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Outlines

Linear Algebra: Matrices,Vectors, Determinants.Linear
Systems  

matrices, vectors: addition and scalar multiplication 1 

2 matrix multiplication 

3 linear systems of equations. Gauss elimination 

4 linear independence. Rank of a matrix. Vector space 

5 solutions of linear systems: existence, uniqueness 

6 for reference: second- and third-order determinants 

7 determinants. Cramer’s rule 

8 inverse of a matrix. Gauss–jordan elimination 

9 vector spaces, inner product spaces. Linear transformations. 
optional
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Ref: Erwin Kreyszig, “Advanced Engineering Mathematics,” John Wiley & Sons, Inc., 10th Ed., 2011. (Chapter 7)

Matrices, Vectors:
Addition and Scalar Multiplication

• A matrix is a rectangular array of numbers or functions 
which we will enclose in brackets.

• Example1: Linear Systems, a Major Application of
Matrices

We are given a system of linear equations, briefly a
linear system, such as
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Matrices, Vectors:
Addition and Scalar Multiplication

• Where x1, x2, x3 are the unknowns. We form the
coefficient matrix, call it A, by listing the coefficients of
the unknowns in the position in which they appear in the
linear equations. In the second equation, there is no
unknown x2, which means that the coefficient of x2 is 0
and hence in matrix A, a22 0, Thus,
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Matrices, Vectors:
Addition and Scalar Multiplication

General Concepts and Notations

• Let us formalize what we just have discussed. We shall
denote matrices by capital boldface letters A, B, C,… , or
by writing the general entry in brackets; thus A [ajk ], and
so on. By an � × �	matrix (read m by n matrix) we mean
a matrix with m rows and n columns—rows always come
first! is called the size of the matrix. Thus an matrix is of
the form
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Matrices, Vectors:
Addition and Scalar Multiplication

• If m = n we call A an � × �	square matrix. Then its diagonal
containing the entries ���,���,…,���	is called the main diagonal of
A.

• Vectors: A vector is a matrix with only one row or column. Its 
entries are called the components of the vector.

�
= [�� �� … ��]	���	��������	� = [−2 5 0.8 0 1]

� =

��
��
⋮
��

	���	��������	� = 	
4
0
−7 6/ 

134

A
d

v
a

n
ce

d
 E

n
g

in
ee

ri
n

g
 M

at
h

em
a

ti
cs

; 
Li

n
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, D
et

er
m

in
an

ts
. L

in
ea

r 
Sy

st
em

s
D

r.
 M

as
ih

, N
. Z

ah
ab

i

Matrices, Vectors:
Addition and Scalar Multiplication

Addition and Scalar Multiplication of Matrices and Vectors

Definition
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Matrices, Vectors:
Addition and Scalar Multiplication

Example 3: Equality of Matrices

let

Then
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Matrices, Vectors:
Addition and Scalar Multiplication

Definition

Example 4: Addition of Matrices and Vectors

A in Example 3 and our present A cannot be added.If a = [5  
7  2] and b = [-6  2  0], then a + b = [-1  9  2].
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Matrices, Vectors:
Addition and Scalar Multiplication

Definition

Example 5: Scalar Multiplication
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Matrices, Vectors:
Addition and Scalar Multiplication

• Rules for Matrix Addition and Scalar Multiplication.

Here 0 denotes the zero matrix (of size � × �	), that is,
the m× � matrix with all entries zero. If m = 1 or n = 1,
this is a vector, called a zero vector.
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Matrices, Vectors:
Addition and Scalar Multiplication

• for scalar multiplication we obtain the rules
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Matrix Multiplication

Definition

Note that
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Matrix Multiplication

• Example 1: Matrix Multiplication

• Example 2: Multiplication of a Matrix and a Vector
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Matrix Multiplication

• Example 3: Products of Row and Column Vectors

• CAUTION! Matrix Multiplication Is No 
Commutative, AB ¹ BA
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Matrix Multiplication

Example 4:

• It is interesting that this also shows that AB = 0 does not
necessarily imply BA = 0 or A = 0 or B = 0 .
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Matrix Multiplication

• here, k is any scalar.

• (b) is called the associative law

• (c) and (d) are called the distributive laws.
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Matrix Multiplication

• Since matrix multiplication is a multiplication of rows into
columns, we can write the defining formula (1) more
compactly as

• Where �� is the jth row vector of A and �� is the kth

column vector of B.
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Matrix Multiplication

Example 5: Product in Terms of Row and Column 
Vectors

If A = [���] is of size 3× 3	and B = [���] is of size 3×4 then 

Taking ��=[3  5  -1], ��=[4  0  2], etc.

Parallel processing of products on the computer is
facilitated by a variant of (3) for computing C = AB , which
is used by standard algorithms (such as in Lapack).
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Matrix Multiplication

In this method, A is used as given, B is taken in terms of its
column vectors, and the product is computed columnwise;
thus,

(5)  

Columns of B are then assigned to different processors
(individually or several to each processor), which
simultaneously compute the columns of the product matrix
A��,A��etc.
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Matrix Multiplication

Example 6: Computing Products Columnwise by (5)

To obtain

from (5), calculate the columns

of AB and then write them as a single matrix, as shown in
the first formula on the right. 21/ 
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Matrix Multiplication

Motivation of Multiplication by Linear Transformations

• Let us now motivate the “unnatural” matrix
multiplication by its use in linear transformations. For
n=2 variables these transformations are of the form
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Matrix Multiplication

• Now suppose further that the ����-system is related to a
����-system by another linear transformation, say,
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Matrix Multiplication

• Then the ����-system is related to the ����-system
indirectly via the ����-system, and we wish to express
this relation directly. Substitution will show that this
direct relation is a linear transformation, too, say,
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Matrix Multiplication

• Indeed, substituting (7) into (6), we obtain
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Matrix Multiplication

• Comparing this with (8), we see that

• This proves that C=AB with the product defined as in 
(1).
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Matrix Multiplication

Transposition

We obtain the transpose of a matrix by writing its rows as
columns (or equivalently its columns as rows).

Example 7: Transposition of Matrices and Vectors
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Matrix Multiplication

Definition
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Matrix Multiplication

• Rules for transposition are

(10)  

• CAUTION! Note that in (10d) the transposed matrices 
are in reversed order.
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Matrix Multiplication

Special Matrices

• Symmetric matrices are square matrices whose 
transpose equals the matrix itself.

• Skew-symmetric matrices are square matrices whose 
transpose equals minus the matrix.
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Matrix Multiplication

• Symmetric and Skew-Symmetric Matrices

Triangular Matrices. 

• Upper triangular matrices are square matrices that can 
have nonzero entries only on and above the main 
diagonal, whereas any entry below the diagonal must be 
zero. 
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Matrix Multiplication

• lower triangular matrices can have nonzero entries
only on and below the main diagonal. Any entry on the
main diagonal of a triangular matrix may be zero or not.
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Matrix Multiplication

Diagonal Matrices. These are square matrices that can have
nonzero entries only onthe main diagonal. Any entry above
or below the main diagonal must be zero.

Example 11: Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and             
PC1186. 
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Matrix Multiplication

• The matrix A shows the cost per computer (in thousands 
of dollars) and B the production figures for the year 2010 
(in multiples of 10,000 units.)

• Find a matrix C that shows the shareholders the cost per 
quarter (in millions of dollars) for raw material, labor, 
and miscellaneous.
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Matrix Multiplication

• Solution:

• Since cost is given in multiples $1000 of and production
in multiples of 10,000 units, the entries of C are
multiples of $10 millions; thus means ���=13.2 million,
etc.

• Please study Examples 12,13. 35/ 
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• We now come to one of the most important use of
matrices, that is, using matrices to solve systems of
linear equations.

• Linear systems model many applications in engineering,
economics, statistics, and many other areas.

Linear System, Coefficient Matrix, Augmented Matrix

• A linear system of m equations in n unknowns
��,��,…,��is a set of equations of the form
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• The system is called linear because each variable ��
appears in the first power only, just as in the equation of
a straight line.

• ���,…,��� are given numbers, called the coefficients of
the system.

• ��,…,�� on the right are also given numbers.

• If all ��the are zero, then (1) is called a homogeneous

system.

If at least one �� is not zero, then (1) is called a

nonhomogeneous system.
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• From the definition of matrix multiplication we see that 
the m equations of (1) may be written as a single vector 
equation

Where
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• The matrix

is called the augmented matrix of the system (1).

• Note that the augmented matrix �� determines the
system (1) completely because it contains all the
given numbers appearing in (1).
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• Example 1: Geometric Interpretation. Existence and 
Uniqueness of Solutions

If m = n = 2, we have two equations in two unknowns 
��,��

There are three possible cases

(a) Precisely one solution if the lines intersect

(b) Infinitely many solutions if the lines coincide

(c) No solution if the lines are parallel 40/ 
134
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• If the system is homogenous, Case (c) cannot happen,
because then those two straight lines pass through the
origin, whose coordinates (0,0) constitute the trivial
solution.

• Similarly, our present discussion can be extended from
two equations in two unknowns to three equations in
three unknowns.
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Gauss Elimination and Back Substitution

Consider a linear system that is in triangular form (in full, 
upper triangular form) such as

Then we can solve the system by back substitution, that is,
we solve the last equation for the variable ��= -26/13= -2,
and then work backward, substituting ��=-2 into the first
equation and solving it for �� obtaining ��= 0.5(2-5��)=6
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let the given system be

We eliminate �� from the second equation, to get a triangular
system. For this we add twice the first equation to the
second, and we do the same operation on the rows of the
augmented matrix.
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Where Row 2 + 2 Row 1 means “Add twice Row 1 to Row 
2” in the original matrix.

• Please study example 2,page 275
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Elementary Row Operations. Row-Equivalent Systems

• Elementary Row Operations for Matrices:

1. Interchange of two rows

2. Addition of a constant multiple of one row to another 
row

3. Multiplication of a row by a nonzero constant c

• CAUTION! These operations are for rows, not for 
columns! 47/ 

134
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• Elementary Operations for Equations:

1. Interchange of two equations

2. Addition of a constant multiple of one equation to 
another equation

3. Multiplication of an equation by a nonzero constant 
c   

Theorem 1
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Because of this theorem, systems having the same solution
sets are often called equivalent systems. But note well that
we are dealing with row operations. No column operations
on the augmented matrix are permitted in this context
because they would generally alter the solution set.

(1)
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• A linear system (1) is called overdetermined if it has
more equations than unknowns.

• A linear system (1) is called determined if m=n

• A linear system (1) is called underdetermined if it has
fewer equations than unknowns.

 a system (1) is called consistent if it has at least one
solution (thus, one solution or infinitely many solutions),

 a system (1) is called inconsistent if it has no solutions
at all.

50/ 
134

A
d

v
a

n
ce

d
 E

n
g

in
ee

ri
n

g
 M

at
h

em
a

ti
cs

; 
Li

n
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, D
et

er
m

in
an

ts
. L

in
ea

r 
Sy

st
em

s
D

r.
 M

as
ih

, N
. Z

ah
ab

i

Linear Systems of Equations.
Gauss Elimination

Gauss Elimination: The Three Possible Cases of Systems

Example 3:Gauss Elimination if Infinitely Many 
Solutions Exist

Solve the following linear system of three equations in four 
unknowns whose augmented matrix is
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Solution. As in the previous example, we circle pivots and
box terms of equations and corresponding entries to be
eliminated. We indicate the operations in terms of equations
and operate on both equations and matrices.

Step 1. Elimination of ��	 from the second and third
equations by adding

-0.6/3= -0.2 times the first equation to the second equation,

-1.2/3= -0.4 times the first equation to the third equation.
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This gives the following, in which the pivot of the next step 
is circled.

Step 2. Elimination of ��from the third equation of (6) by 
adding

1.1/1.1= 1 times the second equation to the third equation. 53/ 
134
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This gives

Back Substitution. From the second equation, �� = 1 − ��
+ 4��. From this and the first equation, �� = 2 − ��. Since
�� and �� remain arbitrary, we have infinitely many
solutions. If we choose a value of	��	and a value of ��, then
the corresponding values of ��	 and �� are uniquely
determined.
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Example 4: Gauss Elimination if no Solution Exists

Consider

Step 1. Elimination of �� from the second and third 
equations by adding

-2/3 times the first equation to the second equation,

-6/3= -2 times the first equation to the third equation.
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This gives

Step 2. Elimination of �� from the third equation gives

The false statement 0=12 shows that the system has no 
solution.
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Row Echelon Form and Information From It

At the end of the Gauss elimination the form of the
coefficient matrix, the augmented matrix, and the system
itself are called the row echelon form. In it, rows of zeros, if
present, are the last rows, and, in each nonzero row, the
leftmost nonzero entry is farther to the right than in the
previous row. For instance, in Example 4 the coefficient
matrix and its augmented in row echelon form are
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The original system of m equations in n unknowns has
augmented matrix [A|b] . This is to be row reduced to matrix
[R|f] . The two systems Ax=b and Rx=f are equivalent:

if either one has a solution, so does the other, and the 
solutions are identical.

At the end of the Gauss elimination (before the back
substitution), the row echelon form of the augmented matrix
will be
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Here is the method for determining whether has solutions and
what they are:

a) No solution. If r is less than m (meaning that R actually
has at least one row of all 0s) and at least one of the
numbers����,����,…,�� is not zero, then the system
Rx= f is inconsistent: No solution is possible. Therefore
the system Ax=b is inconsistent as well.

b) Unique solution. If the system is consistent and r=n ,
there is exactly one solution, which can be found by
back substitution.

c) Infinitely many solutions. To obtain any of these
solutions, choose values of ����,…,��	arbitrarily. Then
solve the rth equation for �� (in terms of those arbitrary
values), then the (r-1) st equation for ����, and so on up
the line.
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Linear Independence and Dependence of Vectors

Given any set of m vectors �(�),…,�� (with the same

number of components), a linear combination of these
vectors is an expression of the form

Where ��,��,…,�� are any scalars. Now consider the 
equation

(1)
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• our vectors �(�),…,�(�) are said to form a linearly

independent set or, more briefly, we call them linearly
independent.

• This means that we can express at least one of the 
vectors as a linear combination of the other vectors.

• For instance, if (1) holds with, say, �� ≠ 0, we can solve
 (1) for � � :
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• Why is linear independence important? 

Well, if a set of vectors is linearly dependent, then we 
can get rid of at least one or perhaps more of the vectors 
until we get a linearly independent set.

Example: Linear Independence and Dependence

The three vectors

are linearly dependent because
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Rank of a Matrix

Definition

• Now the maximum number of linearly independent row
vectors of a matrix does not change if we change the
order of rows or multiply a row by a nonzero c or take a
linear combination by adding a multiple of a row to
another row. This shows that rank is invariant under
elementary row operations.
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Theorem 1

Hence we can determine the rank of a matrix by reducing the 
matrix to row-echelon form

Example 3: Determination of Rank
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Linear Independence. Rank of a Matrix.
Vector Space

The last matrix is in row-echelon form and has two nonzero 
rows. Hence rank A = 2.

Theorem 2
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Linear Independence. Rank of a Matrix.
Vector Space

Theorem 3

Please study the proof, page 283.

Example 4: Consider matrix A again,

Column 3 = (2/3) Column 1+ (2/3) Column 2 

Column 4 = (2/3) Column 1+(29/21) Column 2
66/ 
134

A
d

v
a

n
ce

d
 E

n
g

in
ee

ri
n

g
 M

at
h

em
a

ti
cs

; 
Li

n
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, D
et

er
m

in
an

ts
. L

in
ea

r 
Sy

st
em

s
D

r.
 M

as
ih

, N
. Z

ah
ab

i

Linear Independence. Rank of a Matrix.
Vector Space

Combining last two Theorems

Theorem 4

• Proof: The matrix A with those p vectors as row vectors
has p rows and n < p columns; hence by Theorem 3 it
has rank A ≤ �	 < � which implies linear dependence by
Theorem 2.
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Linear Independence. Rank of a Matrix.
Vector Space

Vector Space

• Consider a nonempty set V of vectors where each vector
has the same number of components. If, for any two
vectors a and b in V, we have that all their linear
combinations �� + ��(�,�any real numbers) are also
elements of V, and if, furthermore, a and b satisfy the
laws (3a), (3c), (3d), and (4) in Sec. 7.1, as well as any
vectors a, b, c in V satisfy (3b) then V is a vector space.
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Linear Independence. Rank of a Matrix.
Vector Space

• The maximum number of linearly independent vectors in
V is called the dimension of V and is denoted by dim V.

• A linearly independent set in V consisting of a maximum
possible number of vectors in V is called a basis for V.

• Thus, the number of vectors of a basis for V equals dim 
V.

• The set of all linear combinations of given vectors
�(�),…,�(�) with the same number of components is

called the span of these vectors.

• Obviously, a span is a vector space.
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Linear Independence. Rank of a Matrix.
Vector Space

A set of vectors is a basis for a vector space V

1. if (1) the vectors in the set are linearly independent, 
and

2. if (2) any vector in V can be expressed as a linear 
combination of the vectors in the set.

• If (2) holds, we also say that the set of vectors spans the 
vector space V. 

• By a subspace of a vector space V we mean a nonempty
subset of V (including V itself)that forms a vector space
with respect to the two algebraic operations (addition and
scalar multiplication) defined for the vectors of V. 70/ 
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Linear Independence. Rank of a Matrix.
Vector Space

Theorem 5

Theorem 6
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Linear Independence. Rank of a Matrix.
Vector Space

• for a given matrix A the solution set of the homogeneous
system Ax = 0 is a vector space, called the null space of
A, and its dimension is called the nullity of A.
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Solutions of Linear Systems:
Existence, Uniqueness

1. A linear system of equations in n unknowns has a 
unique solution if the coefficient matrix and the 
augmented matrix have the same rank n.

2. The system has infinitely many solutions if that 
common rank is less than n. 

3. The system has no solution if those two matrices 
have different rank.
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Solutions of Linear Systems:
Existence, Uniqueness

Theorem 1
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Solutions of Linear Systems:
Existence, Uniqueness

Please study the proof, page 289
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Solutions of Linear Systems:
Existence, Uniqueness

Homogeneous Linear System

Theorem 2
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Solutions of Linear Systems:
Existence, Uniqueness

The solution space of (4) is also called the null space of A
because Ax = 0 for every x in the solution space of (4). Its
dimension is called the nullity of A. Hence Theorem 2 states
that

Where n is the number of unknowns (number of columns of
A).

Theorem 3
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Solutions of Linear Systems:
Existence, Uniqueness

Nonhomogeneous Linear Systems
Theorem 4

Proof: The difference �� = � − ��	of any two solutions of (1)
is a solution of (4) because A��= A(x - ��) = Ax - A��	=b –
b= 0.Since x is any solution of (1), we get all the solutions of
(1) if in (6) we take any solution �� of (1) and let �� vary
throughout the solution space of (4).
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For Reference:
Second- and Third-Order Determinants

A determinant of second order is denoted and defined by

Cramer’s rule for solving linear systems of two equations 
in two unknowns
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For Reference:
Second- and Third-Order Determinants

is

The value D = 0 appears for homogeneous systems with
nontrivial solutions.
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For Reference:
Second- and Third-Order Determinants

Example 1: Cramer’s Rule for Two Equations
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For Reference:
Second- and Third-Order Determinants

Third-Order Determinants

A determinant of third order can be defined by
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For Reference:
Second- and Third-Order Determinants

Cramer’s Rule for Linear Systems of Three Equations
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Determinants. Cramer’s Rule

A determinant of order n is a scalar associated with an �

× � (hence square!) matrix � = ��� and is denoted by

For n = 1 this determinant is defined by

D = ��� 84/ 
134
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Determinants. Cramer’s Rule

For n ≥ 2 by

Or

Here,  
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Determinants. Cramer’s Rule

• And ��� is a determinant of order n – 1, namely, the

determinant of the submatrix of A obtained from A by
omitting the row and column of the entry ��� , that is, the

jth row and the kth column.

• ���	is called the minor of ���	in D, and ���	the cofactor

of ��� in D.
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Determinants. Cramer’s Rule

Example: Expansions of a Third-Order Determinant

This is the expansion by the first row. The expansion by the 
third column is
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Determinants. Cramer’s Rule

Example: Determinant of a Triangular Matrix

Inspired by this, can you formulate a little theorem on 
determinants of triangular matrices?
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Determinants. Cramer’s Rule

General Properties of Determinants

Theorem 1

CAUTION! det (cA) = ��det A (not c det A).
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Determinants. Cramer’s Rule

Example 4: Evaluation of Determinants by Reduction to
Triangular Form

=2× 5 × 2.4 × 47.25 = 1134
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Determinants. Cramer’s Rule

Theorem 2 

It is quite remarkable that the important concept of the rank
of a matrix A, which is the maximum number of linearly
independent row or column vectors of A (see Sec. 7.4), can
be related to determinants.

91/ 
134

A
d

v
a

n
ce

d
 E

n
g

in
ee

ri
n

g
 M

at
h

em
a

ti
cs

; 
Li

n
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, D
et

er
m

in
an

ts
. L

in
ea

r 
Sy

st
em

s
D

r.
 M

as
ih

, N
. Z

ah
ab

i

Determinants. Cramer’s Rule

Theorem 3
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Determinants. Cramer’s Rule

Cramer’s Rule
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Inverse of a Matrix.
Gauss–Jordan Elimination

• The inverse of an � × � matrix � = ��� is denoted by

���and is an � × � matrix such that

A A�� = A�� A = I

where I is the � × � unit matrix.

• If A has an inverse, then A is called a nonsingular 
matrix.

• If A has no inverse, then A is called a singular matrix.

• If A has an inverse, the inverse is unique. 94/ 
134
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Inverse of a Matrix.
Gauss–Jordan Elimination

Indeed, if both B and C are inverses of A, then AB = I and
CA = I, so that we obtain the uniqueness from

B = IB = (CA)B = C(AB) = CI = C

• A has an inverse (is nonsingular) if and only if it has
maximum

possible rank n.

• Ax = b implies x = A��b provided A��	exists, and will
thus give a motivation for the inverse as well as a
relation to linear systems.
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Inverse of a Matrix.
Gauss–Jordan Elimination

Theorem 1

• Proof: Let A be a given � × � matrix and consider the
linear system, Ax = b. If the inverse A�� exists, then
multiplication from the left on both sides and use of (1)
gives, ���Ax = x = ���b. This shows that Ax = b has a
solution x, which is unique because, for another solution u,
we have Au = b , so that u = ���b = x . Hence A must
have rank n by the Fundamental Theorem in Sec. 7.5. 96/ 
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• Conversely, let rank A = n . Then by the same theorem,
the system Ax = b has a unique solution x for any b.
Now the back substitution following the Gauss
elimination (Sec. 7.3) shows that the components ��	of x

are linear combinations of those of b. Hence we can
write: x = Bb

Ax = A(Bb) (AB)b = Cb = b              for any b.

Hence C = AB = I , the unit matrix.

x = Bb = B(Ax) = (BA)x

for any x (and b = Ax ). Hence BA = I . Together, B = ���

exists. 97/ 
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Determination of the Inverse by the Gauss–Jordan Method 

Using A, we form n linear systems
��(�) = �(�),…,�� � = � �

where the vectors �(�) ,…,� � are the columns of the � × �

unit matrix I; thus, �(�) = 1 0 … 0 �, �(�)
= 0 1 … 0 �,etc.

We combine them into a single matrix equation AX = I, with
the unknown matrix X having the columns � ,…,� � .

Correspondingly, we combine the n augmented matrices [A
�(�)],…, [A � � ] into one wide � × 2�	“augmented matrix”

��= [A I].
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Example 1: Finding the Inverse of a Matrix by Gauss–Jordan 
Elimination

Determine the inverse ��� of

��= [A  I] =
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The last three columns constitute ���. Check:
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Formulas for Inverses

Cramer’s rule was useful for theoretical study but not for
computation.

Theorem 2 
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Example 2: Inverse of a 2 × 2 Matrix by Determinants

Example 3: find the inverse of
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We obtain det A = -1(-7)-1(13)+2(8) = 10

Then
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Diagonal matrices A = [���], ��� = 0 when j ≠ k have an 

inverse if and only if all ��� ≠	0. Then ��� is diagonal, too, 

with entries 1/���,…, 1/���.

Proof: For a diagonal matrix we have in (4)
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Example 4: Inverse of a Diagonal Matrix

Then
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Products can be inverted by taking the inverse of each 
factor and multiplying these inverses in reverse order,

Hence for more than two factors,

We also note that the inverse of the inverse is the given 
matrix, as you may prove,
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Unusual Properties of Matrix Multiplication. 
Cancellation Laws

[1]  Matrix multiplication is not commutative, that is, in 
general we have

AB ≠ BA

[2] B =0 does not generally imply A = 0 or B =0 (or BA = 
0); for example,
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[3] AC = AD does not generally imply C = D (even when A
≠ 0)

Theorem 3
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Determinants of Matrix Products

It is interesting that det AB = det BA , although AB ≠ BA in 
general.

Theorem 4
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Definition
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A linear combination of vectors�(�),…,�(�)in a vector space 
V is an expression

���(�) + ⋯+ ���(�) (��,…,��any scalars). 

These vectors form a linearly independent set (briefly, they 
are called linearly independent) if

(1)���(�) + ⋯+ ���(�)= 0

implies that �� = 0, …, �� = 0.

Otherwise, if (1) also holds with scalars not all zero, the 
vectors are called linearly dependent.

Note that (1) with m = 1 is ca = 0 and shows that a single 
vector a is linearly independent if and only if a≠0.
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1. V has dimension n, or is n-dimensional, if it contains a
linearly independent set of n vectors, whereas any set of
more than n vectors in V is linearly dependent.

2. That set of n linearly independent vectors is called a
basis for V.

3. Then every vector in V can be written as a linear
combination of the basis vectors. Furthermore, for a
given basis, this representation is unique (see Prob. 2).

Example 1: Vector Space of Matrices

The 2× 2 real matrices form a four-dimensional real vector
space. A basis is 114/ 
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Because any 2× 2 matrix A = [���] has a unique 

representation 

A = ������ + ������+������+������

Example 2:Vector Space of Polynomials

The set of all constant, linear, and quadratic polynomials in x
together is a vector space of dimension 3 with basis{1 , x ,
�� } under the usual addition and multiplication by real
numbers because these two operations give polynomials not
exceeding degree 2.

115/ 
134

A
d

v
a

n
ce

d
 E

n
g

in
ee

ri
n

g
 M

at
h

em
a

ti
cs

; 
Li

n
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, D
et

er
m

in
an

ts
. L

in
ea

r 
Sy

st
em

s
D

r.
 M

as
ih

, N
. Z

ah
ab

i

Vector Spaces, Inner Product Spaces,
Linear Transformations

If a vector space V contains a linearly independent set of n
vectors for every n, no matter how large, then V is called
infinite dimensional, as opposed to a finite dimensional (n-
dimensional) vector space just defined.

An example of an infinite dimensional vector space is the 
space of all continuous functions on some interval [a, b] of 
the x-axis.
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Inner Product Spaces

• If a and b are vectors in �� , regarded as column vectors, 
we can form the product ��� . This is a 1 × 1 matrix, 
which we can identify with its single entry, that is, with a 
number.

• This product is called the inner product or dot product 
of a and b. Other notations for it are (a, b) and � � � . 
Thus 
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Definition
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• Vectors whose inner product is zero are called 
orthogonal.

• The length or norm of a vector in V is defined by

• A vector of norm 1 is called a unit vector.
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Example 3: n-Dimensional Euclidean Space

��	with the inner product

(where both a and b are column vectors) is called the n
dimensional Euclidean space and is denoted by ��	or again
simply by �� . Axioms I–III hold, as direct calculation
shows. Equation (2) gives the “Euclidean norm”
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Example 4: An Inner Product for Functions. Function 
Space 

The set of all real-valued continuous functions
� � ,� � ,…	on a given interval � ≤ � ≤ �	is a real vector
space under the usual addition of functions and
multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

Axioms I–III can be verified by direct calculation. Norm will
be 121/ 
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Linear Transformations 

• Let X and Y be any vector spaces. To each vector x in X
we assign a unique vector y in Y. Then we say that a
mapping (or transformation or operator) of X into Y
is given. Such a mapping is denoted by a capital letter,
say F. The vector y in Y assigned to a vector x in X is
called the image of x under F and is denoted by F (x) [or
Fx, without parentheses].

• F is called a linear mapping or linear transformation 
if, for all vectors v and x in X and scalars c,
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Linear Transformation of Space �� into Space ��

• From now on we let X = �� and Y = �� . Then any real
m × � matrix A = [���] gives a transformation of ��

into ��,

• Since A(u+x) = Au + Au and A(cx) = cAx, this
transformation is linear.

• We show that, conversely, every linear transformation F 
of ��	into �� can be given in terms of an m × � matrix 
A, after a basis for ��	and a basis for ��have been 
chosen. 123/ 
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• The purpose of a “representation” is the replacement of one 
object of study by another object whose properties are more 
readily apparent.

• In three-dimensional Euclidean space �� the standard basis 
is usually written�(�) = �,�(�) = �,�(�) = �. Thus

• These are the three unit vectors in the positive directions
of the axes of the Cartesian coordinate system in
space, that is, the usual coordinate system with the same
scale of measurement on the three mutually
perpendicular coordinate axes.
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Example 5: Linear Transformations 

Interpreted as transformations of Cartesian coordinates in the
plane, the matrices

represent a reflection in the line �� = �� , a reflection in the
��-axis, a reflection in the origin, and a stretch (when a > 1 ,
or a contraction when 0 < a <1 ) in the �� -direction,
respectively.
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Example 6: Linear Transformations

Our discussion preceding Example 5 is simpler than it may
look at first sight. To see this, find A representing the linear
transformation that maps (��, ��) onto (2��-5��, 3��+4��)

Solution. Obviously, the transformation is
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y = Ax, If A in *is square n × n, , then *maps �� into �� . 
If this A is nonsingular, so that ��� exists (see Sec. 7.8), 
then multiplication of * by ��� from the left and use of 
���A = I gives the inverse transformation

x = ���y

It maps every y = ��onto that x, which by *is mapped onto
�� . The inverse of a linear transformation is itself linear,
because it is given by a matrix, as x = ���y shows.
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The last operation we want to discuss is composition of
linear transformations. Let X, Y, W be general vector
spaces. Let F be a linear transformation from X to Y. Let G
be a linear transformation from W to X. Then we denote, by
H, the composition of F and G, that is,

which means we take transformation G and then apply
transformation F to it (in that order!, i.e. you go from left to
right).
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Now, to give this a more concrete meaning, if we let w be a
vector in W, then G(w)is a vector in X and F(G(w)) is a
vector in Y. Thus, H maps W to Y, and we can write

which completes the definition of composition in a general 
vector space setting. But is composition really linear?
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Example 7: The Composition of Linear Transformations Is
Linear

To show that H is indeed linear we must show that (10)
holds. We have, for two vectors ��,�� in W,
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• We showed that the composition of linear transformations 
is indeed linear.

• Next we want to relate composition of linear 
transformations to matrix multiplication.

• To do so we let X = ��, Y = �� and W = �� . This choice
of particular vector spaces allows us to represent the linear
transformations as matrices and form matrix equations.

• Thus F can be represented by a general real m × n matrix
A = [���] and G by an n × p matrix B = [���]. Then we can

write for F, with column vectors x with n entries, and
resulting vector y, with m entries

y = Ax
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and similarly for G, with column vector w with p entries,

x = Bw

Then,

y = Ax = A(Bw) =Abw = Cw where C = AB

we can define the composition of linear transformations
in the Euclidean spaces as multiplication by matrices.
Hence, m × p the real matrix C represents a linear
transformation H which maps �� to �� with vector w, a
column vector with p entries.
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Example 8: Linear Transformations. Composition

In Example 5 of Sec. 7.9, let A be the first matrix and B be the
fourth matrix with a > 1. Then, applying B to a vector w =
[����]

�, stretches the element �� by a in the �� direction.
Next, when we apply A to the “stretched” vector, we reflect the
vector along the line ��= �� , resulting in a vector y
= [�����]

� . But this represents, precisely, a geometric
description for the composition H of two linear transformations
F and G represented by matrices A and B. We now show that,
for this example, our result can be obtained by straightforward
matrix multiplication, that is,
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Then

which is the same as before. This shows that indeed AB = C
, and we see the composition of linear transformations can
be represented by a linear transformation. It also shows that
the order of matrix multiplication is important (!). You may
want to try applying A first and then B, resulting in BA.
What do you see? Does it make geometric sense? Is it the
same result as AB?
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