

- In the second case something interesting happens. The multiplication produces a vector $[30 \ 40]^T = 10[3 \ 4]^T$, which means the new vector has the same direction as the original vector. The scale constant, which we denote by I is 10.
- We formalize our observation. Let $A = [a_{jk}]$ be a given nonzero square matrix of dimension $n \times n$. Consider the following vector equation:

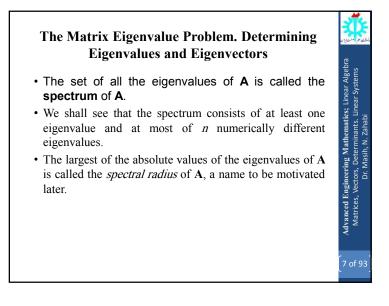
(1)
$$Ax = \lambda x$$

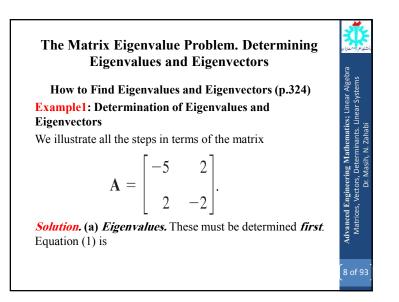
The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors

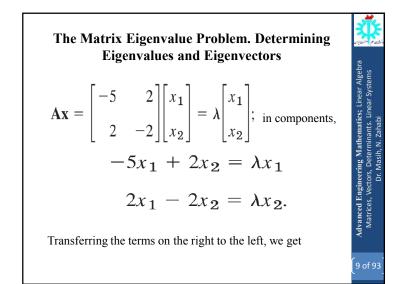
Remark:

- Geometrically, we are looking for vectors, **x**, for which the multiplication by **A** has the same effect as the multiplication by a scalar in other words, **Ax** should be proportional to **x**. Thus, the multiplication has the effect of producing, from the original vector **x**, a new vector that has the same or opposite (minus sign) direction as the original vector.
- A value of 1 for which (1) has a solution **x** ¹ **0**, is called an **eigenvalue** or *characteristic value* of the matrix **A**. Another term for is a *latent* root. ("Eigen" is German and means "proper" or "characteristic.").

Advanced Matrice







The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

$$(-5 - \lambda)x_1 + 2x_2 = 0$$

$$(2^*) \quad (-5 - \lambda)x_1 + (-2 - \lambda)x_2 = 0.$$
This can be written in matrix notation

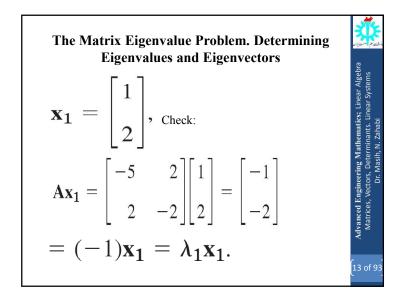
$$(3^*) \quad (\mathbf{A} - \lambda \mathbf{I})\mathbf{X} = \mathbf{0}$$
We see that this is a *homogeneous* linear system. By
Cramer's theorem in Sec. 7.7 it has a nontrivial solution (an
eigenvector of **A** we are looking for) if and only if its
coefficient determinant is zero, that is,
10 of 93

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

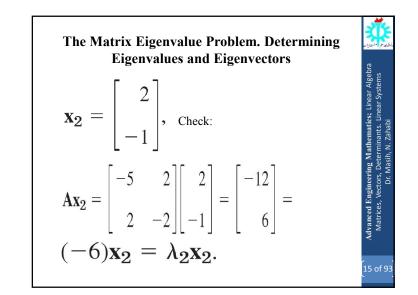
$$(4^*) \quad D(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = \begin{bmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = \begin{bmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = \begin{bmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix}$$

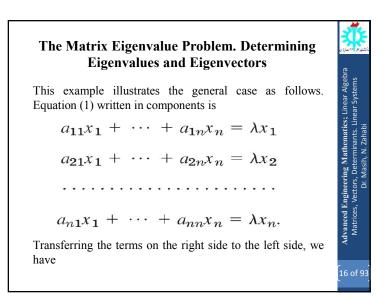
$$(-5 - \lambda)(-2 - \lambda) - 4 = \lambda^2 + 7\lambda + 6 = 0.$$
• We call $D(l)$ the characteristic determinant or, if expanded, the characteristic determinant or, if expanded, the characteristic polynomial, and $D(l) = 0$ the characteristic equation of A.
• The solutions of this quadratic equation are $\lambda_1 = -1$ and $\lambda_2 = -6$. These are the eigenvalues of A.

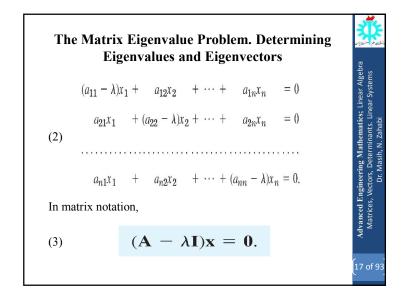
The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors (b₁) Eigenvector of A corresponding to λ_1 . This vector is obtained from (2*) with, $I = \lambda_1 = -1$, that is $-4x_1 + 2x_2 = 0$ $2x_1 - x_2 = 0$. A solution is $x_2 = 2x_1$, as we see from either of the two equations, so that we need only one of them. This determines an eigenvector corresponding to $\lambda_1 = -1$ up to a scalar multiple. If we choose $x_1 = 1$, we obtain the eigenvector

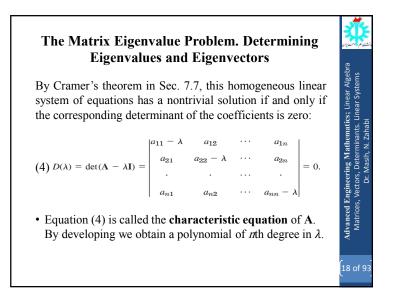


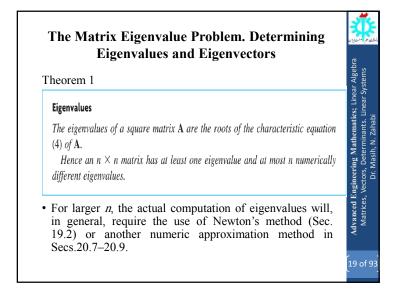
The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors	الشکار م المشکار م
(b ₂) <i>Eigenvector of</i> A <i>corresponding to</i> λ_2 . For $\lambda_2 = -6$, equation (2 [*]) becomes	s; Linear Algek inear Systems
$x_1 + 2x_2 = 0$ $2x_1 + 4x_2 = 0$	g Mathematic Determinants. L asih, N. Zahabi
A solution is $x_2 = -x_1/2$ with arbitrary x_1 . If we choose $x_1 = 2$, we get $x_2 = -1$. Thus an eigenvector of A	Advanced Engineering Mathematics: Linear Algebra Matrices, Vectors, Determinants. Linear Systems Dr. Masih, N. Zahabi
corresponding to $\lambda_2 = -6$ is	₽ [14 of 93]











Theorem 2

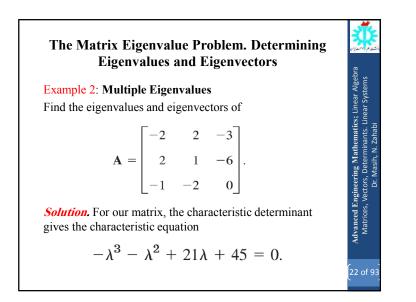
Eigenvectors, Eigenspace

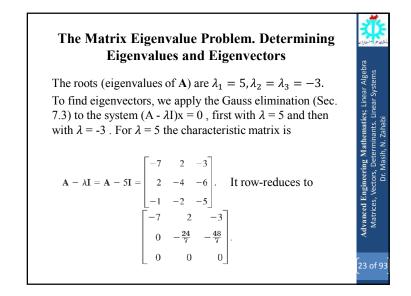
If **w** and **x** are eigenvectors of a matrix **A** corresponding to **the same** eigenvalue λ , so are $\mathbf{w} + \mathbf{x}$ (provided $\mathbf{x} \neq -\mathbf{w}$) and $k\mathbf{x}$ for any $k \neq 0$.

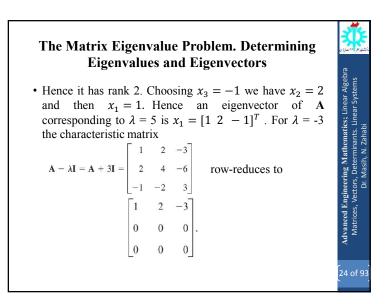
Hence the eigenvectors corresponding to one and the same eigenvalue λ of **A**, together with **0**, form a vector space (cf. Sec. 7.4), called the **eigenspace** of **A** corresponding to that λ .

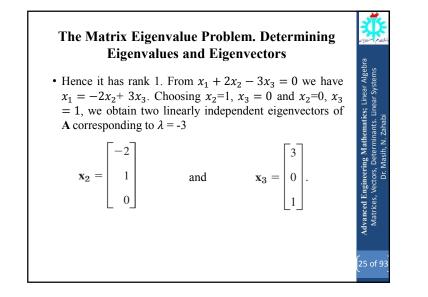
Proof: Aw = Iw and Ax = Ix imply A(w+x) = Aw + Ax = Iw+ Ix = I(w + x) and A(kw) = k(Aw) = k(Iw) = I(kw); hence A(kw+Ix) = I(kw+Ix) Advanced Engineeru Matrices, Vectors, Dr. N

- In particular, an eigenvector **x** is determined only up to a constant factor. Hence we can **normalize x**, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9).
- For instance, $x_1 = [1 \ 2]^T$ in Example 1 has the length $||x_1|| = \sqrt{1+4} = \sqrt{5}$; hence $[\frac{1}{\sqrt{5}} \frac{2}{\sqrt{5}}]^T$ is a normalized eigenvector (a unit eigenvector).



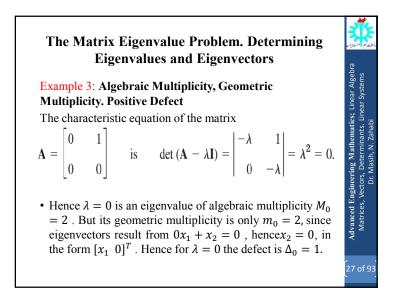


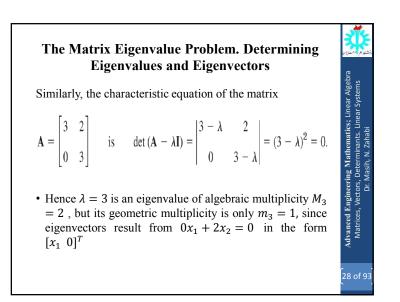


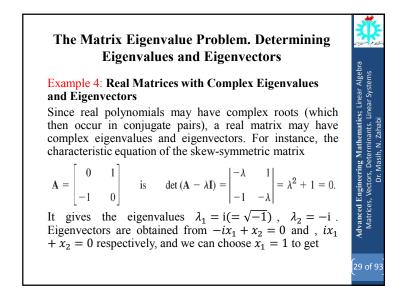


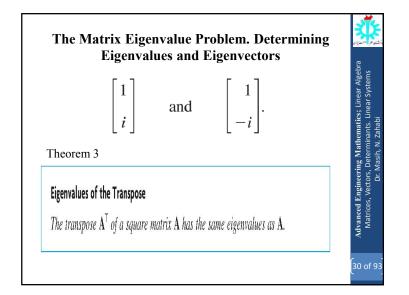
- The order M_{λ} of an eigenvalue λ as a root of the characteristic polynomial is called the **algebraic multiplicity** of λ .
- The number m_{λ} of linearly independent eigenvectors corresponding to λ is called the **geometric multiplicity** of λ . Thus m_{λ} is the dimension of the eigenspace corresponding to this λ .

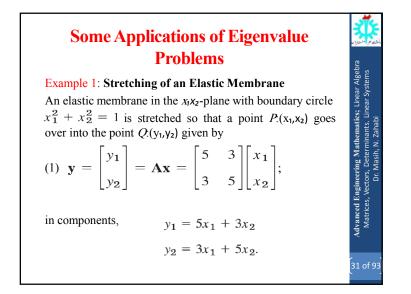
• In general, $m_{\lambda} \pounds M_{\lambda}$, as can be shown. The difference $\Delta_{\lambda} = M_{\lambda} - m_{\lambda}$ is called the **defect** of λ .

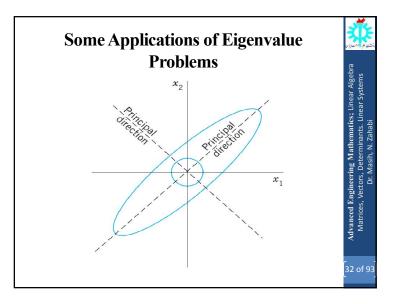












Some Applications of Eigenvalue Problems

Find the **principal directions**, that is, the directions of the position vector **x** of *P* for which the direction of the position vector **y** of *Q* is the same or exactly opposite. *Solution.* We are looking for vectors **x** such that y = lx. Since y = lx, this gives Ax = lx, the equation of an eigenvalue problem. In components, Ax = lx is

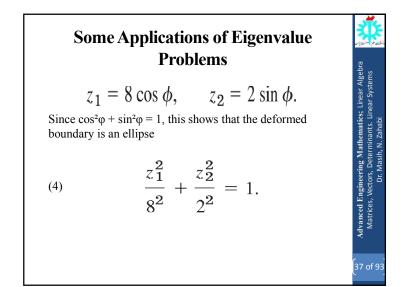
(2)
$$5x_1 + 3x_2 = \lambda x_1$$
 (5 - λ) x_1 + $3x_2 = 0$
or $3x_1 + 5x_2 = \lambda x_2$ or $3x_1 + (5 - \lambda)x_2 = 0$.

33 of 93

Some Aj	pplications of Eigenvalue Problems	ر م ا حتایان
The characteristic		· Algebra
$(3) \qquad \begin{vmatrix} 5 - \lambda \\ 3 \end{vmatrix}$	$\begin{vmatrix} 3 \\ 5 - \lambda \end{vmatrix} = (5 - \lambda)^2 - 9 = 0.$	ematics; Linear ants. Linear Sy:
	e $\lambda_1 = 8$ and $\lambda_2 = 2$. These are the pur problem. For $\lambda_1 = 8$ our system (2)	Advanced Engineering Mathematics; Linear Algebra Matrices, Vectors, Determinants. Linear Systems
$-3x_1 + 3x_2 = 0$,	Solution $x_2 = x_1$, x_1 arbitrary,	/anced Eng //atrices, Ve
$3x_1 - 3x_2 = 0.$	Solution $x_2 = x_1$, x_1 arbitrary, for instance, $x_1 = x_2 = 1$.	Advar Ma
		34 of

Some Applications of Eigenvalue Problems For λ₂= 2, our system (2) becomes 3x₁ + 3x₂ = 0, Solution x₂ = -x₁, x₁ arbitrary, 3x₁ + 3x₂ = 0. for instance, x₁ = 1, x₂ = -1. We thus obtain as eigenvectors of A, for instance, [1 1]^T corresponding to λ₁ and [1 - 1]^T corresponding to λ₂(or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive x1-direction.

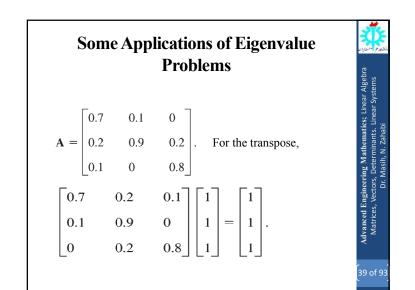
Some Applications of Eigenvalue Problems • The eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2, respectively; • They give the principal directions, the answer to our problem. The eigenvalues show that in the principal directions the membrane is stretched by factors 8 and 2, respectively. • if we choose the principal directions as directions of a new Cartesian u_1u_2 -coordinate system, say, with the positive u_1 -semi-axis in the first quadrant and the positive u_2 -semi-axis in the second quadrant of the x_1x_2 -system, and if we set $u_1 = rsin\varphi$, $u_2 = rcos\varphi$ then a boundary point of the unstretched circular membrane has coordinates $\cos \varphi$, $\sin \varphi$. Hence, after the stretch we have 36 of 93

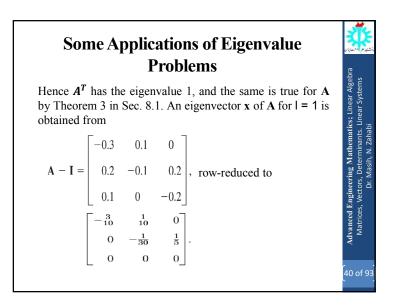


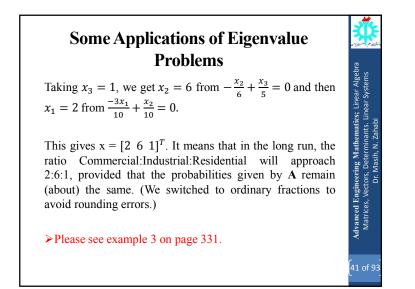
Some Applications of Eigenvalue Problems

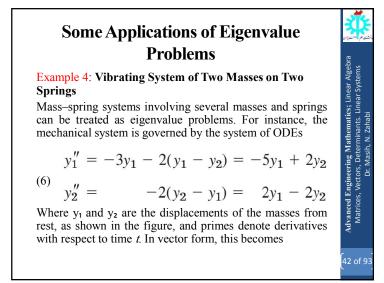
Example 2: Eigenvalue Problems Arising from Markov Processes

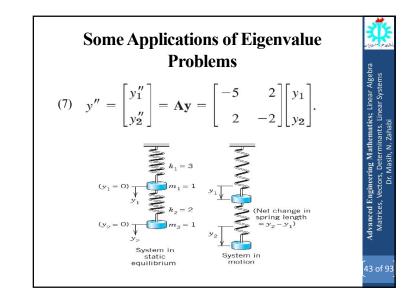
Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit state of the process in which the state vector \mathbf{x} is reproduced under the multiplication by the stochastic matrix \mathbf{A} governing the process, that is, $\mathbf{A}\mathbf{x} = \mathbf{x}$. Hence \mathbf{A} should have the eigenvalue 1, and \mathbf{x} should be a corresponding eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled by the process. In that example,

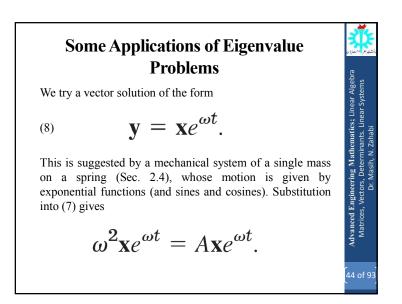


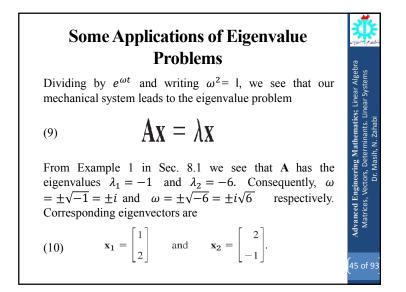




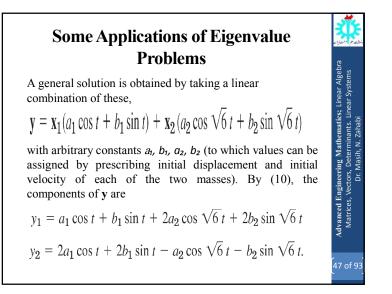


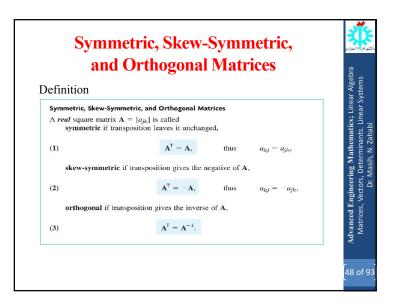


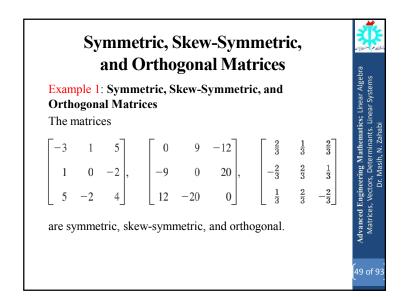


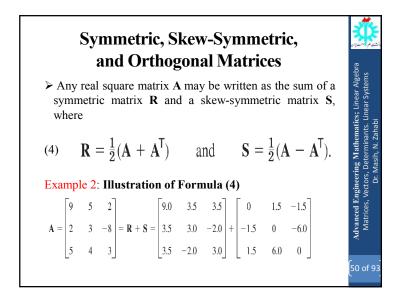


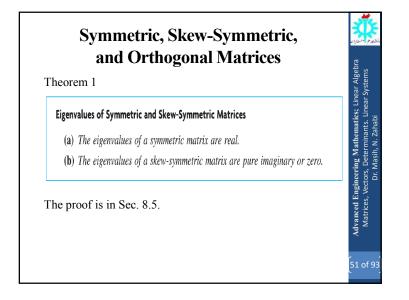
Some Applications of Eigenvalue Problems	لی مراجع النوان میرونی میں النوانی
From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2] $\mathbf{x_1}e^{\pm it} = \mathbf{x_1}(\cos t \pm i \sin t),$ $\mathbf{x_2}e^{\pm i\sqrt{6}t} = \mathbf{x_2}(\cos \sqrt{6} t \pm i \sin \sqrt{6} t).$ By addition and subtraction (see Sec. 2.2) we get the four real solutions $\mathbf{x_1}\cos t, \mathbf{x_1}\sin t, \mathbf{x_2}\cos \sqrt{6} t, \mathbf{x_2}\sin \sqrt{6} t.$	Advanced Engineering Mathematics; Linear Algebra Matrices, Vectors, Determinants, Linear Systems Dr. Masih, N. Zahabi
	(46 of 93

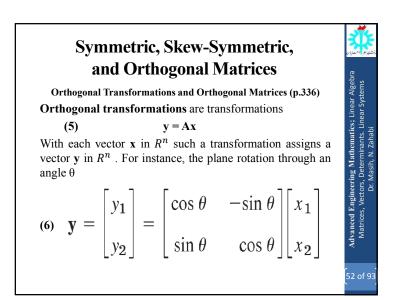


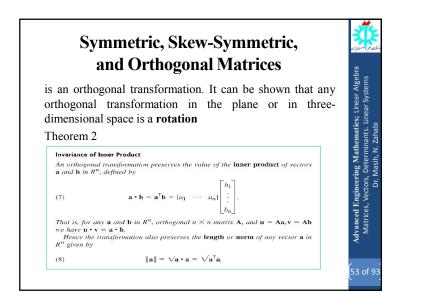




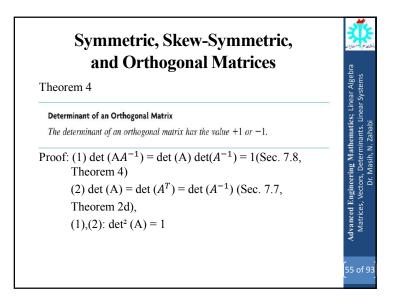


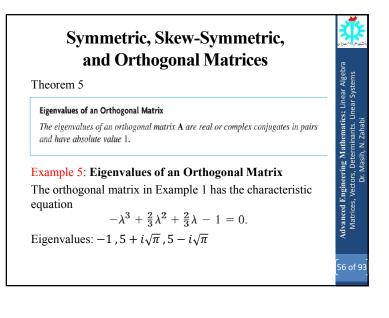






Symmetric, Skew-Symmetric,	وحستا يا ان
and Orthogonal Matrices	bra
Proof: Let $u = Aa$ and $v = Ab$,	ar Alge
9) $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^{T} \mathbf{v} = (\mathbf{A}\mathbf{a})^{T} \mathbf{A}\mathbf{b} = \mathbf{a}^{T} \mathbf{A}^{T} \mathbf{A}\mathbf{b} = \mathbf{a}^{T} \mathbf{I}\mathbf{b} = \mathbf{a}^{T}\mathbf{b} = \mathbf{a} \cdot \mathbf{b}.$ Orthonormality of Column and Row Vectors A real square matrix is orthogonal if and only if its column vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ (and also its row vectors) form an orthonormal system, that is, (10) $\mathbf{a}_j \cdot \mathbf{a}_k = \mathbf{a}_j^{T} \mathbf{a}_k = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k. \end{cases}$	Advanced Engineering Mathematics; Linear Algebra Marticae Vortrois Determinants Linear Sustams
	Ad





Eigenbases. Diagonalization. Quadratic Forms

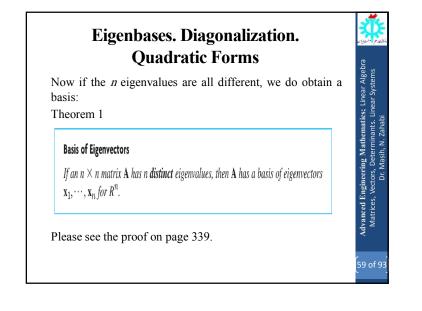
Eigenvectors of an $n \times n$ matrix A may (or may not!) form a basis for \mathbb{R}^n . If we are interested in a transformation such an "**eigenbasis**" (basis of eigenvectors)—if it exists—is of great advantage because then we can represent any x in \mathbb{R}^n uniquely as a linear combination of the eigenvectors x_1, \dots, x_n , say,

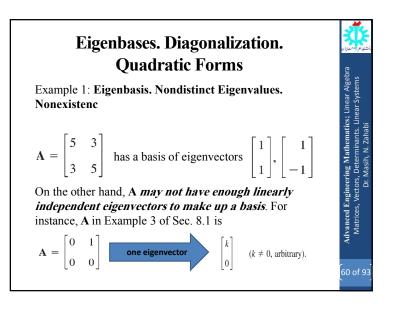
$$\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n$$

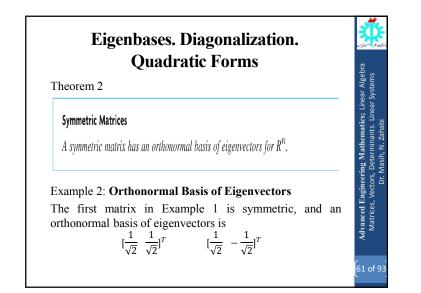
And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix **A** by $\lambda_1, ..., \lambda_n$, we have $Ax_j = \lambda_j x_j$, so that we simply obtain

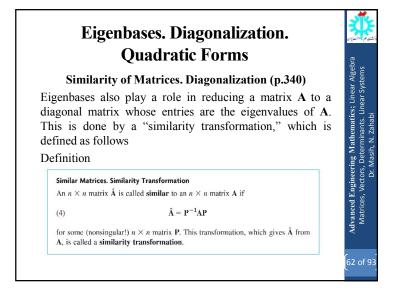
57 of 93

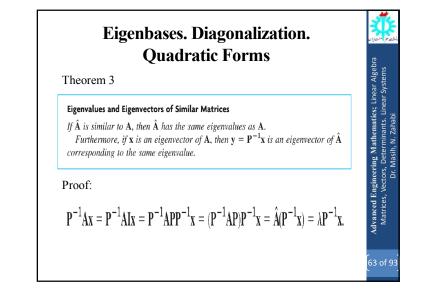
Eigenbases. Diagonalization. Quadratic Forms	شکار مستایان مکار مستایان
$\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{A}(c_1\mathbf{x}_1 + \dots + c_n\mathbf{x}_n)$	inear Algebra ar Systems
(1) $= c_1 \mathbf{A} \mathbf{x}_1 + \dots + c_n \mathbf{A} \mathbf{x}_n$	ematics; L ants. Linea Zahabi
$= c_1 \lambda_1 \mathbf{x}_1 + \cdots + c_n \lambda_n \mathbf{x}_n.$	ing Matho , Determin Masih. N. J
This shows that we have decomposed the complicated action of A on an arbitrary vector x into a sum of simple actions (multiplication by scalars) on the eigenvectors of A . This is the point of an eigenbasis.	Advanced Engineer Matrices, Vectors, Dr.

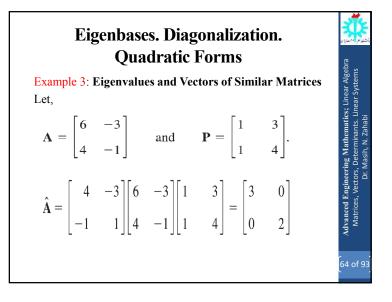


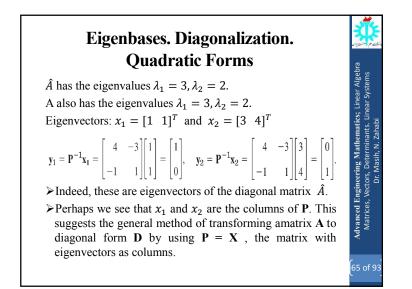


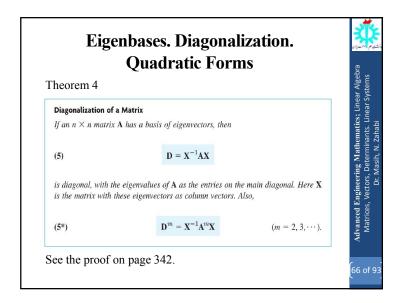


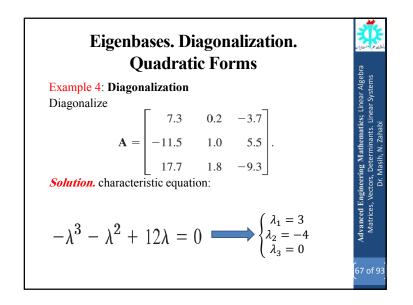


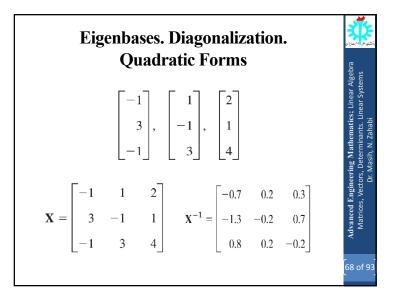


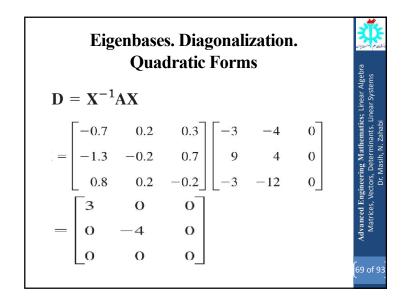


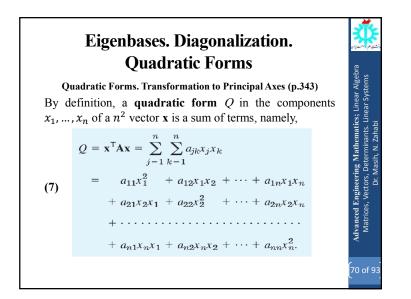


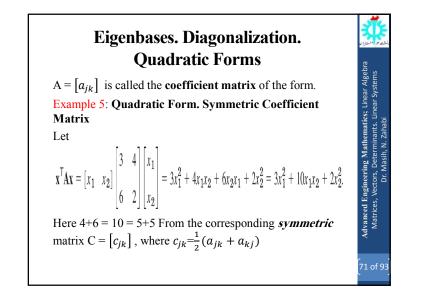


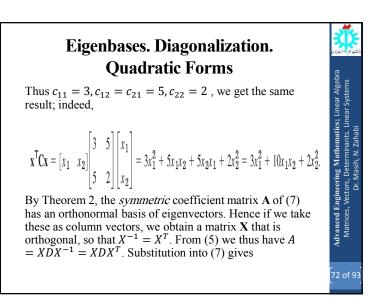


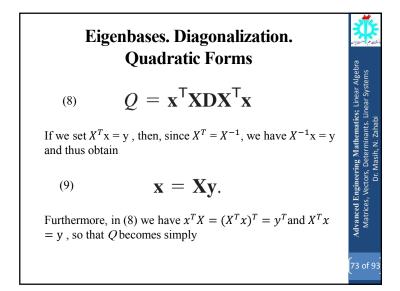


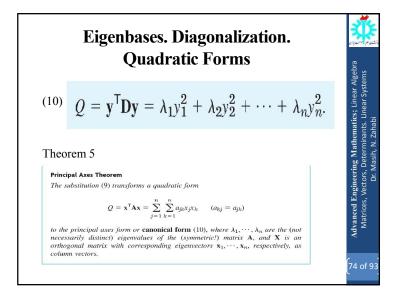




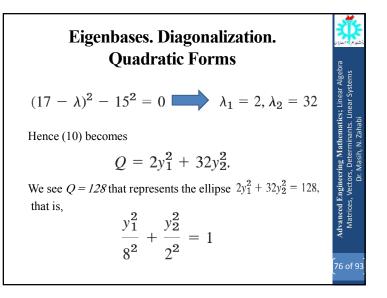


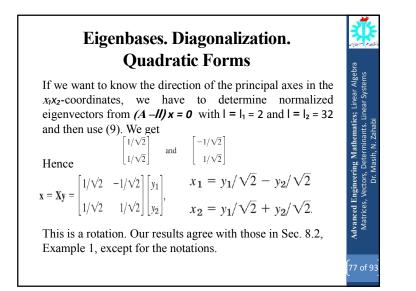


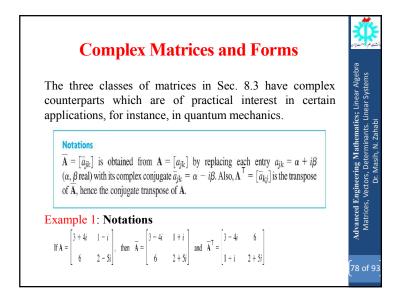


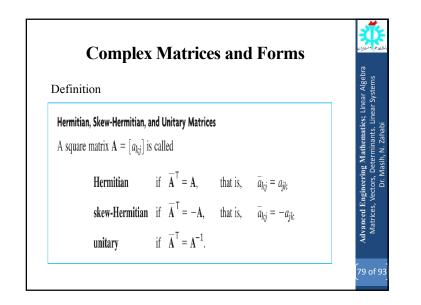


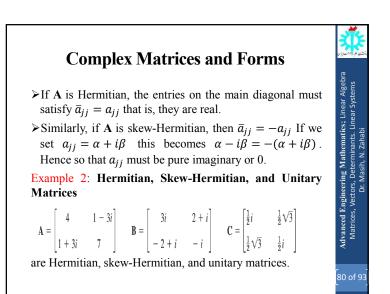












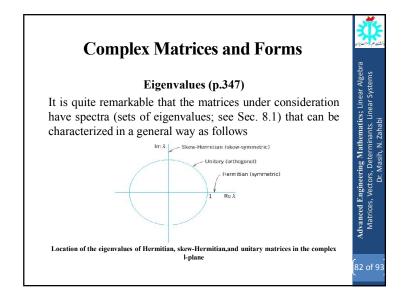
Complex Matrices and Forms

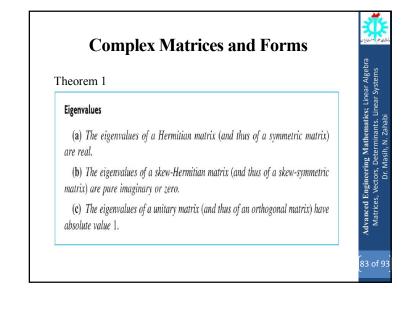
- >If a Hermitian matrix is real, then $\overline{A}^T = A^T = A$. Hence a real Hermitian matrix is a symmetric matrix (Sec. 8.3).
- Similarly, if a skew-Hermitian matrix is real, then $\overline{A}^T = A^T = A$ Hence a real skew-Hermitian matrix is a skew-symmetric matrix.
- Finally, if a unitary matrix is real, then $\bar{A}^T = A^T = A^{-1}$ Hence a real unitary matrix is an orthogonal matrix.

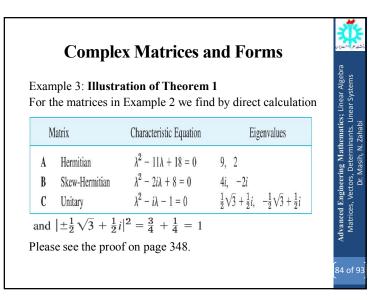
dvanced Engineering Mathematics; Linear Matrices, Vectors, Determinants, Linear Sys

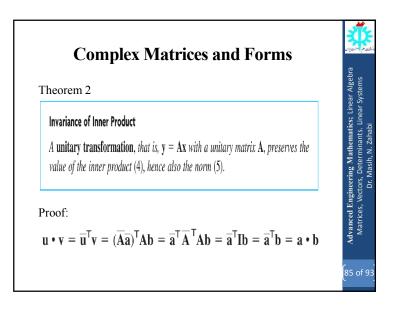
81 of 93

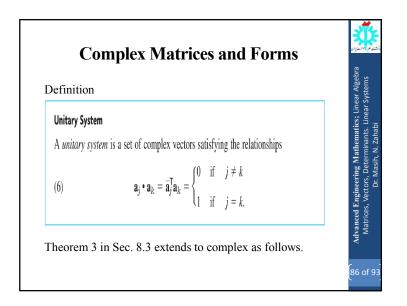
This shows that Hermitian, skew-Hermitian, and unitary matrices generalize symmetric, skew-symmetric, and orthogonal matrices, respectively.

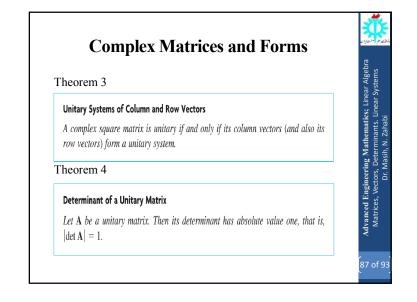


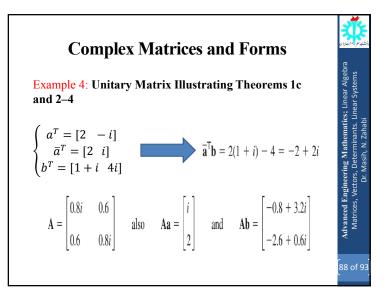












as one can readily verify. This gives $(\overline{A}\overline{a})^T Ab = -2 + 2i$, illustrating Theorem 2. The matrix is unitary. Its columns form a unitary system,

$$\overline{\mathbf{a}}_1^{\mathsf{T}} \mathbf{a}_1 = -0.8i \cdot 0.8i + 0.6^2 = 1,$$
 $\overline{\mathbf{a}}_1^{\mathsf{T}} \mathbf{a}_2 = -0.8i \cdot 0.6 + 0.6 \cdot 0.8i = 0,$
 $\overline{\mathbf{a}}_2^{\mathsf{T}} \mathbf{a}_2 = 0.6^2 + (-0.8i)0.8i = 1$

and so do its rows. Also, det A = -1. The eigenvalues are 0.6 + 0.8i and -0.6 + 0.8i with eigenvectors $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$ respectively.

Complex Matrices and Forms	محتاي ا ن و
Theorem 5	s; Linear Algeb
Basis of Eigenvectors A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for that is a unitary system.	Unterminants
For a proof see Ref. [B3], vol. 1, pp. 270–272 and p. 2 Definition 2).	Advanced Engineer Matrices Vortree

Complex Matrices and Forms	الشکار م ا
Example 5: Unitary Eigenbases The matrices A, B, C in Example 2 have the following unitary systems of eigenvectors, as you should verify.	Advanced Engineering Mathematics; Linear Algebra Matrices, Vectors, Determinants. Linear Systems Dr. Masih, N. Zahabi
A: $\frac{1}{\sqrt{35}} \begin{bmatrix} 1 - 3i & 5 \end{bmatrix}^{T}$ ($\lambda = 9$), $\frac{1}{\sqrt{14}} \begin{bmatrix} 1 - 3i & -2 \end{bmatrix}^{T}$ ($\lambda = 2$)	eering Mathema ors, Determinant Dr. Masih, N. Zahi
B: $\frac{1}{\sqrt{30}} \begin{bmatrix} 1 - 2i & -5 \end{bmatrix}^{T}$ ($\lambda = -2i$), $\frac{1}{\sqrt{30}} \begin{bmatrix} 5 & 1 + 2i \end{bmatrix}^{T}$ ($\lambda = 4i$)	Engineerin 5, Vectors, D Dr. M
C: $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix}^{T} (\lambda = \frac{1}{2}(i + \sqrt{3})), \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix}^{T} (\lambda = \frac{1}{2}(i - \sqrt{3}))$	Advanced Matrices
	91 of 93

