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Matrices, Vectors:
Addition and Scalar Multiplication

* A matrix is a rectangular array of numbers or functions
which we will enclose in brackets.

* Examplel: Linear Systems, a Major Application of
Matrices

We are given a system of linear equations, briefly a
linear system, such as

dx1 + 6x9 + 923 = 6
6)61 - 2)63 =20

5)C1*8)C2+ X3 = 10

Linear Algebra
ear Systems

Advanced Engineering Mathe
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Matrices, Vectors:
Addition and Scalar Multiplication

e Where x1, x2, x3 are the unknowns. We form the
coefficient matrix, call it A, by listing the coefficients of
the unknowns in the position in which they appear in the
linear equations. In the second equation, there is no
unknown x2, which means that the coefficient of x2 is 0
and hence in matrix A, 4222 0, Thus,

4 6 9 4 6 0 6
A=|6 0 -2| Wefommothermaiz A=|6 0 -2 20
5 =8 | ;-8 110
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Matrices, Vectors:
Addition and Scalar Multiplication

General Concepts and Notations

Let us formalize what we just have discussed. We shall
denote matrices by capital boldface letters A, B, C,... , or
by writing the general entry in brackets; thus A [ajk ], and
so on. By an m X n matrix (read m by n matrix) we mean
a matrix with m rows and z columns—rows always come
first! is called the size of the matrix. Thus an matrix is of
the formr
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Matrices, Vectors:

Addition and Scalar Multiplication

If m = n we call A an n X nsquare matrix. Then its diagonal
containing the entries a,1, @y, ..., uy is called the main diagonal of
A.

Vectors: A vector is a matrix with only one row or column. Its
entries are called the components of the vector.

[a;, ay .. ay]forinstancea=[-2 5 08 0 1]

b,
b 4
b =|"?| for instance b = [ 0 ]
b =7
n

gebra

Linear Systems
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Matrices, Vectors:

Addition and Scalar Multiplication

Addition and Scalar Multiplication of Matrices and Vectors
Definition

Equality of Matrices

Two matrices A = [ac] and B = [by;] are equal, written A = B, if and only if
they have the same size and the corresponding entries are equal, that is, ayy = by,
a3 = by, and so on. Matrices that are not equal are called different. Thus, matrices
of different sizes are always different.

Dr. Masih, N. Zah
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Matrices, Vectors:

Addition and Scalar Multiplication

Example 3: Equality of Matrices

4y Oy 4 0

A= md B=
Then oy (99 3 -1
(111=4, = 0,

A=B  ifandonlyif
(g1 = 3, (lgy = -1.
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Matrices, Vectors:
Addition and Scalar Multiplication

Definition

Addition of Matrices

The sum of two matrices A = [ay] and B = [by] of the same size is written
A + B and has the entries ay; + by obtained by adding the corresponding entries

Example 4: Addition of Matrices and Vectors

-4 6 1 5 ~1 0

and B= , then A+B=

of A and B. Matrices of different sizes cannot be added.
133
f A= .
3 2 2

A in Example 3 and our present A cannot be added.If a =[5
7 2landb=[-6 2 0],thena+b=[-1 9 2].

0112 $ 10

Matrices, Vectors:
Addition and Scalar Multiplication

Definition

Scalar Multiplication (Multiplication by a Number)

The product of any m X 1 matrix A = [a_,,:] and any scalar ¢ (number ¢) is written
A and is the m % n matrix eA = [cay, ] obtained by multiplying each entry of A
by c.

Example 5: Scalar Multiplication

11 -18 =27 18 [ 5 22 00

10
IF A=|0 09, thes -A=] 0 -00| EA‘: 0 1|, 0A={0 0
90 45 90 45 10 -5 00
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Matrices, Vectors:
Addition and Scalar Multiplication

* Rules for Matrix Addition and Scalar Multiplication.

(a) A+B=B+A

() A+B)+C=A+B+C) (wnitenA+B+C)
(c) A+0=A

@ A+(-A)=0

Here 0 denotes the zero matrix (of size m X n), that is,
the m X n matrix with all entries zero. [f m =1 or n =1,
this is a vector, called a zero vector.

Linear Algebra
ear Systems
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» for scalar multiplication we obtain the rules

(a) clA+B)=cA +cB
(b) (c+hHA=cA+kA
(c) clkA) = (ck)A (written ckA)

(d) A=A

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determin:
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Matrix Multiplication

Definition

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [ap] times an r X p
matrix B = [By] is defined if and only if r = n and is then the m X p matrix

C = [gjic] with entries
= e 1. er.m
(n o = ) agbwe = anbik + apbay + - + ambnk i
=1 =1L
Note that
A B = B

[m x pl.

[m % a][n X p]
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Matrix Multiplication

» Example 1: Matrix Multiplication
2 3

Fa s -1z - 1 22 -2 43 42
AB = 4 0 215 0 7 B|=] 26 —16 14 6
[-6 -3 2]l -4 1 11 -9 4 -37 -2%

* Example 2: Multiplication of a Matrix and a Vector

[4 2][3] [4-3+2:5] [2] [3][4 2]
= = whereas | s undefined.
|

Dr. Masih, N. Zahabi
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Matrix Multiplication

* Example 3: Products of Row and Column Vectors
[ | 361

B 6 12|=[9, |23 6 1=|6 1 2|

4 - 2 M 4

* CAUTION! Matrix Multiplication Is No
Commutative, AB ' BA

inear Algebra
ar Systems

Dr. Masih, N. Zah

Advanced Engineering Mathem:
Matrices, Vectors, Determinan

Matrix Multiplication

Example 4:

4t A T B
= but
00 10| 1 -1 |00 L1110 100

+ It is interesting that this also shows that AB = 0 does not
necessarily imply BA=0orA=0orB=0.

% o
9 -9

Linear Algebra
. Linear Systems
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Matrix Multiplication Matrix Multiplication
5 Example 5: Product in Terms of Row and Column 55
(a) (kAB = KAB) = AKB)  written kAB or AKkB 5 Vectors 5 E
(b) A(BC) = (AB)C written ABC If A= [aji] is of size 3x 3 and B = [bjy ] is of size 3x4 then

c) (A+BC=AC+BC
(d) CA+B)=CA+CB

l_&;hl G;hz 8|h3 alh..

Dr. Masih, N. Zahabi

AR = -H.zhl &2'}2 azh:; 32!.'!.1 .
| aghy agh:  ash;  aghg

Taking a;=[3 5 -1], a,=[4 0 2], etc.

here, kis any scalar.

Matrices, Vectors, Determinants. Linear Systems

(b) is called the associative law
(c) and (d) are called the distributive laws.

Advanced Engineering Mathema

Parallel processing of products on the computer is
facilitated by a variant of (3) for computing C = AB , which
is used by standard algorithms (such as in Lapack).

Matrix Multiplication Matrix Multiplication

gebra

In this method, A is used as given, B is taken in terms of its
column vectors, and the product is computed columnwise;

Since matrix multiplication is a multiplication of rows into
columns, we can write the defining formula (1) more

Tathematics; Linear Algebra
rminants. Linear Systems

£E

compactly as 3¢ 2 thus, 2
£Ez 2
e = ab f= 1 m k=1,,p, =32 ; ]

k= 80, 1 s P w3 3 28

fos (5 AB=Alty by - by|=[dby Aby - Aby]

Where q; is the jth row vector of A and by, is the kth 58 §~§

column vector of B. 38 38

3 52 Columns of B are then assigned to different processors 5

. N (individually or several to each processor), which

W=y gp gl | = dnbuk + byt G % simultaneously compute the columns of the product matrix 5
b (32 Aby Abjetc. (35)
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Matrix Multiplication Matrix Multiplication
Example 6: Computing Products Columnwise by (5) 5 : 5 %
To obtain 5L , | a1 mg||X1| |ansy+ageg SE
. E [f}) y= | = *\ — = !
41 07 o4 oM e :
AB = }: ] : Ya) g1 Opgf[Xg| [dmXy T gy
| T B T B :
s

* Now suppose further that the x,x,-system is related to a
w1 Ww,-system by another linear transformation, say,

3 Il

17

Matrices, Vectors, Determinants. Linear Systems

Advanced Engineering Mathema

[ 4 1"[]

-5

Xy b big|[wi| | buwy + bigw

g boy by ||wa| | Bopwy + bygwe |

of AB and then write them as a single matrix, as shown in
the first formula on the right.

Matrix Multiplication Matrix Multiplication

gebra

. 1 by big||wr| |buwy+ bigwe
] X= =Bw= = -

1 %2 b bag||wa| [ Baawy + ooy

Motivation of Multiplication by Linear Transformations

Tathematics; Linear Algebra
rminants. Linear Systems

I8
* Let us now motivate the “unnatural” matrix EE% %
multiplication by its use in linear transformations. For | = « Then the y;y,-system is related to the w;w,-system =
_ . : ¥o s .. . . £ 0
n=2variables these transformations are of the form ez indirectly via the x;x,-system, and we wish to express [l
58 this relation directly. Substitution will show that this [
[ . . . . . R s
Y = ayy¥y + dpaks R direct relation is a linear transformation, too, say, R
< 2
o= ey . ar Cz||wi| | euwyt ey
Y2 = Gg1%] + dg2%3 ®) y=Cw= { : { .
Cg1 Cog| | Wa CiWy + CogWs |
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Matrix Multiplication Matrix Multiplication
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* Indeed, substituting (7) into (6), we obtain Transposition
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We obtain the transpose of a matrix by writing its rows as

V1 = ayy(byywy + biaws) + agalboywy + bagws) columns (or equivalently its columns as rows).

Dr. Masih, N. Zahabi

= laybyy + aygbgy)wy + (apbyg + ayabagwy Example 7: Transposition of Matrices and Vectors

Yo = agy(byywy + byawa) + aga(boywy + bagwo)

Matrices, Vectors, Determinants. Linear Systems

Advanced Engineering Mathema

- . 54
= (agibyy + agebgy)wy + (ag1byg + agoboniwy. L ‘ R
£ 0 0 -

Matrix Multiplication Matrix Multiplication

* Comparing this with (8), we see that 5& Definition
‘g g i’ Transposition of Matrices and Vectors
$28 The transpose of an m X n matrix A = [a | is the m X m matrix AT (read A
Py = Yy = £E=Z ans A= |age] : £
1= lb“ i ﬂ_‘[zbgl fg =0 lbm i ﬂmbgg s g _;Z_f transpose) that has the first row of A as its first column, the second row of A as its <
g & é second column, and so on. Thus the transpose of A in (2) is AT = [a,,v-:, written out K a
Cor = aybyy + agghyy g = agibyy + agghay. £:8 e e = it
£ nl 3
SIS [Sh
. . . T e T aip  Gga T Az 3¢
* This proves that C=AB with the product defined as in 5 &) Al =[ay] = . £5
(1. : :
dp  Ggp "t hn
As a special case, transposition converts row vectors to column vectors and conversely. 28/
[134]
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Matrix Multiplication Matrix Multiplication

* Rules for transposition are * Symmetric and Skew-Symmetric Matrices

atics; Linear Algebra

Matrices, Vectors, Determinants. Linear Systems

« : [0 1 013 2
(10) b (A+B' =AT 4+ BT z A=[10 10 150 issymmeticand B=|-1 0 -2| s skew-symmelric. :
© (A = cAT s m oW N 310 2
[=) =, [}
(d) (AB)' = B"A".

Triangular Matrices.

Matrices, Vectors, Determinants. Linear Systems

* CAUTION! Note that in (10d) the transposed matrices
are in reversed order.

Advanced Engineering Mathematics; Linear Algebra

» Upper triangular matrices are square matrices that can
have nonzero entries only on and above the main
diagonal, whereas any entry below the diagonal must be
ZEero.

Matrix Multiplication Matrix Multiplication

gebra

* lower triangular matrices can have nonzero entries
only on and below the main diagonal. Any entry on the

Special Matrices

35
38
i3 main diagonal of a triangular matrix may be zero or not : 2
. . . g0 u X Z! . £
* Symmetric matrices are square matrices whose £E59 g g y K
¥ 1 EEZ =
transpose equals the matrix itself. Sse <
. . . ¥4 E M £
* Skew-symmetric matrices are square matrices whose e ] 22
; £55 1 4 2 2 0 0 5
transpose equals minus the matrix. M 1 3 9 -3
=i 3 2 8 -l )
2iE ) 2 10 2
é’ = = f 7 6 8

) A'=A (thus a5 = aye), AT=-A (thus ay; = —aje, hence ajj = Q).

i"..‘| il \III:_'l' ar |"'.:.'_'-'| 1anguia;

Symmetric Matrix

Symmetnc Matnx oKg
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Matrix Multiplication

Diagonal Matrices. These are square matrices that can have
nonzero entries only onthe main diagonal. Any entry above
or below the main diagonal must be zero.

Example 11: Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and
PC1186.
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Matrix Multiplication

* The matrix A shows the cost per computer (in thousands
of dollars) and B the production figures for the year 2010
(in multiples of 10,000 units.)

* Find a matrix C that shows the shareholders the cost per
quarter (in millions of dollars) for raw material, labor,
and miscellaneous.

Quarter
PCI086 PCLIS6 1 2 3 4
12 1.6 | Raw Components .
i 8 6 9| PClOB6
A=|03 04| Labor B=
(6 2 4 3| PClige

0.5 0.6 | Miscellaneous

Matrix Multiplication
e Solution: Quarter
I 2 3 4

132 128 136 156| RawComponents
C=AB=| 33 32 34 39| Labor
51 52 54 63| Miscellaneous
* Since cost is given in multiples $1000 of and production
in multiples of 10,000 units, the entries of C are

multiples of $10 millions; thus means c;;=13.2 million,
etc.

* Please study Examples 12,13.

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems
Dr. Masih, N. Zahabi
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Linear Systems of Equations.
Gauss Elimination

* We now come to one of the most important use of
matrices, that is, using matrices to solve systems of
linear equations.

* Linear systems model many applications in engineering,
economics, statistics, and many other areas.

Linear System, Coefficient Matrix, Augmented Matrix

* A linear system of m equations in n unknowns
X1,X3, ..., Xpis a set of equations of the form

ajpxy + o amxn = by
ag1xy + --- + agnxp = by
(1)
amix1 + o+ + Gmnxn = bm.

Matrices, Vectors, Determinants. Linear Systems
Dr. Masih, N. Zahabi
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Linear Systems of Equations.

Linear Systems of Equations.

9/10/2014

Gauss Elimination Gauss Elimination e
& E
* The system is called /inear because each variable x; e The matrix E %
appears in the first power only, just as in the equation of L i by 32
a straight line. 5 g
* Qqq,..,Amy are given numbers, called the coefficients of ' g
the system. Am1l "7 Amn by %

* b4, ..., by, on the right are also given numbers. ) )
is called the augmented matrix of the system (1).

Matrices, Vectors, Determina

* Note that the augmented matrix A determines the
system (1) completely because it contains all the
given numbers appearing in (1).

Advanced Engineering Mathematics;

* If all bjthe are zero, then (1) is called a homogeneous
system.
If at least one b; is not zero, then (1) is called a
nonhomogeneous system.

Linear Systems of Equations.
Gauss Elimination

Linear Systems of Equations.
Gauss Elimination

near Algebra

» Example 1: Geometric Interpretation. Existence and
Uniqueness of Solutions

* From the definition of matrix multiplication we see that
the m equations of (1) may be written as a single vector

equati~m If m =n =2, we have two equations in two unknowns

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems
Dr. Masih, N. Zahabi

X1, X
(2) Ax=h Loz apxy + aiztz = By
E dz1%y1 + daaxs = ba.
Where g
=
o 3 There are three possible cases
Sl By % (a) Precisely one solution if the lines intersect
1 dgz zn . . . . .
A= . and x=| - | and b= (b) Infinitely many solutions if the lines coincide

(¢) No solution if the lines are parallel

by,
Am1  dmz " Omn
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Linear Systems of Equations.

Gauss Elimination
X +35=1 x4xy=1 X +%;=1
2n-25=0 2+ 20=2 xn+a=0
Casefa) Case (b) Case (¢}
x; X3 1%

Linear Systems of Equations.
Gauss Elimination

» If the system is homogenous, Case (c) cannot happen,
because then those two straight lines pass through the
origin, whose coordinates (0,0) constitute the trivial
solution.

* Similarly, our present discussion can be extended from
two equations in two unknowns to three equations in
three unknowns.
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Linear Systems of Equations.
Gauss Elimination

Unique solution

Infinitely
many solutions

Mo solution

cs; Linear Algebra
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Linear Systems of Equations.
Gauss Elimination

Gauss Elimination and Back Substitution

Consider a linear system that is in #riangular form (in full,
upper triangular form) such as

2x7 + Sxg = 2
1355 = —26

Then we can solve the system by back substitution, that is,
we solve the last equation for the variable x,= -26/13= -2,
and then work backward, substituting x,=-2 into the first
equation and solving it for x, obtaining x,= 0.5(2-5x,)=6

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determin:
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Linear Systems of Equations.
Gauss Elimination

Linear Systems of Equations.
Gauss Elimination

let the given system be Elementary Row Operations. Row-Equivalent Systems

Linear Systems

I+ 2 (2 5 1] § + Elementary Row Operations for Matrices: g
Its augmented matrix is [ = 1. Interchange of two rows :

4y + 3y = -30. -4 3 -X s . . 3
L : s 2. Addition of a constant multiple of one row to another &

We eliminate x; from the second equation, to get a triangular row

system. For this we add twice the first equation to the
second, and we do the same operation on the rows of the
augmented matrix.

Matrices, Vectors, Determina
Matrices, Vectors, Determina

3. Multiplication of a row by a nonzero constant ¢

Advanced Engineering Mathematics; Linear Algebra

. These operations are for rows, not for
columns!

—
S
o

~

Linear Systems of Equations. Linear Systems of Equations.

Gauss Elimination . Gauss Elimination
_ * Elementary Operations for Equations:
kytin= 1 231 1. Interchange of two equations

Advanced Engineering Mathematics; Linear Algebra

£33 -5

sge . . . i =

139 = -6 Rowl+2Rowl [0 13 =36 58 2. Addition of a constant multiple of one equation to 89

g R another equation 5=

Where Row 2 + 2 Row 1 means “Add twice Row 1 to Row T 3. Multiplication of an equation by a nonzero constant g3
2” in the original matrix. g2 ¢ -
R Theorem 1 £

<

* Please study example 2,page 275 Row-Equivalent Systems

Rov-equivalent linear systems have the same set of solutions.
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Linear Systems of Equations.
Gauss Elimination

Linear Systems of Equations.
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Because of this theorem, systems having the same solution Gauss Elimination: The Three Possible Cases of Systems

sets are often called equivalent systems. But note well that

Linear Systems

£
E)
=
i
re dealing with r rations. lumn operation $53 PR .
we e:he dealing V: d ov:.op erations I\{[(t) ((i‘o U th.Ope a tO i £E5% Example 3:Gauss Elimination if Infinitely Many 53
on the augmented matrix are permitted in this contex £e2 . . £z
g p . g Solutions Exist £s
because they would generally alter the solution set. 228 23
apxy + o+ dipkn = b g Solve the following linear system of three equations in four >
asyxy + - + Gopkn = be 32 unknowns whose augmented matrix is =
(1) £3 2
....................... 2
[30 20 20 -50 1 80 (B.00)) + 20x, + 205 — 505, = 80
Ampixy + ¢ + Gmatn = bm. \_D

|
I

(5) 06 15 15 -54 ! 27 Thus 06x;| + L3xy + 13wy — 54xe = 27
|

2 03 03 24 1] 12%| — 0.3x5 — 03x3 + 245 = 2.1

—
&
~

=

Linear Systems of Equations.
Gauss Elimination

Linear Systems of Equations.
Gauss Elimination

gebra

Solution. As in the previous example, we circle pivots and
box terms of equations and corresponding entries to be
eliminated. We indicate the operations in terms of equations
and operate on both equations and matrices.

Step 1. Elimination of x; from the second and third
equations by adding

* A linear system (1) is called overdetermined if it has
more equations than unknowns.

* Alinear system (1) is called determined if m=n

* A linear system (1) is called underdetermined if it has
fewer equations than unknowns.

._,
Dr. Masih, N. Zahabi
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> a system (1) is called consistent if it has at least one
solution (thus, one solution or infinitely many solutions),

Matrices, Vectors, Determinants. Linear Systems

-0.6/3= -0.2 times the first equation to the second equation,
-1.2/3=-0.4 times the first equation to the third equation.

Advanced Engineering Mathematics; Linear Algebra

Advanced Engineering Mathematics; Linear Al

> a system (1) is called inconsistent if it has no solutions
at all.
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Linear Systems of Equations.
Gauss Elimination

This gives the following, in which the pivot of the next step
is circled.

000 20 500 80 3, + 20ry + 20, - 50r, = 80
|

\ w,\l_.rg—]]rg—i.-!.rf L1

@ 0 L LD 440 LI| Rowl-01Row
|

0 =Ll =Ll 447-11] Rowd-04Row] - Lty + b= -1
Step 2. Elimination of x,from the third equation of (6) by
adding

s
S
N
z
<
k]
a
=
a

Linear Systems of Equations.
Gauss Elimination

Example 4: Gauss Elimination if no Solution Exists

Consider

Step 1. Elimination of x, from the second an(i third
equations by adding

-2/3 times the first equation to the second equation,
-6/3= -2 times the first equation to the third equation.

9/10/2014
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5
g
E
2
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=]
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g
g
8
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1.1/1.1=1 times the second equation to the third equation.

Linear Systems of Equations. Linear Systems of Equations.

Gauss Elimination e Gauss Elimination e
This gives 55 This gives 55
30020 20 50 180 3ty + 20y + 2 - 501, = 80 3L el Tagiee = 1 2
| €48 [ : -2| Row2-3Rowl Ehagi+ dag = -2 €48
0 0L L 44 : LI Ly + Llng — ddrg = 11 «%%j o 0‘ 2 21 0| Row3-2Rowl ' _1;3': 0 . ;Eé S
0 0 0 0 10| RowdtRow? 0=10. =gz Step 2. Elimination of x, from the third equation gives =22
. . . g2S s £s g
Back Substitution. From the second equation, x, = 1 — x3 Lde S on L - o Sde
+ 4x,. From this and the first equation, x; = 2 — x,. Since  |EEd -4 i ) -l : 2s
. . . . 8 - -1 -tz tgy=- 2 @
x3 and x, remain arbitrary, we have infinitely many 32 g ; Z - \ ’ T{;_ i 32
solutions. If we choose a value of x3 and a value of x,, then — E33 - " ’ £

The false statement 0=12 shows that the system has no

the corresponding values of x; and x, are uniquely
solution.

determined.
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Linear Systems of Equations.
Gauss Elimination

Row Echelon Form and Information From It

At the end of the Gauss elimination the form of the
coefficient matrix, the augmented matrix, and the system
itself are called the row echelon form. In it, rows of zeros, if
present, are the last rows, and, in each nonzero row, the
leftmost nonzero entry is farther to the right than in the
previous row. For instance, in Example 4 the coefficient
matrix and its augmented in row echelon form are

3 3

B W

1
1
I
0

S w2

1
i and
0

(=TT

0 0
0 0

=
s
2
S
N
z
<
k]
a
=
a

gt
g8
£ £
5E
=
]
Fa
£ v
52
Efe
3
b
= >
How
g
=
;m
> =
=
<

Linear Systems of Equations.
Gauss Elimination

The original system of m equations in 7 unknowns has
augmented matrix [A[b] . This is to be row reduced to matrix
[R|f] . The two systems Ax=b and Rx=f are equivalent:

if either one has a solution, so does the other, and the
solutions are identical.

At the end of the Gauss elimination (before the back
substitution), the row echelon form of the augmented matrix
will be

Fia. Tay

S Tan

gebra

Linear Systems

2

=
}
2
S
IN]
z
<
@
2
=
8
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Linear Systems of Equations.
Gauss Elimination

Here is the method for determining whether has solutions and

what they are:

a) No solution. If ris less than m (meaning that R actually
has at least one row of all 0s) and at least one of the
numbersf,, 1, fr42, -, fin 18 NOt zero, then the system
Rx= fis inconsistent: No solution is possible. Therefore
the system Ax=b is inconsistent as well.

b) Unique solution. If the system is consistent and r=n ,
there is exactly one solution, which can be found by
back substitution.

¢) Infinitely many solutions. To obtain any of these
solutions, choose values of X, 4, ..., X, arbitrarily. Then
solve the sth equation for x, (in terms of those arbitrary
values), then the (r-1) st equation for x,_;, and so on up
the line.

Linear Independence. Rank of a Matrix.
Vector Space

Linear Independence and Dependence of Vectors
Given any set of m vectors d(yy, ..., d; (With the same

number of components), a linear combination of these
vectors is an expression of the form

c1a¢1y + Caagy + 00+ Cpfm)

Where ¢4, ¢3, ..., ¢y are any scalars. Now consider the
equation

cpigyy + codggy + o0+ + Gl = 0.
(D

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems

(

60/
134

)
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S
<
z
=
]

8
>
a
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Linear Independence. Rank of a Matrix.
Vector Space

Linear Independence. Rank of a Matrix.
Vector Space

¢ our vectors dyy,..,Acmyare said to form a /inearly Rank of a Matrix

independent set or, more briefly, we call them linearly
independent.

Definition

The rank of a matrix A is the maximum number of linearly independent row vectors

* This means that we can express at least one of the ;
of A. It is denoted by rank A.

vectors as a linear combination of the other vectors.

3
G G
N S
Z Z
< <
£ <
3 3
S =
& a

* For instance, if (1) holds with, say, ¢; # 0, we can solve

* Now the maximum number of linearly independent row
(1) for acqy:

vectors of a matrix does not change if we change the
order of rows or multiply a row by a nonzero c or take a
linear combination by adding a multiple of a row to
another row. This shows that rank is invariant under
elementary row operations.

5
g
E
2
s
=]
@
g
g
8
>
4
2
]
=

ay = kody + 0 ke where kj = —jley.

Linear Independence. Rank of a Matrix.
Vector Space

Linear Independence. Rank of a Matrix.
Vector Space

gebra

Matrices, Vectors, Determinants. Linear Systems

* Why is linear independence important? Theorem 1

Well, if a set of vectors is linearly dependent, then we
can get rid of at least one or perhaps more of the vectors
until we get a linearly independent set.

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

:.
Dr. Masih, N. Zahabi

Dr. Masih, N. Zahabi

Example: Linear Independence and Dependence Hence we can determine the rank of a matrix by reducing the

matrix to row-echelon form

2

The three vectors

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems

Advanced Engineering Mathematics; Linear Al

ag, =[ 3 4] 2 2]
az =[-6 42 24 54] Example 3: Determination of Rank
am=[21 —2I 0 —15] _

i 0 2 2
are linearly dependent because A=l-6 £ 2u wu

Gag, — sag — ag = 0. 21 21 0 1§

(2]

[—)

= o0
w N
B~

~—
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Linear Independence. Rank of a Matrix. Linear Independence. Rank of a Matrix.

Vector Space Vector Space
[3 0 1 2 (s o 2 2 Combining last two Theorems
0 42 2B 58| Row2+2Row 0 42 1B S8 Theorem 4
L0 -2t -14 -2 Row3- 7R o 0 o0 0] Rowd:iRaw2

The last matrix is in row-echelon form and has two nonzero
rows. Hence rank A = 2.

Linear Dependence of Vectors

Dr. Masih, N. Zah
Dr. Masih, N. Zahabi

Consider p vectors each having n components. If n < p, then these vectors are

Theorem 2 linearly dependent.

Matrices, Vectors, Determinants. Linear Systems

Linear Independence and Dependence of Vectors

e
g
s
20
<
5
5
g
g
s
2
2
]
=
=
E
E.I/
7}
2
5
=
-1
3
2
=
=
<

* Proof: The matrix A with those p vectors as row vectors
has p rows and n < p columns; hence by Theorem 3 it
has rank A < n < p which implies linear dependence by
Theorem 2.

Consider p vectors that each have n components. Then these vectors are linearly
independent if the matrix formed, with these vectars as row vectors, has rank p.
However, these vectors are linearly dependent if that matrix has rank less than p.

Linear Independence. Rank of a Matrix.
Vector Space

Linear Independence. Rank of a Matrix.
Vector Space

Theorem 3 Vector Space

» Consider a nonempty set V of vectors where each vector
has the same number of components. If, for any two
vectors a and b in V, we have that all their linear
combinations aa + fb(a, fany real numbers) are also
elements of V, and if, furthermore, a and b satisfy the
laws (3a), (3¢), (3d), and (4) in Sec. 7.1, as well as any
vectors a, b, ¢ in Vsatisfy (3b) then Vis a vector space.

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A.
Hence A and its transpose A" have the same rank.

Dr. Masih, N. Zahabi
Dr. Masih, N. Zahabi

Please study the proof, page 283.
Example 4: Consider matrix A again,
Column 3 = (2/3) Column 1+ (2/3) Column 2

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems

(@ cA+B)=cA+cB

(a) A+B=B+A

Column 4 = (2/3) Column 1+(29/21) Column 2 ) (c+BA=ch+EA
) A+B+C=A+B+C) (witenA +B+0) © CEA) = (oA il [68/]
(c) A+0=A [¢)) A=A 134

17



Linear Independence. Rank of a Matrix.
Vector Space

* The maximum number of linearly independent vectors in
Vs called the dimension of Vand is denoted by dim V.

* A linearly independent set in V consisting of a maximum
possible number of vectors in V is called a basis for V.

* Thus, the number of vectors of a basis for Vequals dim
V.

* The set of all linear combinations of given vectors
a1y, - A(p) with the same number of components is

called the span of these vectors.
* Obviously, a span is a vector space.

Linear Independence. Rank of a Matrix.
Vector Space

Theorem 5

Vector Space R”

The vector space R™ consisting of all veciors with n compenents (n real numbers)
has dimension n.

Theorem 6

9/10/2014

Linear Algebra
ear Systems

Dr. Masih, N. Zahabi

Row Space and Column Space

The raw space and the column space of a matrix A have the same dimension, equal
to rank A.

Advanced Engineering Mathematics;
Matrices, Vectors, Determina

Linear Independence. Rank of a Matrix.
Vector Space

A set of vectors is a basis for a vector space V'
1. if (1) the vectors in the set are linearly independent,
and
2. if (2) any vector in V'can be expressed as a linear
combination of the vectors in the set.

* If (2) holds, we also say that the set of vectors spans the
vector space V.

* By a subspace of a vector space V we mean a nonempty
subset of V (including V itself)that forms a vector space
with respect to the two algebraic operations (addition and
scalar multiplication) defined for the vectors of V.

near Algebra

g Mathema
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Linear Independence. Rank of a Matrix.
Vector Space

+ for a given matrix A the solution set of the homogeneous
system Ax = 0 is a vector space, called the null space of
A, and its dimension is called the nullity of A.

rank A + nullity A = Number of columns of A.

Dr. Masih, N. Zahabi

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determin:

L
w N
B~

~—
[—)




9/10/2014

Solutions of Linear Systems:
Existence, Uniqueness

Solutions of Linear Systems:
Existence, Uniqueness

1. Alinear system of equations in 7unknowns has a
unique solution if the coefficient matrix and the

. (¢) Infinitely many solutions. If this common rank r is less than n, the system
augmented matrix have the same rank n. T :

(1) has infinisely many solutions. All of these solutions are abtained by determining
r suttable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining 11 — r unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

Dr. Masih, N. Zahabi
Dr. Masih, N. Zahabi

2. The system has infinitely many solutions if that
common rank is less than n.
(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 73.)

Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems
Advanced Engineering Mathematics; Linear Algebra
Matrices, Vectors, Determinants. Linear Systems

3. The system has no solution if those two matrices
have different rank.

Please study the proof, page 289

Solutions of Linear Systems:
Existence, Uniqueness

Solutions of Linear Systems:
Existence, Uniqueness

2 [
g2 g2
& £ & £
<2 <g
Theorem 1 §& Homogeneous Linear System §&
I c =
Fund 1 Th for Linear § By Th 2 ZE
undamental Theorem for Linear Systems i5 5 eorem 5 5
(a) Existence. A linear system of m equations in n unknowns Xy, -~ , Xn = = = = 28
SRege us Linear =S
S 2N SN
S £z A homogencous linear system £E2
ayxy + a12x3 + 0+ Ay = by SEZ i : EEZ
e = gL = g=<
agyxy + dapxg + -+ dapX, = ° Y oD
(1 B 2a s ayyxy + appxz + - + aypxy =0 ¥a g
................................ L= E 5
S L _ S L
agyxy + appxz + -0 + agpxy = 0
@px1 + @maxa + -+ ammn = b gee “@ 2L i) “n ge8°
5 © & ©
= > | = >
. . - - B . [l [l
is consistent, that is, has solutions, if and only i the coefficient matrix A and the = O ap1xy + amaxp + -0 + @ x, =0 = O
: S 3 11 m2¥2 X s 8
augmented matrix A have the same rank. Here, g2 32
EX] ]
ai w am an LR am | b1 2 = always has vhe trivial solution x, = 0,-- -, x,, = 0. Noarrivial solutions exist if and _; >
! < only if rank A < n. if rank A = r < n. these solutions, together with x = 0, form a <
1 vector space (see Sec. 7.4) of dimension n — r called the solution space of (4).
A= and A = 1 25 s : ¥ - e S
| In particular, if xc1, and xy are solution vectors of (4), then x = cyxc1y + Caxezy
i with any scalars ey and co is a solution vector of (4). (This does not hold for
P R T T nonhomogeneous systems. Also, the term solution space is used for homogeneous
74/ systems only.) 76/
(b) Uniqueness. The system (1) has precisely one solution if and only if this 134 134

common rank r of A and A equals n.
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For Reference:
Second- and Third-Order Determinants

Solutions of Linear Systems:
Existence, Uniqueness

inear Algebra

inear Systems

The solution space of (4) is also called the null space of A A determinant of second order is denoted and defined by
because Ax = 0 for every x in the solution space of (4). Its =
dimension is called the nullity of A. Hence Theorem 2 states

that

Linear Algebra

Matrices, Vectors, Determinants. Linear Systems

a1y di2

D=detA = = dy1d99 — dyaday.

azy  aza

Dr. Masih, N. Zahabi

rank A + nullity A = n

Cramer’s rule for solving linear systems of two equations

Where nis the number of unknowns (number of columns of .
in two unknowns

A).

Advanced Engineering Mathema

Theorem 3
(a) ayyxy + ajexs = by
Hemogeneous Linear System with Fewer Equations Than Unknowns )
A homogeneous linear system wiith fewer eguations than unknowns always has (b} azixy + azsxs = be
nontrivial solutions.
Solutions of Linear Systems: For Reference:

Existence, Uniqueness Second- and Third-Order Determinants

© ©
5, s,
SE e
. <2 . <@
Nonhomogeneous Linear Systems 52 is 52
S S
Theorem 4 =8 5§
55 by a1z 5
£43 €43
MNonhemogeneous Linear System S €< — g c<
2 s ) _ . ESS __ b2 assl  biass — arabs £E59
If @ nonhomogeneous linear system (1) is consistent. then all of its solutions are £EZ X1 D D : S E=Z
obtained as S5c S EZ
0 ® B a1y I &0
(6) X =xp+ xp .E“jﬁg £
e 52
sy i ey (Rxed solion of (1) wdocy, v, through all the solustons of the £5° . ba| _ anbs — bram £
carresponding homageneous system (4). &l > 2 D D &l >
3 3¢
£E The value D = 0 appears for homogeneous systems with R
5= .. . 5=
< nontrivial solutions. <

Proof: The difference x; = x — x, of any two solutions of (1)
is a solution of (4) because Ax,=A(X - xg) = AX - Axg=b —
b= 0.Since x is any solution of (1), we get all the solutions of
(1) if in (6) we take any solution x, of (1) and let x; vary
throughout the solution space of (4).

o)
o)
-
w

rR
| —

L |
w

rE
| —
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For Reference:
Second- and Third-Order Determinants

For Reference:
Second- and Third-Order Determinants

near Algebra

Example 1: Cramer’s Rule for Two Equations Cramer’s Rule for Linear Systems of Three Equations

@11X] + @12%X9 + dizxg = M

L 3 i 2 @z1%) + dzzXz + Ggaxg = bp
. 2 az1Xy + agsxsz + dgaxg = by
dr+3g=11 8 5 oM | s
If q ten 1= =—=f 1= ——=
Bykip=-4 2k e by a4 an boag
1 5 T 5
Dy=|by ap an| Dy=lay by axn|,
by ap ay T
For Reference:

. 9
Second- and Third-Order Determinants Determinants. Cramer’s Rule

e
S
2]
=
<
©
@
=

A determinant of order n1is a scalar associated with an n
X n (hence square!) matrix A = [ajk] and is denoted by

Third-Order Determinants
A determinant of third order can be defined by

s,
Se
<2
£55 5
£53 2
ES® =} &l
e - 2N
ay dy ag 5z = i g2
= -VE' - g -%
ayp ay ay ap ay ay g2z = o gas
@) D=loy ap an=m - g +ay £g8 D =detA = g8
3 £3
i dp p Iy fy dn =i i
Gy Gy O 3 3
s 2 anl  dn2 s fnn s 2
z 2

)= gy~ oy gy~ Oy ity ~ i For =1 tis determinant s defined by

D:all

~—

&
IS

—
[—)

= 00
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[—)

21



Determinants. Cramer’s Rule

Determinants. Cramer’s Rule

9/10/2014

Forn > 2 by 5 % Example: Expansions of a Third-Order Determinant
‘19 f:2 I 2 6 s
D=aCy taglat-+auly (=100 HE R I . £:
: =8 0 2 -1 2 -1 0 g
£0 2 -1 0 2 o 3
Or jgé g3
58 = 1(12 —0) — 34 + 4 + 00 + ) = —12. g
D= GUCC”; + ﬂgkCQJ; toet ﬂm;cnk (k=1,2,+-+,orn). : § This is the expansion by the first row. The expansion by the §
Here, & third column is
itk D=0 : 6| 4 l +*] 3—0 12+0=-12
G = (=1 "My [ BT I S I I

Determinants. Cramer’s Rule Determinants. Cramer’s Rule

gebra

Example: Determinant of a Triangular Matrix

Linear Algebra

* And Mj; is a determinant of order n — 1, namely, the
determinant of the submatrix of A obtained from A by

ics;

SE 2
<3 g
omitting the row and column of the entry ajy , that is, the g ‘é & 3 0 0 g g =
Jth row and the &th column. ZEZ 40 R
, ) , Zs5< 6 4 of=-3] |=-3-4-5=-60 =5
* My is called the minor of aj; in D, and Cj; the cofactor £52 2 5 £52
. i8s E ifs
of aj in D. =t £3
[ Rog
n g . X . R
D= S (-1 *anMy G=1.2---,o0rm E Inspired by this, can you formulate a little theorem on iE
E=1 2 determinants of triangular matrices? 2
n
D = 3 (— 1V ayMy, (k=1,2,---, or n).
j=1
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Determinants. Cramer’s Rule Determinants. Cramer’s Rule

£
)
<
General Properties of Determinants 5 Theorem 2
Theorem 1 5
Further Properties of nth-Order Determinants
Behavior of an nth-Order D inant under Elementary Row Op (a){c) in Theorem | hold also for columns.

(a) Interchange of two rows mulitplies the value of the determinani by —1. (d) Transposition leaves the value of a determinant unaltered.
(b) Addition of a multiple of a row to anether row does not alter the value of the

determinant.

(e) A zero row or column renders the value of a determinant zero.

Dr. Masih, N. Zahabi
Dr. Masih, N. Zahabi

g ot 2 - (F) Proportional rows or coluinns render the value of a determinant zero. In
(¢) Multiplication of a row by a nonzero constant ¢ multiplies the value of the

determinant by c. (This holds also when ¢ = 0, but no longer gives an elementary
row operation.)

particular, a determinant with iwe identical rows or columns has the value zero.

Matrices, Vectors, Determinants. Linear Systems

Advanced Engineering Mathem:

It is quite remarkable that the important concept of the rank
of a matrix A, which is the maximum number of linearly
independent row or column vectors of A (see Sec. 7.4), can
be related to determinants.

CAUTION! det (cA) = c™det A (not cdet A).

Determinants. Cramer’s Rule Determinants. Cramer’s Rule

o e
3 . 5
e E
< 2 <
Example 4: Evaluation of Determinants by Reduction to 55 Theorem 3 g
2% 2
. S5 £
Triangular Form g >
— g5 -
= E Rank in Terms of Determinants <4 E
gt gt
2 0 -4 3 20 -4 [ i: 2 N Consider an m X n matrix A = [aj]: s N
SEZ y : " = EZ
4 5 1 0 005 9 -2 R s &< (1} A has rank r = 1if and only if A has an r X r submatrix with a nonzero 2 g =
D- = 02 é determinant. £ §
0 1 6 -l 0 2 & =l § g & (2) The determinant of any square submatrix with more than r rows, contained § g &
e 8 q | 0 § 3 0 g ‘ | 'Em g in A (if such a matrix exisis!) has a value equal to zero. .;ﬂ S
g > g >
= 5 e, ifm = n. we have: = 5
=g Furthermore, if m = n, we have: =g
. B 6 . o 5 1 = (3) An n ¥ n square matrix A has rank n if and only if E =
= & 2z = 2z >
0 5 9 -2 0 5 9 - = det A # 0. <
o 0 24 am e 0 24 38
0 0 —114 292 | Ro 0 0 -0

~—

= w0
w N
P~

[—)

=2X 5% 2.4 x47.25=1134
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Inverse of a Matrix.

: 9
Determinants. Cramer’s Rule Gauss—Jordan Elimination

£ £,

SE SE

TE . . T

Cramer’s Rule § & Indeed, if both B and C are inverses of A, then AB =1 and § &
Cramer’s Theorem (Solution of Linear Systems by Determinants) e _ CA =1, so that we obtain the uniqueness from = g
(@) Ifa linear system of n equations in the same number of unknowns x1.- -, xn g E E E
328 e g
ey A amgra il = g v = b £Ez2 €z
oty o oy = by i:= B=1IB=(CA)B=C(AB)=CI=C EZ
Gp1xy + apaxy + -o0 + aggin = by @wd g 28
{6y 2EE s
TF g3

n . ] : : : : e &

SRR AT S e * A has an inverse (is nonsingular) if and only if it has s

has a nonzero cue,ﬁ‘?rifm .lfz‘Y!‘fﬂrillarl!. D = det A, the system has precisely one § § maximum g

solution. This solution is given by the formulas 8 =

> = . =

Dy Dy i E possible rank .
(T E 51 :F' JZZE,‘“. '(":F (Cramer’s rule)

+ Ax = b implies x = A™b provided A~! exists, and will

vwhere Dy is the determinant obtained from D by replacing in D the kth column by

the column with the entries by, -+, by, thus give a motivation for the inverse as well as a
(b) Hence if the system (6) is homogeneous and D # 0. it has only the trivial . .
sobution x; = 0,x3 = 0, xy, = 0. IFD = 0, the homogenzous system alsa has relation to linear systems.
nontrivial selutions
. .
Inverse of a Matrix. Inverse of a Matrix.

Gauss—Jordan Elimination Gauss—Jordan Elimination

gebra

Matrices, Vectors, Determinants. Linear Systems

* The inverse of an n X n matrix A = [a;;] is denoted by Theorem 1

A~'and is an n X n matrix such that

Existence of the Inverse

The inverse A~ of an n % n matrix A exists if and only if rank A = n, thus (by
Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular if rank A = n,
and is singular if rank A < n.

AAT=A"1TA=1
where I is the n X n unit matrix.

2

Dr. Masih, N. Zahabi
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* Proof: Let A be a given n X n matrix and consider the
linear system, Ax = b. If the inverse A™! exists, then
multiplication from the left on both sides and use of (1)
gives, A~1Ax = x = A~1b. This shows that Ax = b has a
solution x, which is unique because, for another solution u,
we have Au=Db , so that u = A™1b = x . Hence A must
have rank n by the Fundamental Theorem in Sec. 7.5.

g
Matrices, Vectors, Determinants. Linear Systems

+ If A has an inverse, then A is called a nonsingular
matrix.

Advanced Engineering Mathematics; Linear Al
Advanced Engineering Mathematics; Linear Algebra

» If A has no inverse, then A is called a singular matrix.
» If A has an inverse, the inverse is unique.

o)
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2
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R
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Inverse of a Matrix.
Gauss—Jordan Elimination

* Conversely, let rank A = n. Then by the same theorem,
the system Ax = b has a unique solution x for any b.
Now the back substitution following the Gauss
elimination (Sec. 7.3) shows that the components x; of x
are linear combinations of those of b. Hence we can
write: X = Bb

Ax=A(Bb) (AB)b=Cb=b
Hence C = AB =1, the unit matrix.
x = Bb = B(Ax) = (BA)x
for any x (and b = Ax ). Hence BA = I . Together, B=A4"1
exists.

for any b.

Inverse of a Matrix.
Gauss—Jordan Elimination

Determination of the Inverse by the Gauss—Jordan Method
Using A, we form n linear systems

AX(l) = 6(1), ...,AX(n) = e(n)
where the vectors e(qy , ..., ) are the columns of the n X n
unit  matrix I; thus, eq=[1 0 .. 0], ee)
=[0 1 0]7, etc.
We combine them into a single matrix equation AX = I, with
the unknown matrix X having the columns x , ..., X().
Correspondingly, we combine the n augmented matrices [A
el [A eq] into one wide n X 2n “augmented matrix”
A=TA 1].

~—

mu:
R

[—)

near Algebra

Advanced Engineeri

Inverse of a Matrix.
Gauss—Jordan Elimination

Example 1: Finding the Inverse of a Matrix by Gauss—Jordan
Elimination

Determine the inverse A1 of

|
%]

Linear Algebra
ear Systems

Advanced Engineering Mathematics;

Matrices, Vectors, Determina

A = 3 —1 1
L1 3 4

A=[AT=r, | 5 1 o o

3 -1 | 0 | 0

-1 3 4 0 0 1

Inverse of a Matrix.

Gauss—Jordan Elimination c
[-1 1 2 1 o o %
0 2 7 i 1 0 1 é
Lo 2 21l -1 o 1 1 H
[—1 12 1 0 0 s
o z 1| 3 1 o £
Lo o -5l -4 -1 1] Rows3 £
&
=
I —1 -3 -1 0 0 ]
1] 1 as 15 05 0 J I é
lo o 1 08 02 -02 ! <

[L =3 ] 06 04 04 1

0 1 (1] —1 —0.2 0.7 I
70' (1] 1 0.8 02 —02

Matrices, Vectors, Determinants. Linear Systems
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Inverse of a Matrix.

Gauss—Jordan Elimination

10 0 -07 02 03 Rowl+Row?
0 1 0f-13 -02 07
0 0 | 08 02 -02

-1 1 2|[=07 02 03 I 0 0
3 -1 1}|(-13 =02 07|=|0 1 0}
-1 3 4 08 02 -02 0 0 1

Advanced Engineering Math

Inverse of a Matrix.

Gauss—Jordan Elimination

Formulas for Inverses

Cramer’s rule was useful for theoretical study but not

computation.
Theorem 2
Inverse of a Matrix by Determinants
The inverse of a nonsingular n X n mairix A = [ay] is given by
Cn G -+ GCu
1 i 1 Ciz Caz =+ Cya
“ ATl = —— [T = —— s
] gL Mgy
Cin Cn - Cpn
where Cix is the cofactor of aji in det A (see Sec. 7.7). (CAUTION! Note well that
in AL, the cofactor Cj;; occupies the same place as ag (not ag) does in A.)

In particular, the inverse af

4 - ; -1 _
(4*) A is A TR

ail aiz| 1 {azz —aiz |

dg1  daz | —day diy

Dr. Masih, N. Zah
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Example 2: Inverse of a 2 X 2 Matrix by Determinants

31 4 -] T o -]
| T N Y Y R

P
"
-
-
I
n

-1 1 2
A= 3 -1 1
-1 3 4
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Inverse of a Matrix.
Gauss—Jordan Elimination

We obtain det A = -1(-7)-1(13)+2(8) = 10

-1 1 19 17
Bii= =g G [:3 Cii= =1
34 13 4| -1 1

3 1 =i -1 2
Cig= = =-13, Ca= O I T =7,
1 2 -1 4 I
¥ [-1 1 -1 1
Cre= = S T = T =3
[ 3 -1 3 3 -l
Then
[-07 02 o
&l=| 13 —0z 07
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Inverse of a Matrix.
Gauss—Jordan Elimination

Diagonal matrices A = [ai], aj; = 0 when j # k have an
inverse if and only if all @j; # 0. Then A~1 is diagonal, too,

with entries 1/aq4,..., l/apy,.

Proof: For a diagonal matrix we have in (4)

Dr. Masih, N. Zahabi

Cu  agam |

—_— == gl
D anacdagg an
Inverse of a Matrix.

Gauss—Jordan Elimination
Example 4: Inverse of a Diagonal Matrix

—05 0 0
A= 0o 4 of
Then o 0 1]
2 0 0]
Al=| 0 025 ol
0 0 1]

Advanced Engineering Mathematics; Linear Algebra
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Inverse of a Matrix.
Gauss—Jordan Elimination

Products can be inverted by taking the inverse of each
factor and multiplying these inverses in reverse order,

AT —e- it
Hence for more than two factors,

(AC:PO} T = TP B0k

We also note that the inverse of the inverse is the given
matrix, as you may prove,

(AH ™ = A

near Algebra
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Unusual Properties of Matrix Multiplication.
Cancellation Laws

[1] Matrix multiplication is not commutative, that is, in
general we have

AB # BA

[2] B =0 does not generally imply A= 0 or B =0 (or BA =

0); for example,
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Inverse of a Matrix.
Gauss—Jordan Elimination

[3] AC = AD does not generally imply C = D (even when A
*0)

Theorem 3

Cancellation Laws
Let A, B, C be n % n matrices. Then:
(a) Ifrank A = n and AB = AC, then B = C.

(b) If rank A = n, then AB = 0 implies B = 0. Hence if AB = 0, but A # 0
as well as B # 0, then rank A < nand rank B < n.

(¢) If A is singular, so are BA and AB.

; Linear Algebra
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Inverse of a Matrix.
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Determinants of Matrix Products

It is interesting that det AB = det BA , although AB # BA in
general.

Theorem 4

Determinant of a Product of Matrices

For any n % n matrices A and B,

(10) det (AB) = det (BA) = det A det B.

inear Algebra
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el
Definition
Real Vector Space
A nonempty set V of clements a. b, - - - is called a real vector space (or real linear
space), and these clements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if. in V, there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.
L. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a + b, such that the following
axioms are satisfied.

L1 Commutativity. For any two vectors a and b of V,
a+b="hb+a
1.2 Associativity. For any three vectors a, b, ¢ of V,
(@a+b)+e=a+(b+c (wrttena+ b+ c)

L3 There is a unique vector in V. called the zero vector and denoted by 0, such
that for every a in V.,
a+0=a.
L4 For every a in V there is a unique vector in V that is denoted by —a and is
such that
a+ (—a)—0.

&
=
b=
S
2
s
=
<

Vector Spaces, Inner Product Spaces,
Linear Transformations

II. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar ¢ a unique vector of V,
called the product of ¢ and a and denoted by ca (or ac) such that the following
axioms are satisfied.

11.1 Distributivity. For every scalar ¢ and vectors a and b in V|

cla + b) =ca + ch.

I1.2 Distributivity. For all scalars ¢ and k and every a in V,
(c + k)a = ca + ka.

I1.3 Associativity. For all scalars ¢ and k and every a in V,

clka) = (ckra (written cka).

I1.4 For every a in V,

la = a.

4
L
s
=
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Vector Spaces, Inner Product Spaces,
Linear Transformations

A linear combination of vectorsay), ..., @gm)in a vector space
V is an expression

€1aery + o+ Gy (€q,--.,Cpany scalars).
These vectors form a linearly independent set (briefly, they
are called linearly independent) if

(Deciagy + -+ =0

implies that ¢; =0, ..., ¢;,, = 0.
Otherwise, if (1) also holds with scalars not all zero, the
vectors are called linearly dependent.

Note that (1) with m =1 is ca = 0 and shows that a single
vector a is linearly independent if and only if a#0.

Vector Spaces, Inner Product Spaces,
Linear Transformations

1. 'V has dimension n, or is n-dimensional, if it contains a
linearly independent set of n vectors, whereas any set of
more than n vectors in V is linearly dependent.

2. That set of n linearly independent vectors is called a
basis for V.

3. Then every vector in V can be written as a linear
combination of the basis vectors. Furthermore, for a
given basis, this representation is unique (see Prob. 2).

Example 1: Vector Space of Matrices

The 2X 2 real matrices form a four-dimensional real vector

space. A basis is

Vector Spaces, Inner Product Spaces,
Linear Transformations

01 0 0] 0 0]
By = e

. By = o b=
(1] _[l 0 _1 0_: 0 [_.

Because any 2X 2 matrix A = [ajk] has a unique
representation

A=ay1B11 + ay3B121a31B2110a2, B2
Example 2:Vector Space of Polynomials
The set of all constant, linear, and quadratic polynomials in x
together is a vector space of dimension 3 with basis{l , x ,
x2} under the usual addition and multiplication by real
numbers because these two operations give polynomials not
exceeding degree 2.

Linear Algebra
ear Systems
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Vector Spaces, Inner Product Spaces,
Linear Transformations

If a vector space V contains a linearly independent set of n
vectors for every n, no matter how large, then V'is called
infinite dimensional, as opposed to a finite dimensional (n-
dimensional) vector space just defined.

An example of an infinite dimensional vector space is the
space of all continuous functions on some interval [a, b] of
the x-axis.
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Vector Spaces, Inner Product Spaces,
Linear Transformations

Inner Product Spaces

* Ifaand b are vectors in R™ , regarded as column vectors,
we can form the product a’h . Thisis a 1 X 1 matrix,
which we can identify with its single entry, that is, with a
number.

* This product is called the inner product or dot product
of a and b. Other notations for it are (2, H) anda - b .
Thus 1

1

n
= Yabh=ab + - + aubn
i=1

ah=(ah)=ash=[aa|’

Vector Spaces, Inner Product Spaces,
Linear Transformations

Definition

Real Inner Product Space
A real vector space V is called a real inner product space (or real pre-Hilbert®
space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a. b) and is called the inner
product of a and b, such that the following axioms are satisfied.
L For all scalars ¢, and ¢, and all vectors a, b, ¢ in V,
(g1a + gzb, ) = gi{a. €} + g2(b. ¢} {Lineartiy).
IL For all vectors a and b in V.
(a,b) = (b,a) (Symmetry).
IIL For cvery a in V.
(a,a) = 0,

} (Positive-definiteness)
(a,a) =0 ifandonlyif a=0

gebra
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* Vectors whose inner product is zero are called
orthogonal.

* The /ength or norm of a vector in Vis defined by

Ja] = Via,0 z0)

£ o1 I

la [b]  (Cauchy-Schwar; nequaliy)

PR | [ [ A

* A vector -

(a, b)

b

lash|=fal 4 b (Triangle equaliy).
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Vector Spaces, Inner Product Spaces,
Linear Transformations

at+bf+a-bE=2af+|b|>  (Parallelogram equality).

Example 3: n-Dimensional Euclidean Space
R™ with the inner product

(a.bh) =a'h = by + -+ + apby
(where both a and b are column vectors) is called the n
dimensional Euclidean space and is denoted by E™ or again
simply by R™ . Axioms I-III hold, as direct calculation
shows. Equation (2) gives the “Euclidean norm”

|a] = Via,a) = Vaa= V@ + - +aa

Advanced Engineering Mathematics; Linear Algebra
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Vector Spaces, Inner Product Spaces,
Linear Transformations

Example 4: An Inner Product for Functions. Function
Space

The set of all real-valued continuous functions
f(x),g(x),...on a given interval @ < x < f8 is a real vector
space under the wusual addition of functions and
multiplication by scalars (real numbers). On this “function
space’ we can define an inner product by the integral

r8
(fe)= | fix)gix)dx

Axioms I-11II can be verified by direct calculation. Norm will
be

i
Il = (. = | flx) dx-

‘\_l
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Linear Transformations

* Let Xand Ybe any vector spaces. To each vector x in X
we assign a unique vector y in Y. Then we say that a
mapping (or transformation or operator) of X into Y
is given. Such a mapping is denoted by a capital letter,
say F. The vector y in Y assigned to a vector x in X is
called the image of x under Fand is denoted by F (x) [or
Fx, without parentheses].

» Fis called a linear mapping or linear transformation
if, for all vectors v and x in X and scalars ¢,

Fiv+x)=Fiv) + Flx)
Filex) = cFix).

gebra
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Linear Transformation of Space R™ into Space R™
From now on we let X = R™ and Y = R™ . Then any real
m X n matrix A = [aj;] gives a transformation of R™
into R™,

y = Ax.

Since A(utx) = Au + Au and A(cx) = cAx, this
transformation is linear.

We show that, conversely, every linear transformation F
of R™ into R™ can be given in terms of an m X n matrix
A, after a basis for R™ and a basis for R™have been
chosen.

Advanced Engineering Mathematics; Linear Algebra
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The purpose of a “representation” is the replacement of one
object of study by another object whose properties are more
readily apparent.

In three-dimensional Euclidean space E™ the standard basis
is usually writtene(;y = i, ey = j, €3y = k. Thus

BT

These are the three unit vectors in the positive directions
of the axes of the Cartesian coordinate system in
space, that is, the usual coordinate system with the same
scale of measurement on the three mutually
perpendicular coordinate axes.
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Vector Spaces, Inner Product Spaces,
Linear Transformations

Example 5: Linear Transformations

Interpreted as transformations of Cartesian coordinates in the
plane, the matrices

a 0

0 1

0o 1] 1o
oo o -l
represent a reflection in the line x, = x; , a reflection in the
x4 -axis, a reflection in the origin, and a stretch (whena> 1,

or a contraction when 0 < a <1 ) in the x;-direction,
respectively.

1 ol

) Lo _]_.

Vector Spaces, Inner Product Spaces,
Linear Transformations

y = Ax, If A in *is square n X n, , then *maps R™ into R™ .
If this A is nonsingular, so that A~1 exists (see Sec. 7.8),
then multiplication of * by A~ from the left and use of
A~TA =1 gives the inverse transformation

x=A"1y
It maps every y = yqonto that x, which by *is mapped onto
Yo - The inverse of a linear transformation is itself linear,
because it is given by a matrix, as x = A~ 1y shows.

Vector Spaces, Inner Product Spaces,
Linear Transformations

Example 6: Linear Transformations

Our discussion preceding Example 5 is simpler than it may
look at first sight. To see this, find A representing the linear
transformation that maps (x4, x,) onto (2x1-5x,, 3x;+4x;)

Solution. Obviously, the transformation is

= By — Ska

near Algebra

Linear Algebra
ear Systems
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The last operation we want to discuss is composition of
linear transformations. Let X, Y, W be general vector
spaces. Let F'be a linear transformation from Xto ¥ Let G
be a linear transformation from Wto X. Then we denote, by
H, the composition of Fand G, that is,

H=F-G=FG=FG)

which means we take transformation G and then apply
transformation F to it (7m that order!, i.e. you go from left to
right).
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Vector Spaces, Inner Product Spaces,
Linear Transformations
Now, to give this a more concrete meaning, if we let w be a

vector in W, then G(w)is a vector in X and F(G(w)) is a
vector in Y. Thus, Hmaps Wto Y, and we can write

Hiw) = (F= G)(w) = (FG) (w) = F{Glw)),

which completes the definition of composition in a general
vector space setting. But is composition really linear?

Linear Systems
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Example 7: The Composition of Linear Transformations Is
Linear

To show that A is indeed linear we must show that (10)
holds. We have, for two vectors wy, w, in W,

Hiwy + wy) = (FeGilwy + wy)

= F(G(w; + wg))

= F(G(w;) + Giwy)) (by lincarity of &)
= F(Giw ) + FiG(wa)) (by lincarity of F)
= (FeG)wy) + (F = Gilwg) (by (15))

= Hiwy) + Hiwz) (by definition of H).
Similarly, Hlcws) = (Fe Glewa) = FlG{ewa)) = FlclGiwg))

= cFiG{wg)) = c(F « Giwg) = cHiwg)
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*  We showed that the composition of linear transformations
is indeed linear.

* Next we want to relate composition of linear
transformations to matrix multiplication.

* TodosoweletX=R" Y=R™and W = RP . This choice
of particular vector spaces allows us to represent the linear
transformations as matrices and form matrix equations.

* Thus F can be represented by a general real m X n matrix
A=Taj;] and G by an n X p matrix B = [bj;]. Then we can
write for F, with column vectors x with n entries, and
resulting vector y, with m entries

y = Ax
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and similarly for G, with column vector w with p entries,
x = Bw
Then,
y =Ax =A(Bw) =Abw =Cw where C =AB

we can define the composition of linear transformations
in the FEuclidean spaces as multiplication by matrices.
Hence, m X p the real matrix C represents a linear
transformation A which maps RP to R™ with vector w, a
column vector with p entries.
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Vector Spaces, Inner Product Spaces,
Linear Transformations

Example 8: Linear Transformations. Composition

In Example 5 of Sec. 7.9, let A be the first matrix and B be the
fourth matrix with a > 1. Then, applying B to a vector w =
[wyw,]7, stretches the element wy by a in the x; direction.
Next, when we apply A to the “stretched” vector, we reflect the |
vector along the line x;= x, , resulting in a vector y [
= [wiaw,]T . But this represents, precisely, a geometric
description for the composition / of two linear transformations
Fand G represented by matrices A and B. We now show that,
for this example, our result can be obtained by straightforward
matrix multiplication, that is,

0 1]z o] [o 1]
AB = -
1 oflo 1] |a 0]

Vector Spaces, Inner Product Spaces,
Linear Transformations

Then 3 mon e
ABw = ) =

which is the same as before. This shows that indeed AB = C
, and we see the composition of linear transformations can
be represented by a linear transformation. It also shows that
the order of matrix multiplication is important (!). You may
want to try applying A first and then B, resulting in BA.
What do you see? Does it make geometric sense? Is it the
same result as AB?
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