In the Name of God

Advanced Engineering Mathematics

Linear Algebra
 Matrices, Vectors, Determinaints.
 Linear Systems

Instructor: Dr. M. Masih Tehrani (masih@iust.ac.ir)
TA: N. Zahabi (nzahabi@auto.iust.ac.ir)
School of Automotive Engineering
Fall 2014

| \quad Outlines |
| :--- | :--- |
| Linear Algebra: Matrices, Vectors, Determinants.Linear |
| Systems |

Matrices, Vectors:

Addition and Scalar Multiplication

- A matrix is a rectangular array of numbers or functions which we will enclose in brackets.
- Example1: Linear Systems, a Major Application of Matrices

We are given a system of linear equations, briefly a linear system, such as

$$
\begin{aligned}
4 x_{1}+6 x_{2}+9 x_{3} & =6 \\
6 x_{1}-2 x_{3} & =20 \\
5 x_{1}-8 x_{2}+x_{3} & =10
\end{aligned}
$$

Matrices, Vectors: Addition and Scalar Multiplication

- Where $x 1, x 2, x 3$ are the unknowns. We form the coefficient matrix, call it \mathbf{A}, by listing the coefficients of the unknowns in the position in which they appear in the linear equations. In the second equation, there is no unknown $x 2$, which means that the coefficient of $x 2$ is 0 and hence in matrix $\mathbf{A}, a 220$, Thus,

$$
A=\left[\begin{array}{ccc}
4 & 6 & 9 \\
6 & 0 & -2 \\
5 & -8 & 1
\end{array}\right] \text {. We form another matrix } \tilde{A}=\left[\begin{array}{cccc}
4 & 6 & 9 & 6 \\
6 & 0 & -2 & 20 \\
5 & -8 & 1 & 10
\end{array}\right]
$$

$$
\mathrm{A}=\left[a_{j k}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

Matrices, Vectors: Addition and Scalar Multiplication

Addition and Scalar Multiplication of Matrices and Vectors Definition

Equality of Matrices

Two matrices $A=\left[a_{j k}\right]$ and $B=\left[b_{j k}\right]$ are equal, written $A=B$, if and only if they have the same size and the corresponding entries are equal, that is, $a_{11}=b_{11}$. $a_{12}=b_{12}$, and so on. Matrices that are not equal are called different. Thus, matrices of different sizes are always different.
of different sizes are always different.

 \section*{\section*{Matrices, Vectors:
 \section*{\section*{Matrices, Vectors:

 Addition and Scalar Multiplication}

 Addition and Scalar Multiplication}

- Rules for Matrix Addition and Scalar Multiplication.

```
(a) A+B=B}+\textrm{A
(b) (A+B)+C=A+(B+C) (written A + B + C)
(c) }\textrm{A}+0=\textrm{A
d) }\textrm{A}+(-\textrm{A})=0\mathrm{ .
```

Here $\mathbf{0}$ denotes the zero matrix (of size $m \times n$), that is, the $\mathrm{m} \times n$ matrix with all entries zero. If $m=1$ or $n=1$, this is a vector, called a zero vector.

Matrices, Vectors: Addition and Scalar Multiplication

Addition and Scalar Multiplication

- for scalar multiplication we obtain the rules

> Sealar Multiplication (Multiplication by a Number)

The product of any $m \times n$ matrix $\mathrm{A}=\left[a_{j k}\right]$ and any scalar c (number c) is written
$c \mathrm{~A}$ and is the $m \times n$ matrix $c \mathrm{~A}=\left[\mathrm{c}_{\mathrm{zk}}\right]$] obtained by multiplying each entry of A
by c.
Example 5: Scalar Multiplication

$$
\text { If } \mathbf{A}=\left[\begin{array}{cr}
2.7 & -1.8 \\
0 & 0.9 \\
9.0 & -4.5
\end{array}\right] \text {, then }-\mathbf{A}=\left[\begin{array}{cc}
-2.7 & 1.8 \\
0 & -0.9 \\
-9.0 & 4.5
\end{array}\right], \frac{10}{9} \mathbf{A}=\left[\begin{array}{rr}
3 & -2 \\
0 & 1 \\
10 & -5
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \text {. }
$$

(a) $c(\mathrm{~A}+\mathrm{B})=c \mathrm{~A}+c \mathrm{~B}$
(b) $(c+k) \mathbf{A}=c \mathrm{~A}+k \mathrm{~A}$
(c) $\quad c(k \mathrm{~A})=(c k) \mathrm{A} \quad($ written $c k \mathrm{~A})$
(d) $\quad 1 \mathrm{~A}=\mathrm{A}$

Matrix Multiplication

- Example 3: Products of Row and Column Vectors

$$
\left[\begin{array}{lll}
3 & 6 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]=[19],\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
3 & 6 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 1 \\
6 & 12 & 2 \\
12 & 24 & 4
\end{array}\right] .
$$

- CAUTION! Matrix Multiplication Is No Commutative, AB^{1} BA

Matrix Multiplication

Example 4:

$$
\left[\begin{array}{rr}
1 & 1 \\
100 & 100
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { but }\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
100 & 100
\end{array}\right]=\left[\begin{array}{rr}
99 & 99 \\
-99 & -99
\end{array}\right] .
$$

- It is interesting that this also shows that $\mathrm{AB}=0$ does not necessarily imply $\mathrm{BA}=0$ or $\mathrm{A}=0$ or $\mathrm{B}=0$.

Matrix Multiplication

(a) $\quad(k \mathbf{A}) \mathbf{B}=k(\mathbf{A B})=\mathbf{A}(k \mathbf{B})$ written $k \mathrm{AB}$ or $\mathbf{A} k \mathbf{B}$
(b) $\mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C} \quad$ written ABC
(c) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
(d) $\mathrm{C}(\mathrm{A}+\mathrm{B})=\mathrm{CA}+\mathrm{CB}$

- here, k is any scalar.
- (b) is called the associative law
- (c) and (d) are called the distributive laws.

Matrix Multiplication

Example 5: Product in Terms of Row and Column

Vectors

If $A=\left[\boldsymbol{a}_{\boldsymbol{j} \boldsymbol{k}}\right]$ is of size 3×3 and $B=\left[\boldsymbol{b}_{\boldsymbol{j} \boldsymbol{k}}\right]$ is of size 3×4 then

$$
A B=\left[\begin{array}{llll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} & a_{1} b_{4} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} & a_{2} b_{4} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3} & a_{3} b_{4}
\end{array}\right]
$$

Taking $a_{1}=\left[\begin{array}{lll}3 & 5 & -1\end{array}\right], a_{2}=\left[\begin{array}{lll}4 & 0 & 2\end{array}\right]$, etc.

Parallel processing of products on the computer is facilitated by a variant of (3) for computing $\mathrm{C}=\mathrm{AB}$, which is used by standard algorithms (such as in Lapack).

Matrix Multiplication

Matrix Multiplication

In this method, \mathbf{A} is used as given, \mathbf{B} is taken in terms of its column vectors, and the product is computed columnwise; thus,

$$
\text { (5) } A B=A\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{p}
\end{array}\right]=\left[\begin{array}{llll}
A b_{1} & A b_{2} & \cdots & A b_{p}
\end{array}\right]
$$

Columns of \mathbf{B} are then assigned to different processors (individually or several to each processor), which simultaneously compute the columns of the product matrix $\mathrm{Ab} b_{1}, \mathrm{Ab} b_{2}$ etc.

Matrix Multiplication

Example 6: Computing Products Columnwise by (5) To obtain

$$
A B=\left[\begin{array}{cc}
4 & 1 \\
-5 & 2
\end{array}\right]\left[\begin{array}{rrr}
3 & 0 & 7 \\
-1 & 4 & 6
\end{array}\right]=\left[\begin{array}{rrr}
11 & 4 & 34 \\
-17 & 8 & -23
\end{array}\right]
$$

from (5), calculate the columns

of $\mathbf{A B}$ and then write them as a single matrix, as shown in the first formula on the right.

Matrix Multiplication

(6)

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\mathrm{Ax}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right] .
$$

- Now suppose further that the $x_{1} x_{2}$-system is related to a $w_{1} w_{2}$-system by another linear transformation, say,
(7)

$$
\mathrm{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathrm{Bw}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{11} w_{1}+b_{12} w_{2} \\
b_{21} w_{1}+b_{22} w_{2}
\end{array}\right] .
$$

Matrix Multiplication

Motivation of Multiplication by Linear Transformations

- Let us now motivate the "unnatural" matrix multiplication by its use in linear transformations. For $n=2$ variables these transformations are of the form

$$
\begin{aligned}
& y_{1}=a_{11} x_{1}+a_{12} x_{2} \\
& y_{2}=a_{21} x_{1}+a_{22} x_{2}
\end{aligned}
$$

Matrix Multiplication

(7) $\mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\mathrm{Bw}=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}b_{11} w_{1}+b_{12} w_{2} \\ b_{21} w_{1}+b_{22} w_{2}\end{array}\right]$.

- Then the $y_{1} y_{2}$-system is related to the $w_{1} w_{2}$-system indirectly via the $x_{1} x_{2}$-system, and we wish to express this relation directly. Substitution will show that this direct relation is a linear transformation, too, say,
(8) $\mathbf{y}=\mathbf{C w}=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}c_{11} w_{1}+c_{12} w_{2} \\ c_{21} w_{1}+c_{22} w_{2}\end{array}\right]$.

Matrix Multiplication

Transposition

We obtain the transpose of a matrix by writing its rows as columns (or equivalently its columns as rows).

Example 7: Transposition of Matrices and Vectors

$$
\mathbf{A}=\left[\begin{array}{rrr}
5 & -8 & 1 \\
4 & 0 & 0
\end{array}\right], \quad \mathbf{A}^{\top}=\left[\begin{array}{rr}
5 & 4 \\
-8 & 0 \\
1 & 0
\end{array}\right]
$$

Matrix Multiplication

Matrix Multiplication

Definition

Transposition of Matrices and Vectors

$$
\begin{array}{ll}
c_{11}=a_{11} b_{11}+a_{12} b_{21} & c_{12}=a_{11} b_{12}+a_{12} b_{22} \\
c_{21}=a_{21} b_{11}+a_{22} b_{21} & c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{array}
$$

- This proves that $\mathrm{C}=\mathrm{AB}$ with the product defined as in
- Comparing this with (8), we see that

The transpose of an $m \times n$ matrix $\mathbf{A}=\left[a_{j k}\right]$ is the $n \times m$ matrix \mathbf{A}^{\top} (read A transpose) that has the first row of A as its first column, the second row of A as it second column, and so on. Thus the transpose of A in (2) is $\mathrm{A}^{\top}=\left[a_{k j i}\right]$, written out
(9)

$$
\mathbf{A}^{\top}=\left[a_{k j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\cdot & \cdot & \cdots & \cdot \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right] .
$$

As a special case, transposition converts row vectors to column vectors and conversely

Matrix Multiplication

- Rules for transposition are

$$
\begin{aligned}
& \text { (a) } & \left(\mathbf{A}^{\top}\right)^{\top} & =\mathbf{A} \\
\text { (10) } & \text { (b) } & (\mathbf{A}+\mathbf{B})^{\top} & =\mathbf{A}^{\top}+\mathbf{B}^{\top} \\
& \text { (c) } & (\mathrm{c} \mathbf{A})^{\top} & =c \mathbf{A}^{\top} \\
& \text { (d) } & (\mathbf{A B})^{\top} & =\mathbf{B}^{\top} \mathbf{A}^{\top} .
\end{aligned}
$$

- CAUTION! Note that in (10d) the transposed matrices are in reversed order.

Matrix Multiplication

- Symmetric and Skew-Symmetric Matrices

Triangular Matrices.

- Upper triangular matrices are square matrices that can have nonzero entries only on and above the main diagonal, whereas any entry below the diagonal must be zero.

Matrix Multiplication

Special Matrices

- Symmetric matrices are square matrices whose transpose equals the matrix itself.
- Skew-symmetric matrices are square matrices whose transpose equals minus the matrix.
(11) $A^{\top}=A \quad$ (thus $\left.a_{k j j}=a_{j k}\right), \quad A^{\top}=-A \quad\left(\right.$ thus $a_{k j}=-a_{j k}$, hence $\left.a_{i j}=0\right)$.

Symmetic Matix
Skew-Symmetric Matai

Matrix Multiplication

- lower triangular matrices can have nonzero entries only on and below the main diagonal. Any entry on the main diagonal of a triangular matrix may be zero or not.
$\left[\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right],\left[\begin{array}{lll}1 & 4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 6\end{array}\right]$,
Upper triangular $\underset{\text { Lower triangular }}{\left[\begin{array}{rrr}2 & 0 & 0 \\ 8 & -1 & 0 \\ 7 & 6 & 8\end{array}\right],\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ 9 & -3 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 9 & 3 & 6\end{array}\right] .}$

Matrix Multiplication

Diagonal Matrices. These are square matrices that can have nonzero entries only onthe main diagonal. Any entry above or below the main diagonal must be zero.

Example 11: Computer Production. Matrix Times Matrix Supercomp Ltd produces two computer models PC1086 and PC1186.

Matrix Multiplication

- Solution:
- Since cost is given in multiples $\$ 1000$ of and production in multiples of 10,000 units, the entries of C are multiples of $\$ 10$ millions; thus means $c_{11}=13.2$ million, etc.
- Please study Examples 12,13.

Linear Systems of Equations.
 Gauss Elimination

Matrix Multiplication

- The matrix \mathbf{A} shows the cost per computer (in thousands of dollars) and \mathbf{B} the production figures for the year 2010 (in multiples of 10,000 units.)
- Find a matrix \mathbf{C} that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and miscellaneous.

$$
\left.\begin{array}{cc}
\text { PC1086 } & \text { PC1186 }
\end{array} c \begin{array}{cc}
\text { Quartler } \\
\mathbf{A} & 2 \\
3 & 3
\end{array}\right]
$$

- We now come to one of the most important use of matrices, that is, using matrices to solve systems of linear equations.
- Linear systems model many applications in engineering, economics, statistics, and many other areas.
Linear System, Coefficient Matrix, Augmented Matrix
- A linear system of m equations in n unknowns $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ is a set of equations of the form

$$
\text { (1) } \quad \begin{aligned}
& a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

Linear Systems of Equations.

Gauss Elimination

- The system is called linear because each variable x_{j} appears in the first power only, just as in the equation of a straight line.
- $a_{11}, \ldots, a_{m n}$ are given numbers, called the coefficients of the system.
- b_{1}, \ldots, b_{m} on the right are also given numbers.
- If all b_{j} the are zero, then (1) is called a homogeneous system.

If at least one b_{j} is not zero, then (1) is called a nonhomogeneous system.

Linear Systems of Equations.

Gauss Elimination

- The matrix

is called the augmented matrix of the system (1).
- Note that the augmented matrix $\widetilde{\boldsymbol{A}}$ determines the system (1) completely because it contains all the given numbers appearing in (1).

Linear Systems of Equations. Gauss Elimination

- From the definition of matrix multiplication we see that the m equations of (1) may be written as a single vector equation

$$
\text { (2) } \quad \mathrm{Ax}=\mathrm{b}
$$

Where

$$
\mathrm{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text {, and } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Linear Systems of Equations.

Gauss Elimination

- Example 1: Geometric Interpretation. Existence and Uniqueness of Solutions
If $m=n=2$, we have two equations in two unknowns
x_{1}, x_{2}

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

There are three possible cases
(a) Precisely one solution if the lines intersect
(b) Infinitely many solutions if the lines coincide
(c) No solution if the lines are parallel

Linear Systems of Equations.
 Gauss Elimination

- If the system is homogenous, Case (c) cannot happen, because then those two straight lines pass through the origin, whose coordinates $(0,0)$ constitute the trivial solution.
- Similarly, our present discussion can be extended from two equations in two unknowns to three equations in three unknowns.

Linear Systems of Equations.

Gauss Elimination

Gauss Elimination and Back Substitution

Consider a linear system that is in triangular form (in full, upper triangular form) such as

$$
\begin{aligned}
2 x_{1}+5 x_{2} & =2 \\
13 x_{2} & =-26
\end{aligned}
$$

Then we can solve the system by back substitution, that is, we solve the last equation for the variable $x_{2}=-26 / 13=-2$, and then work backward, substituting $x_{2}=-2$ into the first equation and solving it for x_{1} obtaining $x_{1}=0.5\left(2-5 x_{2}\right)=6$

Linear Systems of Equations.

Gauss Elimination
let the given system be

$$
\begin{array}{r}
2 x_{1}+5 x_{2}=2 \\
-4 x_{1}+3 x_{2}=-30 .
\end{array} \text { Its augmented matrix is }\left[\begin{array}{rrr}
2 & 5 & 2 \\
-4 & 3 & -30
\end{array}\right] \text {. }
$$

We eliminate x_{1} from the second equation, to get a triangular system. For this we add twice the first equation to the second, and we do the same operation on the rows of the augmented matrix.

Linear Systems of Equations.

Gauss Elimination

Elementary Row Operations. Row-Equivalent Systems

- Elementary Row Operations for Matrices:

1. Interchange of two rows
2. Addition of a constant multiple of one row to another row
3. Multiplication of a row by a nonzero constant c

- CAUTION! These operations are for rows, not for columns!

Linear Systems of Equations.

Gauss Elimination

$$
\begin{aligned}
2 x_{1}+5 x_{2} & =2 \\
13 x_{2} & =-26
\end{aligned} \quad \text { Row } 2+2 \text { Row } 1\left[\begin{array}{rrr}
2 & 5 & 2 \\
0 & 13 & -26
\end{array}\right]
$$

Where Row $2+2$ Row 1 means "Add twice Row 1 to Row 2 " in the original matrix.

- Please study example 2,page 275

Linear Systems of Equations.

Gauss Elimination

- Elementary Operations for Equations:

1. Interchange of two equations
2. Addition of a constant multiple of one equation to another equation
3. Multiplication of an equation by a nonzero constant c
Theorem 1
Row-Equivalent Systems
Row-equivalent linear systems have the same set of solutions.

Linear Systems of Equations.
 Gauss Elimination

Because of this theorem, systems having the same solution sets are often called equivalent systems. But note well that we are dealing with row operations. No column operations on the augmented matrix are permitted in this context because they would generally alter the solution set.

$$
\text { (1) } \begin{gathered}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m} .
\end{gathered}
$$

Linear Systems of Equations.

 Gauss EliminationGauss Elimination: The Three Possible Cases of Systems
Example 3:Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear system of three equations in four unknowns whose augmented matrix is

$$
\text { (5) }\left[\begin{array}{rrrr|r}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0.6 & 1.5 & 1.5 & -5.4 & 2.7 \\
1.2 & -0.3 & -0.3 & 2.4 & 2.1
\end{array}\right] \text { Thus, }\left[\begin{array}{l}
3.0 x_{1} 1
\end{array}+2.0 x_{2}+2.0 x_{3}-5.0 x_{4}=8.0\right.
$$

Linear Systems of Equations. Gauss Elimination

- A linear system (1) is called overdetermined if it has more equations than unknowns.
- A linear system (1) is called determined if $m=n$
- A linear system (1) is called underdetermined if it has fewer equations than unknowns.
$>$ a system (1) is called consistent if it has at least one solution (thus, one solution or infinitely many solutions),
$>$ a system (1) is called inconsistent if it has no solutions at all.

Linear Systems of Equations.
 Gauss Elimination

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding entries to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices.
Step 1. Elimination of x_{1} from the second and third equations by adding
$-0.6 / 3=-0.2$ times the first equation to the second equation, $-1.2 / 3=-0.4$ times the first equation to the third equation.

Linear Systems of Equations.

Gauss Elimination
This gives the following, in which the pivot of the next step is circled.

$$
\text { (6) }\left[\begin{array}{rrrr:r}
3.0 & 2.0 & 2.0 & -5.0 & 8.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & -1.1 & -1.1 & 4.4 & -1.1
\end{array}\right] \text { Row } 2-0.2 \text { Row } 3-0.4 \text { Row 1 } \quad 0 \begin{array}{r}
3.0 x_{1}+2.0 x_{2}+20.2 x_{3}-5.0 x_{4}=8.0 \\
\left(1.1 x_{2}\right)+1.1 .1 x_{3}-4.4 x_{4}=1.1 \\
-1.1 x_{2}-1.1 . x_{3}+4.4 x_{4}=-1.1 .1
\end{array}
$$

Step 2. Elimination of x_{2} from the third equation of (6) by adding
1.1/1.1= 1 times the second equation to the third equation.

Linear Systems of Equations.

Gauss Elimination
This gives

$$
\left[\begin{array}{rrrr:r}
3.0 & 20.0 .0 & -5.0 & 1.0 \\
0 & 1.1 & 1.1 & -4.4 & 1.1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]_{\text {Row } 3+\operatorname{Row} 2} \begin{array}{r}
3.0 r_{1}+20 x_{2}+20 . a_{3}-5.5 x_{4}=8.0 \\
1.1 x_{2}+1.1 x_{3}-4.4 x_{4}=1.1 \\
0=0 .
\end{array}
$$

Back Substitution. From the second equation, $x_{2}=1-x_{3}$ $+4 x_{4}$. From this and the first equation, $x_{1}=2-x_{4}$. Since x_{3} and x_{4} remain arbitrary, we have infinitely many solutions. If we choose a value of x_{3} and a value of x_{4}, then the corresponding values of x_{1} and x_{2} are uniquely determined.

Linear Systems of Equations.

Gauss Elimination

Example 4: Gauss Elimination if no Solution Exists Consider

Step 1. Elimination of x_{1} from the second and third equations by adding
$-2 / 3$ times the first equation to the second equation, $-6 / 3=-2$ times the first equation to the third equation.

Linear Systems of Equations.

Gauss Elimination

This gives

Step 2. Elimination of x_{2} from the third equation gives

The false statement $0=12$ shows that the system has no solution.

Linear Systems of Equations.
 Gauss Elimination

Row Echelon Form and Information From It

At the end of the Gauss elimination the form of the coefficient matrix, the augmented matrix, and the system itself are called the row echelon form. In it, rows of zeros, if present, are the last rows, and, in each nonzero row, the leftmost nonzero entry is farther to the right than in the previous row. For instance, in Example 4 the coefficient matrix and its augmented in row echelon form are

$$
\left[\begin{array}{rrr}
3 & 2 & 1 \\
0 & -\frac{1}{3} & \frac{1}{3} \\
0 & 0 & 0
\end{array}\right] \text { and }\left[\begin{array}{rrr:r}
3 & 2 & 1 & 3 \\
0 & -\frac{1}{3} & \frac{1}{3} & -2 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

Linear Systems of Equations.

 Gauss EliminationHere is the method for determining whether has solutions and what they are:
a) No solution. If r is less than m (meaning that \mathbf{R} actually has at least one row of all 0 s) and at least one of the numbers $f_{r+1}, f_{r+2}, \ldots, f_{m}$ is not zero, then the system $\mathbf{R x}=\mathbf{f}$ is inconsistent: No solution is possible. Therefore the system $\mathrm{Ax}=\mathrm{b}$ is inconsistent as well.
b) Unique solution. If the system is consistent and $\mathrm{r}=\mathrm{n}$, there is exactly one solution, which can be found by back substitution
c) Infinitely many solutions. To obtain any of these solutions, choose values of x_{r+1}, \ldots, x_{n} arbitrarily. Then solve the 1 th equation for x_{r} (in terms of those arbitrary values), then the (r-1) st equation for x_{r-1}, and so on up the line.

Linear Independence. Rank of a Matrix. Vector Space

Linear Independence and Dependence of Vectors

Given any set of m vectors $a_{(1)}, \ldots, a_{m}$ (with the same number of components), a linear combination of these vectors is an expression of the form

$$
c_{1} \mathbf{a}_{(1)}+c_{2} \mathbf{a}_{(2)}+\cdots+c_{m} \mathbf{a}_{(m)}
$$

Where $c_{1}, c_{2}, \ldots, c_{m}$ are any scalars. Now consider the equation

$$
c_{1} \mathbf{a}_{(1)}+c_{2} \mathbf{a}_{(2)}+\cdots+c_{m} \mathbf{a}_{(m)}=0
$$

(1)

Linear Independence. Rank of a Matrix. Vector Space

- our vectors $a_{(1)}, \ldots, a_{(m)}$ are said to form a linearly independent set or, more briefly, we call them linearly independent.
- This means that we can express at least one of the vectors as a linear combination of the other vectors.
- For instance, if (1) holds with, say, $c_{1} \neq 0$, we can solve (1) for $a_{(1)}$:

$$
\mathbf{a}_{(1)}=k_{2 a_{(2)}}+\cdots+k_{m} \mathbf{a}_{(m)} \quad \text { where } k_{j}=-c_{j} / c_{1} .
$$迸

Linear Independence. Rank of a Matrix. Vector Space

Rank of a Matrix

Definition

The rank of a matrix A is the maximum number of linearly independent row vectors of A. It is denoted by rank A.

- Now the maximum number of linearly independent row vectors of a matrix does not change if we change the order of rows or multiply a row by a nonzero c or take a linear combination by adding a multiple of a row to another row. This shows that rank is invariant under elementary row operations.

Linear Independence. Rank of a Matrix. Vector Space

Linear Independence. Rank of a Matrix. Vector Space

Theorem 1

```
Row-Equivalent Matrices
Row-equivalent matrices have the same rank.
```

Hence we can determine the rank of a matrix by reducing the matrix to row-echelon form
Example 3: Determination of Rank

Linear Independence. Rank of a Matrix. Vector Space

$\left[\begin{array}{rrrr}3 & 0 & 2 & 2 \\ 0 & 42 & 28 & 58 \\ 0 & -21 & -14 & -29\end{array}\right]$ Row $3+2$ Row 1 Row $1 \quad\left[\begin{array}{rrrr}3 & 0 & 2 & 2 \\ 0 & 42 & 28 & 58 \\ 0 & 0 & 0 & 0\end{array}\right]$ Row $3+\frac{1}{2}$ Row 2 .

The last matrix is in row-echelon form and has two nonzero rows. Hence rank $\mathrm{A}=2$.
Theorem 2

Linear Independence and Dependence of Vectors

Consider p vectors that each have n components. Then these vectors are linearly independent if the matrix formed, with these vectors as row vectors, has rank p. However, these vectors are linearly dependent if that matrix has rank less than p

Linear Independence. Rank of a Matrix. Vector Space

Combining last two Theorems
Theorem 4

Linear Dependence of Vectors

Consider p vectors each having n components. If $n<p$, then these vectors are linearly dependent.

- Proof: The matrix \mathbf{A} with those p vectors as row vectors has p rows and $n<p$ columns; hence by Theorem 3 it has rank $\mathrm{A} \leq n<p$ which implies linear dependence by Theorem 2.

Linear Independence. Rank of a Matrix. Vector Space

Vector Space

- Consider a nonempty set V of vectors where each vector has the same number of components. If, for any two vectors \mathbf{a} and \mathbf{b} in V, we have that all their linear combinations $\alpha a+\beta b(\alpha, \beta$ any real numbers) are also elements of V, and if, furthermore, \mathbf{a} and \mathbf{b} satisfy the laws (3a), (3c), (3d), and (4) in Sec. 7.1, as well as any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ in V satisfy (3b) then V is a vector space.

Please study the proof, page 283.

Example 4: Consider matrix A again,
Column $3=(2 / 3)$ Column $1+(2 / 3)$ Column 2
Column $4=(2 / 3)$ Column $1+(29 / 21)$ Column 2

```
(a) }\textrm{A}+\textrm{B}=\textrm{B}+\textrm{A
```



```
(c) }\textrm{A}+0=\textrm{A
```


Linear Independence. Rank of a Matrix. Vector Space

- The maximum number of linearly independent vectors in V is called the dimension of V and is denoted by dim V.
- A linearly independent set in V consisting of a maximum possible number of vectors in V is called a basis for V .
- Thus, the number of vectors of a basis for V equals dim V.
- The set of all linear combinations of given vectors $a_{(1)}, \ldots, a_{(p)}$ with the same number of components is called the span of these vectors.
- Obviously, a span is a vector space.

Linear Independence. Rank of a Matrix. Vector Space

Theorem 5

```
Vector Space R"
The vector space R R consisting of all vectors with n components (n real numbers)
has dimension n.
```


Theorem 6

```
Row Space and Column Space
```

The row space and the column space of a matrix A have the same dimension, equal
to $\operatorname{rank} \mathrm{A}$.

Linear Independence. Rank of a Matrix. Vector Space

Linear Independence. Rank of a Matrix. Vector Space

A set of vectors is a basis for a vector space V

1. if (1) the vectors in the set are linearly independent,

- for a given matrix \mathbf{A} the solution set of the homogeneous system $A x=0$ is a vector space, called the null space of \mathbf{A}, and its dimension is called the nullity of \mathbf{A}.

```
rank A + nullity A = Number of columns of A.
```


Solutions of Linear Systems: Existence, Uniqueness

(c) Infinitely many solutions. If this common rank r is less shan n, the system (1) has infunitely many solutions. All of these solutions are obtained by determining r suitable umknowns (whose submatrix of coefficients must have rank r) in terms of the remaining $n-r$ umknowns, to which arbitrary values can be assigned. (See Example 3 in Sec. 7.3.)
(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by the Gauss elimination. (This method will automatically reveal whether or not solutions exist, see Sec. 7.3.)

Please study the proof, page 289

Solutions of Linear Systems: Existence, Uniqueness

Homogeneous Linear System
Theorem 2

Solutions of Linear Systems: Existence, Uniqueness

The solution space of (4) is also called the null space of \mathbf{A} because $A x=0$ for every \mathbf{x} in the solution space of (4). Its dimension is called the nullity of \mathbf{A}. Hence Theorem 2 states that

$$
\text { rank } \mathrm{A}+\text { nullity } \mathrm{A}=n
$$

Where n is the number of unknowns (number of columns of A).

Theorem 3

Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns always has

For Reference:

Second- and Third-Order Determinants
A determinant of second order is denoted and defined by

$$
D=\operatorname{det} \mathrm{A}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Cramer's rule for solving linear systems of two equations in two unknowns
(a) $a_{11} x_{1}+a_{12} x_{2}=b_{1}$
(b) $a_{21} x_{1}+a_{22} x_{2}=b_{2}$

For Reference:

Second- and Third-Order Determinants
is

$$
\begin{aligned}
& x_{1}=\frac{\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|}{D}=\frac{b_{1} a_{22}-a_{12} b_{2}}{D}, \\
& x_{2}=\frac{\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|}{D}=\frac{a_{11} b_{2}-b_{1} a_{21}}{D}
\end{aligned}
$$

The value $D=0$ appears for homogeneous systems with nontrivial solutions.
where x_{0} is any (fixed) sotution of (1)
corresponding homogeneous system (4).

Solutions of Linear Systems: Existence, Uniqueness

Nonhomogeneous Linear Systems
Theorem 4

```
Nonhomogeneous Linear System
```

Nonhomogeneous Linear System
If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as
obtained as
(б)
(б)
where x_{0} is any (fixed) solution of (1) and x_{k} runs through all the solutions of the

```
where \(x_{0}\) is any (fixed) solution of (1) and \(x_{k}\) runs through all the solutions of the
```

Proof: The difference $x_{h}=x-x_{0}$ of any two solutions of (1) is a solution of (4) because $\mathbf{A} x_{h}=\mathbf{A}\left(\mathbf{x}-x_{0}\right)=\mathbf{A x}-\mathbf{A} x_{0}=\mathbf{b}-$ $\mathbf{b}=\mathbf{0}$. Since \mathbf{x} is any solution of (1), we get all the solutions of (1) if in (6) we take any solution x_{0} of (1) and let x_{h} vary throughout the solution space of (4).
 ـ

For Reference:

Second- and Third-Order Determinants

Cramer's Rule for Linear Systems of Three Equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned} \quad x_{1}=\frac{D_{1}}{D}, \quad x_{2}=\frac{D_{2}}{D}, \quad x_{3}=\frac{D_{3}}{D}
$$

$$
D_{1}=\left|\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right|, \quad D_{2}=\left|\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right|, \quad D_{3}=\left|\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right|
$$

Determinants. Cramer's Rule

A determinant of order n is a scalar associated with an n $\times n$ (hence square!) matrix $A=\left[a_{j k}\right]$ and is denoted by

$$
D=\operatorname{det} \mathbf{A}=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

For $n=1$ this determinant is defined by

$$
\mathrm{D}=a_{11}
$$

Determinants. Cramer's Rule

Determinants. Cramer's Rule

Example: Expansions of a Third-Order Determinant

$$
\begin{aligned}
D=\left|\begin{array}{rrr}
1 & 3 & 0 \\
2 & 6 & 4 \\
-1 & 0 & 2
\end{array}\right| & =1\left|\begin{array}{ll}
6 & 4 \\
0 & 2
\end{array}\right|-3\left|\begin{array}{rr}
2 & 4 \\
-1 & 2
\end{array}\right|+0\left|\begin{array}{rr}
2 & 6 \\
-1 & 0
\end{array}\right| \\
& =1(12-0)-3(4+4)+0(0+6)=-12
\end{aligned}
$$

This is the expansion by the first row. The expansion by the third column is

$$
D=0\left|\begin{array}{rr}
2 & 6 \\
-1 & 0
\end{array}\right|-4\left|\begin{array}{rr}
1 & 3 \\
-1 & 0
\end{array}\right|+2\left|\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right|=0-12+0=-12
$$

$$
C_{j k}=(-1)^{j+k} M_{j k}
$$

$$
D=a_{j 1} C_{j 1}+a_{j 2} C_{j 2}+\cdots+a_{j n} C_{j n} \quad(j=1,2, \cdots, 0 r n)
$$

$$
D=a_{1 k} C_{1 k}+a_{2 k} C_{2 k}+\cdots+a_{n k} C_{n k} \quad(k=1,2, \cdots, o r n)
$$

third column is

For $\mathrm{n} \geq 2$ by

Or

Here,

Determinants. Cramer's Rule

Determinants. Cramer's Rule

Example: Determinant of a Triangular Matrix determinant of the submatrix of \mathbf{A} obtained from \mathbf{A} by omitting the row and column of the entry $a_{j k}$, that is, the j th row and the k th column.

- $M_{j k}$ is called the minor of $a_{j k}$ in D , and $C_{j k}$ the cofactor of $a_{j k}$ in D .

$$
\begin{array}{ll}
D=\sum_{k=1}^{n}(-1)^{j+k} a_{a_{j k}} M_{j k} & (j=1,2, \cdots, \text { or } n) \\
D=\sum_{j=1}^{n}(-1)^{j+k_{c}} a_{j k} M_{j k} & (k=1,2, \cdots, \text { or } n) .
\end{array}
$$

Determinants. Cramer's Rule

General Properties of Determinants
Theorem 1

```
Behavior of an nth-Order Determinant under Elementary Row Operations
```

Behavior of an nth-Order Determinant under Elementary Row Operations
(a) Interchange of two rows mutiplies the value of the determinant by -1.
(a) Interchange of two rows mutiplies the value of the determinant by -1.
(b) Addition of a multiple of a row to another row dhes not alter the value of the
(b) Addition of a multiple of a row to another row dhes not alter the value of the
(c) Multiplication of a row by a nonzero constant c nultiplies the value of the
(c) Multiplication of a row by a nonzero constant c nultiplies the value of the
determinant by c.(This holds also when c=0, but no longer gives an elementary
determinant by c.(This holds also when c=0, but no longer gives an elementary
row operation.)

```
row operation.)
```

CAUTION! $\operatorname{det}(c \mathbf{A})=c^{n} \operatorname{det} \mathbf{A}(\operatorname{not} c \operatorname{det} \mathbf{A})$.

Determinants. Cramer's Rule

Theorem 2

```
```

Further Properties of nth-Order Determinants

```
```

Further Properties of nth-Order Determinants
(a)-(c) in Theorem 1 hold also for columns.
(a)-(c) in Theorem 1 hold also for columns.
(d) Transposition leaves the value of a determinant unaliered.
(d) Transposition leaves the value of a determinant unaliered.
(()) A zero row or column renders the value of a determinant zero.
(()) A zero row or column renders the value of a determinant zero.
(f) Proportional rows or columns render the value of a deterninant zero. In
(f) Proportional rows or columns render the value of a deterninant zero. In
(f) Proportional rows or columns render the value of determinant zero. In

```
```

 (f) Proportional rows or columns render the value of determinant zero. In
    ```
```

It is quite remarkable that the important concept of the rank of a matrix \mathbf{A}, which is the maximum number of linearly independent row or column vectors of \mathbf{A} (see Sec. 7.4), can be related to determinants.

Determinants. Cramer's Rule

Theorem 3

```
Rank in Terms of Determinants
```



```
    (1) A has rank r}\geqq1\mathrm{ if and only if A has an r }\timesr\mathrm{ rubmatrix with a nonzero
    determinamt.
    (2) The deterninant of any square submatrix with more than r rows, contained
        in A (if such a matrix exists!) has a value equal to zero.
Furhermore, if m}=n\mathrm{ . we have:
    (3) An n }\timesn\mathrm{ square matrix A has rank n if and only if
```


Inverse of a Matrix. Gauss-Jordan Elimination

Indeed, if both \mathbf{B} and \mathbf{C} are inverses of \mathbf{A}, then $\mathrm{AB}=\mathrm{I}$ and $C A=I$, so that we obtain the uniqueness from

$$
\mathbf{B}=\mathbf{I B}=(\mathbf{C A}) \mathbf{B}=\mathbf{C}(\mathrm{AB})=\mathbf{C I}=\mathbf{C}
$$

- A has an inverse (is nonsingular) if and only if it has maximum possible rank n.
- $\mathrm{Ax}=\mathrm{b}$ implies $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$ provided A^{-1} exists, and will thus give a motivation for the inverse as well as a relation to linear systems.

Inverse of a Matrix.

Gauss-Jordan Elimination

- The inverse of an $n \times n$ matrix $A=\left[a_{j k}\right]$ is denoted by A^{-1} and is an $n \times n$ matrix such that

$$
\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}
$$

Inverse of a Matrix. Gauss-Jordan Elimination

Theorem 1

Existence of the Inverse
The inverse A^{-1} of an $n \times n$ matrix A exists if and only if rank $\mathrm{A}=n$, thus (by
Theorem 3 , sec. 7.7 if and only if det $\mathrm{A} \neq 0$. Hence A is nonsingular if rank $\mathrm{A}=n$,
and is singular if rank $\mathrm{A}<n$.

- Proof: Let \mathbf{A} be a given $n \times n$ matrix and consider the linear system, $\mathbf{A x}=\mathbf{b}$. If the inverse A^{-1} exists, then multiplication from the left on both sides and use of (1) gives, $\boldsymbol{A}^{-1} \mathbf{A x}=\mathbf{x}=\boldsymbol{A}^{-1} \mathbf{b}$. This shows that $\mathbf{A x}=\mathbf{b}$ has a solution \mathbf{x}, which is unique because, for another solution \mathbf{u}, solution \mathbf{x}, which is unique because, for another solution \mathbf{u},
we have $\mathrm{Au}=\mathrm{b}$, so that $\mathbf{u}=\boldsymbol{A}^{-1} \mathbf{b}=\mathbf{x}$. Hence \mathbf{A} must we have $\mathrm{Au}=\mathrm{b}$, so that $\mathbf{u}=\boldsymbol{A} \mathbf{A} \mathbf{b}=\mathbf{x}$. Hence \mathbf{A}
have rank n by the Fundamental Theorem in Sec. 7.5.

Inverse of a Matrix. Gauss-Jordan Elimination

- Conversely, let rank $\mathrm{A}=n$. Then by the same theorem, the system $\mathrm{Ax}=\mathrm{b}$ has a unique solution \mathbf{x} for any \mathbf{b}. Now the back substitution following the Gauss elimination (Sec. 7.3) shows that the components x_{j} of \mathbf{x} are linear combinations of those of \mathbf{b}. Hence we can write: $\mathrm{x}=\mathrm{Bb}$

$$
\mathbf{A x}=\mathbf{A}(\mathbf{B b})(\mathbf{A B}) \mathbf{b}=\mathbf{C b}=\mathbf{b} \quad \text { for any } \mathbf{b}
$$

$$
\begin{aligned}
& \text { Hence } \mathrm{C}=\mathrm{AB}=\mathrm{I} \text {, the unit matrix. } \\
& \mathbf{x}=\mathbf{B} \mathbf{b}=\mathbf{B}(\mathbf{A x})=(\mathbf{B A}) \mathbf{x}
\end{aligned}
$$

for any $\mathbf{x}($ and $\mathbf{b}=\mathbf{A x})$. Hence BA $=\mathrm{I}$. Together, $\mathbf{B}=\boldsymbol{A}^{\mathbf{1}}$ exists.

Inverse of a Matrix. Gauss-Jordan Elimination

Example 1: Finding the Inverse of a Matrix by Gauss-Jordan Elimination
Determine the inverse $\boldsymbol{A}^{\mathbf{- 1}}$ of

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{rrr}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right] . \\
\tilde{A}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{I}
\end{array}\right]=\left[\begin{array}{rrr|rrr}
-1 & 1 & 2 \\
3 & -1 & 1 & 1 & 0 & 0 \\
-1 & 3 & 4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Inverse of a Matrix.

Gauss-Jordan Elimination
Determination of the Inverse by the Gauss-Jordan Method
Using \mathbf{A}, we form n linear systems

$$
A x_{(1)}=e_{(1)}, \ldots, A x_{(n)}=e_{(n)}
$$

where the vectors $e_{(1)}, \ldots, e_{(n)}$ are the columns of the $n \times n$ unit matrix I ; thus, $e_{(1)}=\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]^{T}, \quad e_{(2)}$ $=\left[\begin{array}{ll}0 & 1\end{array}\right.$ $0]^{T}$, etc.
We combine them into a single matrix equation $\mathrm{AX}=\mathrm{I}$, with the unknown matrix \mathbf{X} having the columns $x, \ldots, x_{(n)}$.
Correspondingly, we combine the n augmented matrices [A $\left.e_{(1)}\right], \ldots,\left[\mathrm{A} \quad e_{(n)}\right]$ into one wide $n \times 2 n$ "augmented matrix" $\tilde{A}=\left[\begin{array}{ll}\mathrm{A} & \mathrm{I}\end{array}\right]$.

Inverse of a Matrix. Gauss-Jordan Elimination

Inverse of a Matrix. Gauss-Jordan Elimination

Example 2: Inverse of a 2×2 Matrix by Determinants

$$
A=\left[\begin{array}{ll}
3 & 1 \\
2 & 4
\end{array}\right], A^{-1}=\frac{1}{10}\left[\begin{array}{rr}
4 & -1 \\
-2 & 3
\end{array}\right]=\left[\begin{array}{rr}
0.4 & -0.1 \\
-0.2 & 0.3
\end{array}\right]
$$

Example 3: find the inverse of

$$
\mathbf{A}=\left[\begin{array}{rrr}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

Inverse of a Matrix.

Gauss-Jordan Elimination

Inverse of a Matrix.

 Gauss-Jordan EliminationWe obtain $\operatorname{det} \mathrm{A}=-1(-7)-1(13)+2(8)=10$

$$
\begin{aligned}
& C_{11}=\left|\begin{array}{rr}
-1 & 1 \\
3 & 4
\end{array}\right|=-7, \quad C_{21}=-\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|=2, \quad C_{31}=\left|\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right|=3, \\
& C_{12}=-\left|\begin{array}{cc}
3 & 1 \\
-1 & 4
\end{array}\right|=-13, \quad C_{22}=\left|\begin{array}{ll}
-1 & 2 \\
-1 & 4
\end{array}\right|=-2, \quad C_{32}=-\left|\begin{array}{cc}
-1 & 2 \\
3 & 1
\end{array}\right|=7, \\
& C_{13}=\left|\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right|=8, \quad C_{23}=-\left|\begin{array}{ll}
-1 & 1 \\
-1 & 3
\end{array}\right|=2, \quad C_{33}=\left|\begin{array}{cc}
-1 & 1 \\
3 & -1
\end{array}\right|=-2,
\end{aligned}
$$

Then

$$
\mathbf{A}^{-1}=\left[\begin{array}{rrr}
-0.7 & 0.2 & 0.3 \\
-1.3 & -0.2 & 0.7 \\
0.8 & 0.2 & -0.2
\end{array}\right] .
$$

Inverse of a Matrix. Gauss-Jordan Elimination

Products can be inverted by taking the inverse of each factor and multiplying these inverses in reverse order,

$$
(A C)^{-1}=C^{-1} A^{-1}
$$

Hence for more than two factors,

$$
(\mathrm{AC} \cdots \mathrm{P} Q)^{-1}=Q^{-1} \mathrm{P}^{-1} \ldots \mathrm{C}^{-1} \mathrm{~A}^{-1}
$$

We also note that the inverse of the inverse is the given matrix, as you may prove,

$$
\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}
$$

Inverse of a Matrix.
Gauss-Jordan Elimination
Example 4: Inverse of a Diagonal Matrix
$\mathbf{A}=\left[\begin{array}{ccc}-0.5 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Then
$\mathbf{A}^{-1}=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Inverse of a Matrix.

Vector Spaces, Inner Product Spaces, Linear Transformations

Determinants of Matrix Products
II. Scalar multiplication. The real numbers are called scalars. Scalar multiplication associates with every a in V and every scalar c a unique vector of V, called the product of c and a and denoted by c (or acc) such that the following xioms are satisfied.
II. 1 Distributivivy. For every scalar c and vectors \mathbf{a} and b in V

$$
c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b} .
$$

Determinant of a Product of Matrices
For any $n \times n$ matrices A and B ,
II. 2 Distributivity. For all scalars c and k and every a in V,

$$
(c+k) \mathbf{a}=c \mathbf{a}+k \mathbf{a} .
$$

(10)
$\operatorname{det}(A B)=\operatorname{det}(B A)=\operatorname{det} A \operatorname{det} B$.
II. 3 Associativity. For all scalars c and k and every a in V.
II. 4 For every a in V,

$$
c(\mathrm{ka})=(c k) \mathrm{a}
$$

Vector Spaces, Inner Product Spaces, Linear Transformations

A linear combination of vectors $a_{(1)}, \ldots, a_{(m)}$ in a vector space V is an expression

$$
c_{1} a_{(1)}+\cdots+c_{m} a_{(m)} \quad\left(c_{1}, \ldots, c_{m} \text { any scalars }\right)
$$

These vectors form a linearly independent set (briefly, they are called linearly independent) if

$$
\text { (1) } c_{1} a_{(1)}+\cdots+c_{m} a_{(m)}=0
$$

implies that $c_{1}=0, \ldots, c_{m}=0$.
Otherwise, if (1) also holds with scalars not all zero, the vectors are called linearly dependent.

Note that (1) with $\mathrm{m}=1$ is $\mathrm{ca}=0$ and shows that a single

Vector Spaces, Inner Product Spaces,

 Linear Transformations

Because any 2×2 matrix $\dot{\mathrm{A}}=\left[a_{j k}\right]$ has a unique representation

$$
\mathbf{A}=a_{11} \boldsymbol{B}_{\mathbf{1 1}}+a_{12} \boldsymbol{B}_{\mathbf{1 2}}+a_{21} \boldsymbol{B}_{\mathbf{2 1}}+a_{22} \boldsymbol{B}_{\mathbf{2 2}}
$$

Example 2:Vector Space of Polynomials
The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with basis $\{1, \mathrm{x}$, $\left.x^{2}\right\}$ under the usual addition and multiplication by real numbers because these two operations give polynomials not exceeding degree 2 .

Vector Spaces, Inner Product Spaces, Linear Transformations

1. V has dimension \boldsymbol{n}, or is \boldsymbol{n}-dimensional, if it contains a linearly independent set of n vectors, whereas any set of more than n vectors in V is linearly dependent.
2. That set of \boldsymbol{n} linearly independent vectors is called a basis for V .
3. Then every vector in V can be written as a linear combination of the basis vectors. Furthermore, for a given basis, this representation is unique (see Prob. 2).

Example 1: Vector Space of Matrices

The 2×2 real matrices form a four-dimensional real vector space. A basis is

Vector Spaces, Inner Product Spaces, Linear Transformations

If a vector space V contains a linearly independent set of n vectors for every n, no matter how large, then V is called infinite dimensional, as opposed to a finite dimensional (n dimensional) vector space just defined.

An example of an infinite dimensional vector space is the space of all continuous functions on some interval [a, b] of the x -axis.

Vector Spaces, Inner Product Spaces,

 Linear TransformationsInner Product Spaces

- If \mathbf{a} and \mathbf{b} are vectors in R^{n}, regarded as column vectors, we can form the product $\boldsymbol{a}^{\boldsymbol{T}} \boldsymbol{b}$. This is a 1×1 matrix, which we can identify with its single entry, that is, with a number.
- This product is called the inner product or dot product of \mathbf{a} and \mathbf{b}. Other notations for it are $(\boldsymbol{a}, \boldsymbol{b})$ and $\boldsymbol{a} \cdot \boldsymbol{b}$. Thu:

Vector Spaces, Inner Product Spaces,

 Linear Transformations- Vectors whose inner product is zero are called orthogonal.
- The length or norm of a vector in V is defined by

$$
\|a\|=\sqrt{(a, a)} \quad(\geqq 0)
$$

 $|(a, b) \leqq|a|\|b\| \quad($ Caurchy-Schwarz inequality). $|a+||\leq a|+|b| \quad$ (Trimple iequalin).

Vector Spaces, Inner Product Spaces, Linear Transformations

$$
\left.\|a+b\|^{2}+\|a-b\|^{2}=2\|a\|^{2}+\|b\|^{2}\right) \quad \text { (Parallelogram equality). }
$$

Example 3: n-Dimensional Euclidean Space
R^{n} with the inner product
(where both \mathbf{a} and \mathbf{b} are column vectors) is called the \boldsymbol{n} dimensional Euclidean space and is denoted by E^{n} or again simply by R^{n}. Axioms I-III hold, as direct calculation shows. Equation (2) gives the "Euclidean norm"
$\|\mathbf{a}\|=\sqrt{(\mathbf{a}, \mathbf{a})}=\sqrt{\mathbf{a}^{\top} \mathbf{a}}=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}$.

Vector Spaces, Inner Product Spaces, Linear Transformations

Example 4: An Inner Product for Functions. Function Space
The set of all real-valued continuous functions $f(x), g(x), \ldots$ on a given interval $\alpha \leq x \leq \beta$ is a real vector space under the usual addition of functions and multiplication by scalars (real numbers). On this "function space" we can define an inner product by the integral

$$
(f, g)=\int_{\alpha}^{\beta} f(x) g(x) d x
$$

Axioms I-III can be verified by direct calculation. Norm will be

$$
\|f\|=\sqrt{(f, f)}=\sqrt{\int_{a}^{\beta} f(x)^{2} d x}
$$

Vector Spaces, Inner Product Spaces,

 Linear TransformationsLinear Transformation of Space $R^{\boldsymbol{n}}$ into Space \boldsymbol{R}^{m}

- From now on we let $\mathbf{X}=\boldsymbol{R}^{\boldsymbol{n}}$ and $\mathbf{Y}=\boldsymbol{R}^{\boldsymbol{m}}$. Then any real $\mathbf{m} \times \mathbf{n}$ matrix $\mathbf{A}=\left[a_{j k}\right]$ gives a transformation of $\boldsymbol{R}^{\boldsymbol{n}}$ into $\boldsymbol{R}^{\boldsymbol{m}}$,

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

- Since $\mathbf{A}(\mathbf{u}+\mathbf{x})=\mathbf{A u}+\mathbf{A u}$ and $\mathbf{A}(\mathbf{c x})=\mathbf{c A x}$, this transformation is linear.
- We show that, conversely, every linear transformation F of $\boldsymbol{R}^{\boldsymbol{n}}$ into $\boldsymbol{R}^{\boldsymbol{m}}$ can be given in terms of an $\mathbf{m} \times \mathbf{n}$ matrix \mathbf{A}, after a basis for $\boldsymbol{R}^{\boldsymbol{n}}$ and a basis for $\boldsymbol{R}^{\boldsymbol{m}}$ have been chosen.

Vector Spaces, Inner Product Spaces, Linear Transformations

Linear Transformations

- Let X and Y be any vector spaces. To each vector \mathbf{x} in X we assign a unique vector \mathbf{y} in Y. Then we say that a mapping (or transformation or operator) of X into Y is given. Such a mapping is denoted by a capital letter, say F. The vector \mathbf{y} in Y assigned to a vector \mathbf{x} in X is called the image of \mathbf{x} under F and is denoted by $F(x)$ [or $F \mathbf{x}$, without parentheses].
- F is called a linear mapping or linear transformation if, for all vectors \mathbf{v} and \mathbf{x} in X and scalars c,

$$
\begin{aligned}
F(\mathrm{v}+\mathrm{x}) & =F(\mathrm{v})+F(\mathrm{x}) \\
F(c \mathrm{x}) & =c F(\mathrm{x}) .
\end{aligned}
$$

Vector Spaces, Inner Product Spaces, Linear Transformations

- The purpose of a "representation" is the replacement of one object of study by another object whose properties are more readily apparent.
- In three-dimensional Euclidean space E^{n} the standard basis is usually writtene $e_{(1)}=i, e_{(2)}=j, e_{(3)}=k$. Thus

- These are the three unit vectors in the positive directions of the axes of the Cartesian coordinate system in space, that is, the usual coordinate system with the same scale of measurement on the three mutually perpendicular coordinate axes.

Vector Spaces, Inner Product Spaces, Linear Transformations

Example 5: Linear Transformations
Interpreted as transformations of Cartesian coordinates in the plane, the matrices

represent a reflection in the line $x_{2}=x_{1}$, a reflection in the x_{1}-axis, a reflection in the origin, and a stretch (when a >1, or a contraction when $0<\mathrm{a}<1$) in the x_{1}-direction, respectively.

Vector Spaces, Inner Product Spaces,

 Linear Transformations If this \mathbf{A} is nonsingular, so that $\boldsymbol{A}^{-\mathbf{1}}$ exists (see Sec. 7.8), then multiplication of ${ }^{*}$ by $\boldsymbol{A}^{\mathbf{- 1}}$ from the left and use of $\mathbf{A}^{\mathbf{- 1}} \mathbf{A}=\mathbf{I}$ gives the inverse transformation

$$
\mathbf{x}=A^{-1} \mathbf{y}
$$

It maps every $\mathrm{y}=y_{0}$ onto that \mathbf{x}, which by $*_{\text {is mapped onto }}$ y_{0}. The inverse of a linear transformation is itself linear, because it is given by a matrix, as $\mathbf{x}=\boldsymbol{A}^{-1} \mathbf{y}$ shows.

Vector Spaces, Inner Product Spaces, Linear Transformations

Example 6: Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find \mathbf{A} representing the linear transformation that maps $\left(x_{1}, x_{2}\right)$ onto ($2 x_{1}-5 x_{2}, 3 x_{1}+4 x_{2}$)
Solution. Obviously, the transformation is

Vector Spaces, Inner Product Spaces, Linear Transformations

The last operation we want to discuss is composition of linear transformations. Let X, Y, W be general vector spaces. Let F be a linear transformation from X to Y. Let G be a linear transformation from W to X. Then we denote, by H, the composition of F and G, that is,

$$
H=F \circ G=F G=F(G),
$$

which means we take transformation G and then apply transformation F to it (in that order!, i.e. you go from left to right).

Vector Spaces, Inner Product Spaces, Linear Transformations

Now, to give this a more concrete meaning, if we let \mathbf{w} be a vector in W, then $\boldsymbol{G}(\boldsymbol{W})$ is a vector in X and $\boldsymbol{F}(\boldsymbol{G}(\boldsymbol{W}))$ is a vector in Y. Thus, H maps W to Y, and we can write

$$
H(w)=(F \circ G)(w)=(F G)(w)=F(G(w)),
$$

which completes the definition of composition in a general vector space setting. But is composition really linear?

Vector Spaces, Inner Product Spaces,

 Linear Transformations- We showed that the composition of linear transformations is indeed linear
- Next we want to relate composition of linear transformations to matrix multiplication.
- To do so we let $\mathbf{X}=\boldsymbol{R}^{\boldsymbol{n}}, \mathbf{Y}=\boldsymbol{R}^{\boldsymbol{m}}$ and $\mathbf{W}=\boldsymbol{R}^{\boldsymbol{p}}$. This choice of particular vector spaces allows us to represent the linear transformations as matrices and form matrix equations.
- Thus F can be represented by a general real $\mathrm{m} \times \mathrm{n}$ matrix $\mathrm{A}=\left[a_{j k}\right]$ and G by an $\mathrm{n} \times \mathrm{p}$ matrix $\mathrm{B}=\left[b_{j k}\right]$. Then we can write for F , with column vectors x with n entries, and resulting vector y , with m entries

$$
y=\mathbf{A x}
$$

Vector Spaces, Inner Product Spaces, Linear Transformations

and similarly for G, with column vector \mathbf{w} with p entries,
Then,

$$
\mathrm{y}=\mathrm{Ax}=\mathrm{A}(\mathrm{Bw})=\mathrm{Abw}=\mathrm{Cw} \text { where } \mathrm{C}=\mathrm{AB}
$$

we can define the composition of linear transformations in the Euclidean spaces as multiplication by matrices. Hence, $\mathrm{m} \times \mathrm{p}$ the real matrix \mathbf{C} represents a linear transformation H which maps $\boldsymbol{R}^{\boldsymbol{p}}$ to $\boldsymbol{R}^{\mathrm{n}}$ with vector \mathbf{w}, a column vector with p entries.

Vector Spaces, Inner Product Spaces, Linear Transformations

Example 7: The Composition of Linear Transformations Is Linear
To show that H is indeed linear we must show that (10) holds. We have, for two vectors w_{1}, w_{2} in W,

| $H\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)$ | $=(F \circ G)\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)$ | | |
| ---: | :--- | ---: | :--- |
| | $=F\left(G\left(\mathbf{w}_{1}+\mathbf{w}_{2}\right)\right)$ | | |
| | $=F\left(G\left(\mathbf{w}_{1}\right)+G\left(\mathbf{w}_{2}\right)\right)$ | | (by linearity of $G)$ |
| | $=F\left(G\left(\mathbf{w}_{1}\right)\right)+F\left(G\left(\mathbf{w}_{2}\right)\right)$ | | (by linearity of $F)$ |
| | $=(F \circ G)\left(\mathbf{w}_{1}\right)+\left(F \circ C\left(\mathbf{w}_{2}\right)\right.$ | | (by (15)) |
| | $=H\left(\mathbf{w}_{1}\right)+H\left(\mathbf{w}_{2}\right)$ | | (by definition of $H)$. |

Similary, $H\left(\mathrm{cw}_{2}\right)=(F \cdot G)\left(\mathrm{w}_{2}\right)=F\left(G\left(\mathrm{cw}_{2}\right)\right)=F\left(c\left(G\left(\mathbf{w}_{2}\right)\right)\right.$

Vector Spaces, Inner Product Spaces, Linear Transformations

Example 8: Linear Transformations. Composition

In Example 5 of Sec. 7.9, let \mathbf{A} be the first matrix and \mathbf{B} be the fourth matrix with $\mathrm{a}>1$. Then, applying \mathbf{B} to a vector $\mathrm{w}=$ $\left[w_{1} w_{2}\right]^{T}$, stretches the element w_{1} by a in the x_{1} direction. Next, when we apply A to the "stretched" vector, we reflect the vector along the line $x_{1}=x_{2}$, resulting in a vector y $=\left[w_{1} a w_{2}\right]^{T}$. But this represents, precisely, a geometric description for the composition H of two linear transformations F and G represented by matrices \mathbf{A} and \mathbf{B}. We now show that, for this example, our result can be obtained by straightforward matrix multiplication, that is,

$$
\mathbf{A B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right]
$$

Vector Spaces, Inner Product Spaces, Linear Transformations

Then

$$
\mathrm{ABw}=\left[\begin{array}{ll}
0 & 1 \\
a & 0
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{c}
w_{2} \\
a w_{1}
\end{array}\right],
$$

which is the same as before. This shows that indeed $\mathbf{A B}=\mathbf{C}$, and we see the composition of linear transformations can be represented by a linear transformation. It also shows that the order of matrix multiplication is important (!). You may want to try applying \mathbf{A} first and then \mathbf{B}, resulting in $\mathbf{B A}$. What do you see? Does it make geometric sense? Is it the same result as $\mathbf{A B}$?

