابت سرعت، يعنى خطـ می توانٍ بـ دست أَورد. r-if res براي واكتش:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$


 برابر با ها ه/


براسّاس معادلةٌ 1 1 ـ هـ، شيب خط برابر است با:
= -k/2.303 = شيب

بنابراين،

$$
\begin{aligned}
-k / 2.303 & =-5.86 \times 10^{-5} / \mathrm{s} \\
k & =1.35 \times 10^{-4} / \mathrm{s}
\end{aligned}
$$

## 

در مطالعئ تجزيهُ . سرعت به دست آّهاه در مثال هرم \%/90ر० م


## O If If

 سرعت، k، اين واكتن را در دماي 90 90 به دست آوريد.

> از معطادJI

$$
\begin{aligned}
k & =\frac{0.693}{t_{1 / 2}} \\
& =\frac{0.693}{2.38 \mathrm{~min}} \\
& =0.291 / \mathrm{min}
\end{aligned}
$$



 شـهـ است.


 عمور يعنى
 واكنششهاءى مرتبهُ اول است.


 .

$$
\begin{align*}
\log \left(\frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}\right) & =\frac{k t}{2.303} \\
\log 10 & =\frac{\left(8.10 \times 10^{-3} / \mathrm{min}\right) t}{2.303} \\
t & =\frac{2.303(\log 10)}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =284 \mathrm{~min}
\end{align*}
$$


 نابهديد شُود،

$$
[\mathrm{A}]=\frac{1}{2}[\mathrm{~A}]_{0}
$$



$$
\begin{align*}
\log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right) & =\frac{k t}{2.303} \\
\log \left(\frac{[\mathrm{~A}]_{0}}{\frac{1}{2}[\mathrm{~A}]_{0}}\right) & =\frac{k t_{1 / 2}}{2.303} \\
\log 2 & =\frac{k t_{1 / 2}}{2.303} \\
t_{1 / 2} & =\frac{2.303(\log 2)}{k} \\
t_{1 / 2} & =\frac{0.693}{k} \tag{V-1F}
\end{align*}
$$

توجه كنيد كن تيمه عمر هر واكنش مرتبئ |ول، ثابتى مستقل از غلظت مادة: واكنشدهنـده است.

بثال
نيمه عمر تجزيهُ (g) واكنث در اين دفا،

## $J$

معادلٌ را با قرار دادن ارقام در معادله

$$
\begin{align*}
t_{1 / 2} & =\frac{0.693}{k} \\
& =\frac{0.693}{8.10 \times 10^{-3} / \mathrm{min}} \\
& =85.6 \mathrm{~min}
\end{align*}
$$

واكنـش ماى مرتبّه دوم
 سرعت نيزّ در كنار معادلات شيهياييى آمدها است.

1. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \quad=k\left[\mathrm{NO}_{2}\right]^{2} \quad(\Lambda-1 \mathrm{~F})$
2. $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad$ uner $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right] \quad$ (9 - | f$)$

به اين ترتبب، دو عبارت كلى برايى معادلةٌ سرعت واكتش هالى مرتبهُ دوم هـتوان نوشت:

$$
\begin{equation*}
\text { تسرع }=k[\mathrm{~A}]^{2} \tag{10-14}
\end{equation*}
$$

$$
\begin{equation*}
\text { تسرع }=k[\mathrm{~A}][\mathrm{B}] \tag{11.14}
\end{equation*}
$$

 رياضیى سادهتر الست، را بحت مىكتيم. ايـن مسعادله را بـرأى تـرصين

 وجرد دارده مي توان به كار برد. اين معادله را همحتنين براي موارديى كه
 وجود دارندا هي تو ان مورد استفاده قرار داد.


$$
-\frac{d[\mathrm{~A}]}{[\mathrm{A}]^{2}}=k d t
$$

اين معادله را با عمليات سـادء رياضم هىتواتن به صورن زير در آورد:

$$
\frac{1}{[\mathrm{~A}]}-\frac{1}{[\mathrm{~A}]_{0}}=k t
$$

 زمان = ميتوان درآورد:

$$
\begin{equation*}
\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}} \tag{1F-1F}
\end{equation*}
$$



$$
y=m x+b
$$

 با شـيب kو بوخوردكاه



$$
[\mathrm{A}]=\frac{[\mathrm{A}]_{0}}{2}
$$

در نتيجهd، از معادلة

$$
\frac{1}{[\mathrm{~A}]_{0} / 2}-\frac{1}{[A]_{0}}=k t_{1 / 2}
$$


 واكنش مرتبأ صـر كه برای آنا سرعت


$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{W}} \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

فرم ديفرانسيلي معادللٌ سرعت واكتش موتبه صفر به صورت زير است:

$$
\begin{equation*}
-\frac{d[\mathrm{~A}]}{d t}=k \tag{14-1f}
\end{equation*}
$$

كه قابل تبديل به معادله زير است:

$$
\begin{equation*}
[\mathrm{A}]_{0}-[\mathrm{A}]=k t \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
[\mathrm{A}]=-k t+[\mathrm{A}]_{0} \tag{4}
\end{equation*}
$$



$$
y=m x+b
$$


 .را V V IF

 به اين ترتيب:

$$
\begin{align*}
k t_{1 / 2} & =[\mathrm{A}]_{0}-\frac{1}{2}[\mathrm{~A}]_{0} \\
t_{1 / 2} & =\frac{[\mathrm{A}]_{0}}{2 k}
\end{align*}
$$

 مرتبنٌ دومرا نشان ميدهد.

$$
\begin{aligned}
& V=1 \% \text { م }
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{[\mathrm{HI}]} & =k t+\frac{1}{[\mathrm{HI}]_{0}} \\
\frac{1}{[\mathrm{HI}]} & =\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right][12 \mathrm{~min}]+\frac{1}{0.36 \mathrm{~mol} / \mathrm{L}} \\
& =0.367 \mathrm{~L} / \mathrm{mol}+2.78 \mathrm{~L} / \mathrm{mol} \\
& =3.15 \mathrm{~L} / \mathrm{mol} \\
{[\mathrm{HI}] } & =0.32 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{HI}]_{0}}
$$

$$
=\frac{1}{\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right][0.36 \mathrm{~mol} / \mathrm{L}]}
$$

$$
=91 \mathrm{~min}
$$

 $t_{1 / \mathrm{T}}^{\text {t }}$ / برابر با HII متناوت است.

واكنش هاىى مرتبه صنر
 بهـ طور كلى،



$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \xrightarrow{\mathrm{Au}} 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$2 \mathrm{HI}(\mathrm{g}) \xrightarrow{\mathrm{Au}_{\longrightarrow}} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

$$
\begin{align*}
& =k[\mathrm{~A}]^{0} \\
& \text { ، }[A]^{\circ}=1 \text { if } \\
& \text { =k } \tag{|A-|F}
\end{align*}
$$

$$
\begin{aligned}
& k t=\frac{1}{[\mathrm{HI}]}-\frac{1}{[\mathrm{HI}]_{0}} \\
& {\left[3.06 \times 10^{-2} \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{~min})\right] t=\frac{1}{0.25 \mathrm{~mol} / \mathrm{L}}-\frac{1}{0.36 \mathrm{~mol} / \mathrm{L}}} \\
& =4.00 \mathrm{~L} / \mathrm{mol}-2.78 \mathrm{~L} / \mathrm{mol} \\
& =1.22 \mathrm{~L} / \mathrm{mol} \\
& t=40 \mathrm{~min}
\end{aligned}
$$

 نيتروزيل نلوئوريد (ONF) را در نظر بيخيريد:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{ONF}(\mathrm{g})$
اين واكنش مكانيسم دو مرحلهايى دارد:

1. $\mathrm{NO}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{ONF}(\mathrm{g})+\mathrm{F}(\mathrm{g})$
2. $\mathrm{NO}(\mathrm{g})+\mathrm{F}(\mathrm{g}) \longrightarrow \mathrm{ONF}(\mathrm{g})$

توجه كنيد كه معادلأ شيميايى واكنش كلى شامل هجمبوع مـعادلات







(s) ubj

(s) St;
(ب)

(c)


$$
2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$





. 0 , $94 r / k \quad \log [\mathrm{~A}] \quad \log \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}=\frac{k t}{r, Y \cdot Y} \quad\right.$ حسب


$$
2 \mathrm{NOCl}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

اطلاعات زير بهدست آمده است:

| [ NOCl (mol/L) | (s) 310 j |
| :---: | :---: |
| 0 \% YO. | - |
| 0, ¢Yot | ro. |
| - .19199 | F\%. |
| -jolty | V . ${ }^{\text {e }}$ |
| - jolto | 9.0 |

مرتبةء اين واكنت نسبت به NOCl، حفر، الول، ، يا دوم است؟

| $\begin{aligned} & \mathrm{Y} / \mathrm{NOCl}] \\ & (\mathrm{L} \mathrm{~mol}) \end{aligned}$ | $\log [\mathrm{NOCl}]$ | ( $\mathrm{NOCl} / \mathrm{L}$ ) | $\bar{f}$ |
| :---: | :---: | :---: | :---: |
| F. ${ }^{\circ}$ | $-1,90$ | 0,40 | - |
| +9, 0 | $-1,99$ | aporer | ras. |
| 09, | $-1, \mathrm{vV}$ | $0 \cdot 0199$ | \%.. |
| $v r j o$ | $-1, A V$ | -jolts | Voo |
| Nr, $r$ | - 1,9\% | -jolto | 4.0 |






$$
\left.e_{\mathrm{c}}^{\mathrm{c}} \mathrm{~m} \mathrm{NOCl}\right]^{2}
$$





هيدروكسيد در اتيل الكل آبى بـ عنوانة حلال، ،

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-} \\
& \text {, واكتش زير كه در فاز گازى انجام میشود } \\
& \mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
\end{aligned}
$$











 افـزايش دهL از













 شُكل
 أَنتالْی،


شتختصات واكتن
 $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons \mathrm{~A}_{2} \mathrm{~B}_{2} \rightleftharpoons 2 \mathrm{AB}$

 يعنى





 مساهت b b a م




نظُرينُ حالت گذار

 بين B


 فعالشـدة كو تاه عموى مانتد A ${ }^{\text {a }}$



$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftharpoons\left[\begin{array}{r}
\mathrm{A}--\mathrm{A} \\
\mathrm{~B}--\mathrm{B}
\end{array}\right] \rightarrow 2 \mathrm{AB}
$$




 ض B-B , A-A A-B النرُّى جتاتنسيل نسبتاً بالاست.




واكتشدهنده است.




در N N N N $\mathrm{N}_{\mathrm{Y}} \mathrm{O}$


 زير است:


$$
\mathrm{O}=\mathrm{N}+\mathrm{Cl}-\mathrm{Cl}+\mathrm{N}=\mathrm{O}
$$


 فعالسـازیبراياينزواكنش


 باشنـن، ميتران يكى هولكولى، دو مولكولىى، يـا سـه مـولكولى


 مادق نيست.




$$
2 \mathrm{~A}+\mathrm{B} \longrightarrow \text { فرأر ردمها }=k[\mathrm{~A}]^{2}[\mathrm{~B}]
$$

(-)


$$
\Delta H=E_{a, f}-E_{a, r}
$$

, واكنشترمازازا امت.












 قرار زير است:

$$
\Delta H=E_{a, v}-E_{a, S}
$$

تغيير آنتاليى مثبت امت، زيرا


 , NO , NO $\mathrm{N}_{\gamma} \mathrm{O}$


نـوودار كمهلكس فعال شده نشان میدهد كه يبيرند N - O در هو لكول

( (للف)


جون سرعت واك:ش با تعلاد كل برخوردهها در ثانيه متناسبب است،

$$
\text { ترع } \propto \frac{1}{2} n^{2}
$$

 غلظت A است؛ بنابناين ${ }^{\top}{ }^{\top}$ متناسب با در ثابت تناسب، يعنى k، منظر ركرد. در نتـيجه،

$$
\text { = }=k[A]^{2}
$$





مورلكولى وجود دارد:


 برخر رد كنتند، نادر است



 مكانيسم يكـ واكنش بيشنتهاد تشده است.
W. ${ }^{6}$



 مهادللٌ سرعت زير بواى تشكيل نـينروزيل نـلوئوريد بـه صـورت تجربى به دست آهده است:

$$
2 \mathrm{NO}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{ONF} \quad \mathrm{v}^{2}=k[\mathrm{NO}]\left[\mathrm{F}_{2}\right]
$$

 عبارتند لز:

1. $\mathrm{NO}+\mathrm{F}_{2} \longrightarrow \mathrm{ONF}+\mathrm{F} \quad$ I $\quad$ : $=k_{1}[\mathrm{NO}]\left[\mathrm{F}_{2}\right]$
2. $\mathrm{NO}+\mathrm{F} \longrightarrow \mathrm{ONF} \quad$ سرع $=k_{2}[\mathrm{NO}][\mathrm{F}]$












$$
A \longrightarrow \text { A } \longrightarrow \text { in } 0 \text { i }=k[A]
$$




 نوع اوله هـنين استا

$$
\mathrm{A}+\mathrm{B} \longrightarrow \text { نراورد. } ا \text { هـا }
$$


 غلظات A Aادو برابر كنيم، سرعت نيز دو برابر خو اهد شلد، زيـرا تـعلاد



 [A]







$$
2 A \longrightarrow \text { نراورددها } \quad \text { نسرعتا }=k[A]^{2}
$$



 ا 1 انـتظار داشت كـه مستتاسب بـا 1/ K n n ( $n$ - 1)






隹








1. $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \quad \mid=k_{1}\left[\mathrm{C}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]$
2. $\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+} r$ U $=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]$
3. $\mathrm{Br}^{-}+\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{r} \mathrm{C}^{2}$, $=k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}[\mathrm{Br}]\right.$



 بستيا

$$
\therefore \varepsilon=r=0,=k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]\left[\mathrm{Br}^{-}\right]
$$


 ح $\rightarrow$ واسط واك:



$$
\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \text {= }=k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]
$$



$$
\mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \mathrm{O}=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]+k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right][\mathrm{Br}]
$$

 $k_{\Gamma}\left[\mathrm{CH}_{\Gamma} \mathrm{OH}_{\Gamma}^{+}\right]\left[\mathrm{Br}^{-}\right]$ال








$\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{Br} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-} \mathrm{E}_{\mathrm{m}} \mathrm{m}=k\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$

 اتم


واكثش بين ترشرى -بيوتيل برميلد،
 $\mathrm{OH}^{-}$





1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \longrightarrow\left(\mathrm{CH}_{3}\right) \mathrm{C}_{3}+\mathrm{Br}^{-} \quad \mid \underset{\sim}{\mathrm{E}}=k_{1}\left[\left(\mathrm{CH}_{3}\right) \mathrm{CBr}\right]$ 2. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$

$$
\mathrm{Y} \underbrace{}_{\mu}=k_{2}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$








 يعنى


 $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{+}+\mathrm{Br}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{H}_{2} \mathrm{O}$
$\underbrace{}_{\varepsilon}, \sim=k\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]$

1 ـ ـرحرحله آفاز زنجير. برخى از مولكولههاى تفكيك مى شرند:

$$
\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}
$$




$$
\mathrm{Br}+\mathrm{H}_{2} \longrightarrow \mathrm{HBr}+\mathrm{H}
$$




$$
\mathrm{H}+\mathrm{Br}_{2} \longrightarrow \mathrm{HBr}+\mathrm{Br}
$$

به اين ترتيب يك مولكول ديگُ HBr و مامل زنجير اوليه، يعنى يك





$$
\mathrm{H}+\mathrm{HBr} \longrightarrow \mathrm{H}_{2}+\mathrm{Br}
$$






هم، دو زنحير از ميان مكروند:

$$
\begin{aligned}
2 \mathrm{Br} & \longrightarrow \mathrm{Br}_{2} \\
2 \mathrm{H} & \longrightarrow \mathrm{H}_{2} \\
\mathrm{H}+\mathrm{Br} & \longrightarrow \mathrm{HBr}
\end{aligned}
$$

واكنش










$$
k=A e^{-E_{a} / R T}
$$



مرف فنظر كرده زنبرا بسياركو

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{OH}_{2}^{+} \text {سرعت نإبيل شـدن } \\
& k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]=k_{2}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]
\end{aligned}
$$

بنابدراين،

$$
\left[\mathrm{CH}_{3} \mathrm{OH}_{2}^{+}\right]=\frac{k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{k_{2}}
$$

با ترارداددن اين مقلدار در معادلهٌ سرعت برإى مرحلهُ سوم، داريم:

$$
\begin{aligned}
& =k_{3}\left[\mathrm{CH}_{3} \mathrm{OH}_{2}{ }^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \underbrace{*}=k_{3}\left(\frac{k_{1}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]}{k_{2}}\right)\left[\mathrm{Br}^{-}\right] \\
& \text {me }=\frac{k_{1} k_{3}}{k_{2}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
& \text {ثابت } \\
& -\infty=k\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{Br}^{-}\right]
\end{aligned}
$$



$$
k=\frac{k_{1} k_{3}}{k_{2}}
$$

 را مي توان به صور بت شكـل

كنيد كاه مرحلةُ Y عكس مرحلةً الست.



$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}
$$




范



كه قابل تبديل به معادله زير است

$$
\begin{equation*}
2.303 \log k=2.303 \log A-\frac{E_{a}}{R T} \tag{YO-1F}
\end{equation*}
$$

$$
\begin{equation*}
\log k=\log A-\frac{E_{o}}{2.303 R T} \tag{Y9-14}
\end{equation*}
$$

 اكر معادله را به صروت زير در آوريم:

$$
\begin{equation*}
\log k=-\frac{E_{a}}{2.303 R}\left(\frac{1}{T}\right)+\log A \tag{TV-14}
\end{equation*}
$$

 است نــــمودالر


 A


$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

 دست آرود:

$$
\begin{aligned}
-\frac{E_{a}}{2.30 R} & =-5350 \mathrm{~K} \\
E_{a} & =(5350 \mathrm{~K})(2.30)[8.31 \mathrm{~J} / \mathrm{K} \cdot \mathrm{moll})] \\
& =102,000 \mathrm{~J} / \mathrm{mol}=102 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$




شكل
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
( $E_{a}$ (Y, (Y|A....)



آرنيوس مشهور است

 مو فقبتأميزند (شككل


 آرنيوسي فنط بِي معادلُ تقريبى است، ولى در اغلب موارد تقريب بـسيار خوبى است








تعيينكنـنـة سرعت بود (شكل أ - أ را بينيند)،

$$
k=\frac{k_{1} k_{3}}{k_{2}}
$$




$$
k=\frac{A_{1} e^{-E_{3} / R T} A_{3} e^{-E_{3} / R T}}{A_{2} e^{-E_{3} / R T}}
$$

$$
k=\frac{A_{1} A_{3}}{A_{2}} e^{-\left(E_{1}+E_{3}-E_{2}\right) / R T}
$$

در نتيجه بְارامنرهاى آرنيوس براى ثابت سرعت كلّى عبارتند از: $A=\frac{A_{1} A_{3}}{A_{2}}$

$$
E_{a}=E_{1}+E_{3}-E_{2}
$$


 با
 اكر از معادلة آرنيو سي لكاريتم طبيعى بگيريم، داريم،

$$
\begin{equation*}
\ln k=\ln A-\frac{E_{a}}{R T} \tag{x+14}
\end{equation*}
$$


[^0]:    1. Raoult's law
[^1]:    1. Colligative properties
    2. Semipermeable membrane 3. Osmosis
[^2]:    1. Metathesis reaction
[^3]:    1. Disproportionations
    2. Auto-oxidation-reduction reactions
