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Introduction

A matrix eigenvalue problem considers the vector equation
1) Ax=Ix

* Here A is a given square matrix, | an unknown scalar, and
x an unknown vector.

* In a matrix eigenvalue problem, the task is to determine
I’s and x’s that satisfy (1).

* Since x = 0 is always a solution for any | and thus not
interesting, we only admit solutions with x * 0.

* The I’s that satisfy (1) are called eigenvalues of A and the

corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.

Outlines

Linear Algebra: Matrix Eigenvalue Problems

0) Introduction (p.322)

1) The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors (p.323)

2) Some Applications of Eigenvalue Problems (p.329)

3) Symmetric, Skew-Symmetric, and Orthogonal Matrices

(p.334)

4) Eigenbases, Diagonalization, Quadratic Forms (p.339
5) Complex Matrices and Forms. Optional (p.346)

Ref: Erwin Kreyszig, “Advanced Engineering Mathematics,” John Wiley & Sons, Inc., 10 Ed., 2011. (Chapter 8)
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Consider multiplying nonzero vectors by a given
square matrix, such as

6 3|5 33 6 3|3 30

4 711 |27 4 74l |40

* In the first case, we get a totally new vector with a
different direction and different length when compared to
the original vector. This is what usually happens and is of
no interest here.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

* In the second case something interesting happens. The
multiplication produces a vector [3040]7= 10[3 4]7,
which means the new vector has the same direction as the
original vector. The scale constant, which we denote by |
is 10.

» We formalize our observation. Let A = [a;] be a
given nonzero square matrix of dimension nxn.
Consider the following vector equation:

M AX = AX.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

* The set of all the eigenvalues of A is called the
spectrum of A.

* We shall see that the spectrum consists of at least one
eigenvalue and at most of n numerically different
eigenvalues.

* The largest of the absolute values of the eigenvalues of A
is called the spectral radius of A, a name to be motivated
later.

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Remark:

» Geometrically, we are looking for vectors, x, for which
the multiplication by A has the same effect as the
multiplication by a scalar in other words, Ax should be
proportional to x. Thus, the multiplication has the effect
of producing, from the original vector x, a new vector that
has the same or opposite (minus sign) direction as the
original vector.

A value of | for which (1) has a solution x * 0, is called
an eigenvalue or characteristic value of the matrix A.
Another term for is a /atent root. (“Eigen” is German and
means “proper” or “characteristic.”).
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

How to Find Eigenvalues and Eigenvectors (p.324)

Examplel: Determination of Eigenvalues and
Eigenvectors

We illustrate all the steps in terms of the matrix

-5 2
A= .
2 -2
Solution. (a) Eigenvalues. These must be determined first.
Equation (1) is
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The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

=

-5 2 X1 1

2 -2 X9

=
)

_SX]_ + 2x2 = Axl

2)(1 — 2X2 — )UCz.

Transferring the terms on the right to the left, we get

» in components,

, Determinants. Linear Systems
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The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

—5—A
(4" D(A) = det(A — AI) =

(—5—=N)(-2-N)—-4=A+TA+6=0.
* We call D) the characteristic determinant or, if
expanded, the characteristic polynomial, and D) = 0

the characteristic equation of A.

* The solutions of this quadratic equation are 1;
A, = —6 . These are the eigenvalues of A.

2 -2 -A
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The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

(=5 —Mxq + 2x9 =

2"

2% A+ (=2 — ANxg =

This can be written in matrix notation

™ (A-ADx=0

We see that this is a homogeneous linear system. By
Cramer’s theorem in Sec. 7.7 it has a nontrivial solution (an
eigenvector of A we are looking for) if and only if its

coefficient determinant is zero, that is,

Dr. Masih, N. Zahabi

The Matrix Eigenvalue Problem. Determining

Eigenvalues and Eigenvectors

( by) Eigenvector of A corresponding to 1, . This vector

is obtained from (2* ) with, | = 4; = —1, that is

_4X1 + 2.X2 =0

2)C1 - XZZO.

A solution is x, = 2x;, as we see from either of the two
equations, so that we need only one of them. This

determines an eigenvector corresponding to 4; =

a scalar multiple. If we choose x; =1 , we obtain the

eigenvector
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

1

X1 — s Check:

=5 2|1 =]
Axl = =
2 —2|2 —2
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

-5 2| 2 -12

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

(by) Eigenvector of A corresponding to A, . For 1, = —6
, equation (2* ) becomes

x1 + 2x2 = 0

le + 4-x2 = 0
A solution is x, = —x; /2 with arbitrary x;. If we choose
x; =2, we get x, =—1. Thus an eigenvector of A
corresponding to A, = —6 is

Matrices, Vectors, Determinants. Linear Systems

Dr. Masih, N. Zahabi

Matrices, Vectors, Determinants. Linear Systems

Dr. Masih, N. Zahabi

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

This example illustrates the general case as follows.
Equation (1) written in components is

ailXi + -+ AinXyp — /\X]_
aos1x1 + + daopX, = AXo
an1X1 t -t ApnXan = AXp.

Transferring the terms on the right side to the left side, we
have
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

(g =Axp+ apry +ot at, =0
91Xy + (a22 = /\)Xg o e v (95X =1
P ST S s ¢ N Sl [/ /\)Xﬂ =),

In matrix notation,

3) (A — ADx = 0.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Theorem 1

Eigenvalues
The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n X n matrix has a least one eigenvalue and al most n numerically
different eigenvalues.

* For larger n, the actual computation of eigenvalues will,
in general, require the use of Newton’s method (Sec.
19.2) or another numeric approximation method in
Secs.20.7-20.9.

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

By Cramer’s theorem in Sec. 7.7, this homogeneous linear
system of equations has a nontrivial solution if and only if
the corresponding determinant of the coefficients is zero:

apr — A aig ain
dzy azz — A e dan
(4) D(A) = det(A — AL = = 0.
dn1 an2 Ann — A

» Equation (4) is called the characteristic equation of A.
By developing we obtain a polynomial of nth degree in A.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Theorem 2

Eigenvectors, Eigenspace

I wand X are eigenveciors of a matrix A corresponding to the same eigenvalue A,
50 are w = X (provided x # —w) and Ix for any k # 0.

Hence the eigenvectors corresponding fo one and the same eigenvalue X of A,
together with 0, form a vector space (cf. Sec. 74), called the cigenspace of A
corresponding to that A.

Proof: Aw = Iw and Ax = Ix imply A(w+x) = Aw + Ax = lw
+ Ix = I(w +x) and A (kw) = k(Aw) = k(Iw) =I(kw); hence
A(kwIx) = [(kw+Ix)
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

* In particular, an eigenvector x is determined only up to a
constant factor. Hence we can normalize x, that is,
multiply it by a scalar to get a unit vector (see Sec. 7.9).

* For instance,x; = [12]7 in Example 1 has the length
ll; ]l = VI +4 =+/5; hence [% \/2_3 Tis a normalized
eigenvector (a unit eigenvector).
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

The roots (eigenvalues of A) are ; = 5,4, = 13 = —3.

To find eigenvectors, we apply the Gauss elimination (Sec.
7.3) to the system (A - AI)x =0, first with 1 =5 and then
with 1 =-3 . For 1 =5 the characteristic matrix is

A-AM=A-5I=| 2 -4 =-6|. Itrow-reduces to

-1 -2 -5
-7 -3
24 a8
0o -7 -7
0 0 0

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Example 2: Multiple Eigenvalues
Find the eigenvalues and eigenvectors of

-2 2 -3
A= 2 1 -6
-1 =2 0

Solution. For our matrix, the characteristic determinant
gives the characteristic equation

A3 = A2 4210+ 45=0.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

* Hence it has rank 2. Choosing x3 = —1 we have x, = 2
and then x; =1. Hence an eigenvector of A
corresponding to A= 5isx; =[1 2 —1]7 . For A =-3
the characteristic matrix

1 2 -3
A-M=A+3=| 2 4 —6 row-reduces to
-1 -2 3]
1 2 3]
0 0 0
0 0 0
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

* Hence it has rank 1. From x; + 2x, — 3x3 = 0 we have
X1 = —2x,+ 3x3. Choosing x,=1, x3 = 0 and x,=0, x3
= 1, we obtain two linearly independent eigenvectors of
A corresponding to A = -3

x2=| 1 and x3=1|0
0 1
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Example 3: Algebraic Multiplicity, Geometric
Multiplicity. Positive Defect

The characteristic equation of the matrix

0 1 -1
A= s det(A— Al =
0 0 0 -A

* Hence 1 = 0 is an eigenvalue of algebraic multiplicity M,
= 2 . But its geometric multiplicity is only my = 2, since
eigenvectors result from 0x; +x, = 0, hencex, = 0, in
the form [x; 0]7 . Hence for 2 = 0 the defectis Ay = 1.

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

e The order M, of an eigenvalue 1 as a root of the
characteristic polynomial is called the algebraic
multiplicity of 1.

The number m; of linearly independent eigenvectors
corresponding to A is called the geometric multiplicity
of A .Thus m; is the dimension of the eigenspace
corresponding to this A.

In general, my£ M, , as can be shown. The difference A,
= M, —m, is called the defect of 1.
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Similarly, the characteristic equation of the matrix

32 i-A
A= s det(A-AD=
03 0 3-A

ro

=G3- =0

* Hence 1 = 3 is an eigenvalue of algebraic multiplicity M;
= 2, but its geometric multiplicity is only m; = 1, since
eigenvectors result from Ox; +2x, =0 in the form
[x, 01"
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The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Example 4: Real Matrices with Complex Eigenvalues
and Eigenvectors

Since real polynomials may have complex roots (which
then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the
characteristic equation of the skew-symmetric matrix

0 1 —A 1

A= s det(A-AD= =2+1=0

-1 0 -1 -A

It gives the eigenvalues A4, =i(=v-1), A, =-i.
Eigenvectors are obtained from —ix; +x, =0 and , ix;
+ x, = 0 respectively, and we can choose x; = 1 to get
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Some Applications of Eigenvalue
Problems

Example 1: Stretching of an Elastic Membrane
An elastic membrane in the xx,-plane with boundary circle

xT + x5 = 1 is stretched so that a point P:(x4,X2) goes
over into the point Q:(y,y2) given by

Y1 5 3||x1
Y2 3 5 X9

My =

in components, y1 = 5x; + 3xo

yo = 3x71 + Sxo.

The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

and

Theorem 3

Eigenvalues o the Transpose

The ranose AT o sqre matix A s the same eemnales s A
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Some Applications of Eigenvalue
Problems
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Some Applications of Eigenvalue
Problems

Find the principal directions, that is, the directions of the
position vector x of P for which the direction of the position
vector y of Qis the same or exactly opposite. Solution.

We are looking for vectors x such that y = Ix. Since y = Ix,
this gives Ax = Ix , the equation of an eigenvalue problem.
In components, Ax = Ix is

@) 5ey 4 3xp = Axy (5-Ar;+  3xs =0
or

3x1 + Sx9 = Axg 3x1 +OG - ANxg=0.
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Some Applications of Eigenvalue
Problems

For A,= 2, our system (2) becomes

3x1 + 3x9 =0, Solution x9 = —x7, X1 arbitrary,

3x1 + 3x9 = 0. for instance, x; = 1,x9 = —1.

* We thus obtain as eigenvectors of A, for instance,
[1 1]%corresponding to A; and [1 — 1]7 corresponding
to A,(or a nonzero scalar multiple of these).

» These vectors make 45°and 135 °angles with the positive
x1-direction.

Some Applications of Eigenvalue
Problems

The characteristic equation is

5-A 3
(€)

‘—(5—,\)2—9—0.
3 52

Its solutions are ;=8 and A,=2. These are the
eigenvalues of our problem. For A;=8 our system (2)
becomes

=3y + 319 =0, | Solutionxg = xy, xy arbitrary,

3x; — 359 =0. | forinstance,x; =x9=1.
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Some Applications of Eigenvalue
Problems

* The eigenvalues show that in the principal directions the
membrane is stretched by factors 8 and 2, respectively;

They give the principal directions, the answer to our
problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2,
respectively.

if we choose the principal directions as directions of a
new Cartesian tsU,-coordinate system, say, with the
positive 1 -semi-axis in the first quadrant and the positive
u; -semi-axis in the second quadrant of the xx,-system,
and if we set 1w = rsing, u, = rcos ¢ then a boundary
point of the wunstretched circular membrane has
coordinates cos ¢, sing. Hence, after the stretch we have
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Some Applications of Eigenvalue
Problems

71=8¢c0sd, 79 =12sin0.

Since cos?@ + sin?p = 1, this shows that the deformed
boundary is an ellipse

“ — +—= =1.
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Some Applications of Eigenvalue
Problems

0.7 0.1 0
A=]02 0.9 0.2 |. For the transpose,

0.1 0 0.8

0.7 0.2 0.1 1 1
0.1 0.9 0 1]=]1
0 0.2 0.8 1 1

Some Applications of Eigenvalue
Problems

Example 2: Eigenvalue Problems Arising from Markov
Processes

Markov processes as considered in Example 13 of Sec. 7.2
lead to eigenvalue problems if we ask for the limit state of
the process in which the state vector x is reproduced under
the multiplication by the stochastic matrix A governing the
process, that is, Ax = x . Hence A should have the
eigenvalue 1, and x should be a corresponding eigenvector.
This is of practical interest because it shows the long-term
tendency of the development modeled by the process.

In that example,

Advanced Engineering Mathematics; Linear Algebra
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Some Applications of Eigenvalue
Problems

Hence AT has the eigenvalue 1, and the same is true for A
by Theorem 3 in Sec. 8.1. An eigenvector x of A for| = 11s
obtained from

(=03 01 o0

A-T1=| 02 =01 02|, row-reduced to

Lol 0 -02
_7130 '110 O
S

0 0 0
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Some Applications of Eigenvalue

Problems
Taking x3 = 1, we get x, = 6 from — XG—Z + ’;—3 = 0 and then
X = 2from%+:—;= 0.

This gives x = [2 6 1]T. It means that in the long run, the
ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain
(about) the same. (We switched to ordinary fractions to
avoid rounding errors.)

»Please see example 3 on page 331.
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Some Applications of Eigenvalue

Problems
i -5 20yt
M y' = .| = Ay = :
Yo 2 =2]|y2

i
)

2
|
<]

I

%‘ﬂ
Il
H
W

B

=
= k,=2 == (Net change in
> spring length
(y,=O) m,=1 = =yva -y

=g

System in
static System in

equilibrium motion

Some Applications of Eigenvalue
Problems

Example 4: Vibrating System of Two Masses on Two
Springs

Mass—spring systems involving several masses and springs
can be treated as eigenvalue problems. For instance, the
mechanical system is governed by the system of ODEs

y1 = =31~ 2y1 — y2) = —5y1 + 2p»
©
y2 = —2(y2 —y) = 2y1 — 2y
Where y; and y, are the displacements of the masses from

rest, as shown in the figure, and primes denote derivatives
with respect to time # In vector form, this becomes
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Some Applications of Eigenvalue
Problems

We try a vector solution of the form

®) y = xe*".

This is suggested by a mechanical system of a single mass
on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution
into (7) gives

w2xe®t = Axe“t
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Some Applications of Eigenvalue
Problems

Dividing by e®' and writing w?= |, we see that our
mechanical system leads to the eigenvalue problem

o) Ax = Ax

From Example 1 in Sec. 8.1 we see that A has the
eigenvalues 4, = -1 and A, = —6. Consequently, w

=+V/-T=+4iand w==+V=6=+iV6

Corresponding eigenvectors are

1 2
(10) X1 = 5 and Xg = . .

respectively.
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Some Applications of Eigenvalue
Problems

A general solution is obtained by taking a linear
combination of these,

y = %o cost £ bysint) + ¥y g 08 Vo1 4 bysin VB

with arbitrary constants a, by, a, b, (to which values can be
assigned by prescribing initial displacement and initial
velocity of each of the two masses). By (10), the
components of y are

Vi = aycost + bysint + 2aqc0s V61 + 2bysin V61

Vo = daqcos t + 2bysint — agcos Vo1 — bysin V61,

Some Applications of Eigenvalue
Problems

From (8) we thus obtain the four complex solutions [see
(10), Sec. 2.2]

xleiit = x;(cost X isint),
xzeith = xy(cos V61 = isin V61).

By addition and subtraction (see Sec. 2.2) we get the four

real solutions
Bos, xS, nusVen e
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Definition

Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [aj,] is called
symmetric if transposition leaves it unchanged,

1 AT=A, thus i = e
skew-symmetric il (ransposition gives the negative of A,
) AT= A, thus g = e

orthogonal if transposition gives the inverse of A,

@) AT=TASE
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Example 1: Symmetric, Skew-Symmetric, and
Orthogonal Matrices

The matrices

-3 1 5 0 9 -12 :z 12
1 0 -2f, |-9 0o 20| |- % 1}
5 -2 4 2 -20 0 ;3 : 2

are symmetric, skew-symmetric, and orthogonal.
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Theorem 1

Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric mafrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

The proof is in Sec. 8.5.

Symmetric, Skew-Symmetric,
and Orthogonal Matrices

» Any real square matrix A may be written as the sum of a
symmetric matrix R and a skew-symmetric matrix S,
where

@ R=3;A+A) ad S=}A-A)

Example 2: Illustration of Formula (4)
9 5 12 90 35 33 0 15 -135
A=[2 3 -§|=R+8=[35 30 -200+|-15 0 -60

3 403 5 -0 30 L5 60 0
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices
Orthogonal Transformations and Orthogonal Matrices (p.336)
Orthogonal transformations are transformations
®) v =Ax
With each vector x in R™ such a transformation assigns a

vector y in R™ . For instance, the plane rotation through an
angle 0

Y1 cosf —sinf || x;

2 sinff cosf || xs
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices
is an orthogonal transformation. It can be shown that any

orthogonal transformation in the plane or in three-
dimensional space is a rotation

Theorem 2

Invariance of Inner Product

An orthogonal rransformation preserves the value of the inner product of vecrors
aand b in R™, defined by

by
%) asb=a'b=la -~ anl| - |.
b

That is, for any a and W in R™, orthegonal 7 X nomatrix A, and 1 = Aa,v = Ab
we haveusv =a-h

Hence the wransformarion also preserves the length or norm of any vecior a in
R™ given by

(&) lal = va-a=\VaTa
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Theorem 4

Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or —1.

Proof: (1) det (AA™1) = det (A) det(4™1) = 1(Sec. 7.8,
Theorem 4)
(2) det (A) = det (AT) = det (A™1) (Sec. 7.7,
Theorem 2d),
(1),(2): det2 (A) =1

Symmetric, Skew-Symmetric,
and Orthogonal Matrices
Proof: Let u=Aaand v=Ab,

©) pey=uly= (Aa)TAb =a'AAb=ah=ab=a+h

Orthonormality of Column and Row Vectors
A real square matrix is orthogonal if and only if its column vectors ay, -, a, (and
also its row vectors) form an orthonormal system, that is,
T 0 if j#k
(10) 4t = A =
I if j=+k

Please see the proof on page 337
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Theorem 5

Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs

and have absolute value 1.

Example 5: Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic

equation
B+ +Z)-1=0.
Eigenvalues: —1,5 + iv/m,5 — ivm
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Eigenbases. Diagonalization.
Quadratic Forms

Eigenvectors of an n X n matrix A may (or may not!) form
a basis for R™. If we are interested in a transformation such
an “eigenbasis” (basis of eigenvectors)—if it exists—is of
great advantage because then we can represent any x in R™
uniquely as a linear combination of the eigenvectors
X1, ey X, SAY,

X = C1X1 + ¢c9Xg + - - + X,

And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by Aj,..,4,,we have Ax;
= 4;x; ,s0 that we simply obtain
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Eigenbases. Diagonalization.
Quadratic Forms

Now if the n eigenvalues are all different, we do obtain a
basis:

Theorem 1

Basis of Eigenvectors

[fann X nmatrix A has n distine eigenvalies, then A has a basis of eigenvectors
1l
Xy, X for R

Please see the proof on page 339.

Eigenbases. Diagonalization.
Quadratic Forms

y = Ax = A(c1X1 + -+ cpXp)
M = 1AX; + - + L AX,
= Cl)llxl R Cn/\an.
This shows that we have decomposed the complicated
action of A on an arbitrary vector x into a sum of simple

actions (multiplication by scalars) on the eigenvectors of A.
This is the point of an eigenbasis.
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Eigenbases. Diagonalization.
Quadratic Forms

Example 1: Eigenbasis. Nondistinct Eigenvalues.
Nonexistenc

5 3 1 1
A= has a basis of eigenvectors s
35 1 -1

On the other hand, A may not have enough linearly
independent eigenvectors to make up a basis. For
instance, A in Example 3 of Sec. 8.1 is

0 1 k
(k # 0, arbitrary).
0 0 0

A=
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Eigenbases. Diagonalization.
Quadratic Forms

Theorem 2

Symmetric Matrices

A symmelric matrix has an orthonormal hasis of eigenveciors for R,

Example 2: Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an

orthonormal basis of eigenvectors is
[ 1 1 I

V2 V2

1

1
[z %

Advanced Engineering Mathematics; Linear Algebra
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Eigenbases. Diagonalization.
Quadratic Forms

Theorem 3

Eigenvalues and Eigenvectors of Similar Matrices

If Ais similar to A, then A has the same eigenvalues as A.
Furthermore, if X is an eigenvector of A, then y = P~lx is an eigenvector of A
corresponding 1o the same cigenvalue.

Dr. Masih, N. Zahabi

Proof:

Y Y e ) I 1 e I

Eigenbases. Diagonalization.
Quadratic Forms

Similarity of Matrices. Diagonalization (p.340)
Eigenbases also play a role in reducing a matrix A to a
diagonal matrix whose entries are the eigenvalues of A.
This is done by a “similarity transformation,” which is
defined as follows
Definition

Similar Matrices. Similarity Transformation

An n X n matrix A is called similar to an n X n matrix A if
@ A=r'Ap

for some (nonsingular!) n X n matrix P. This transformation, which gives A from
A, is called a similarity transformation.
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Eigenbases. Diagonalization.
Quadratic Forms

Example 3: Eigenvalues and Vectors of Similar Matrices
Let,

6 -3 1 3
A= and P= .
4 -1 1 4

4 =316 =31 3] |3 0
-1 1|4 -I{j1 4} (0 2
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Eigenbases. Diagonalization.
Quadratic Forms

A has the eigenvalues A; = 3,1, = 2.
A also has the eigenvalues ; = 3,1, = 2.
Eigenvectors: x; = [1 1]7 and x, = [3 4]

3 MRl

»Indeed, these are eigenvectors of the diagonal matrix A.

4 3 0

v =Py = = =

1

|

»Perhaps we see that x; and x, are the columns of P. This
suggests the general method of transforming amatrix A to
diagonal form D by using P = X , the matrix with
eigenvectors as columns.

1
y o= P_IXQ =
0
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Eigenbases. Diagonalization.
Quadratic Forms

Example 4: Diagonalization
Diagonalize
7.3 02 -37

A=]|-115 1.0 55

17.7 1.8 —93
Solution. characteristic equation:

=3
A= N2 120 = () — =

Eigenbases. Diagonalization.
Quadratic Forms

Theorem 4

Diagonalization of a Matrix

If an n X nmatrix A has a basis of eigenveciors, then

(5) D= X"AX

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X
is the matrix with these eigenvectors as column vectors. Also,

(5%) D" = X'A™X (m=23"-).

See the proof on page 342.
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Eigenbases. Diagonalization.

Quadratic Forms

—1 1 2

30, | =11, |1

—1 3| |4
-1 1 2 -07 02 03
X=| 3 -1 1 X'=|-13 -02 07
-1 3 4 08 02 —02
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Eigenbases. Diagonalization.

Quadratic Forms
D = X !AX
—-07 02 03]|[-3 -4 o0

=|—-13 —-02 0.7 9 < 0
0.8 02 —-02]| -3 -—I12 0

3 0 o)
=|lo —a 0
0 0 0
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Eigenbases. Diagonalization.
Quadratic Forms

A= [ajk] is called the coefficient matrix of the form.

Example 5: Quadratic Form. Symmetric Coefficient
Matrix

Let
1 S )11 )
XAr= {Xl ,\‘2} = 3 4 drgrg £ brgry £ 2y = 30y 4 Wgr £ g
61 ly
Here 4+6 = 10 = 5+5 From the corresponding symmetric
matrix C = [Cjk] , where cjk:% (ajk + agj)

Eigenbases. Diagonalization.
Quadratic Forms

Quadratic Forms. Transformation to Principal Axes (p.343)

By definition, a quadratic form Q in the components
Xy, -, X, of am? vector x is a sum of terms, namely,

n n
Q = XTAX = 2 Eajkx',xk

j=1k=1
0 = anx% + ayax1X2 + o0+ apX1xan
+ ds1xaxq1 + (122}(% + -+ a9, X001,
+ ...........................
+ An1XpXy + GpaxpXa + o0+ ApnXn,
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Eigenbases. Diagonalization.
Quadratic Forms

Thus ¢1; = 3,¢12 = €31 = 5,05 = 2, we get the same
result; indeed,

33 I
XTCX = [Il Iﬂ
2 Iy

By Theorem 2, the symmetric coefficient matrix A of (7)
has an orthonormal basis of eigenvectors. Hence if we take
these as column vectors, we obtain a matrix X that is
orthogonal, so that X~ = XT. From (5) we thus have A

= XDX~! = XDXT. Substitution into (7) gives

= Sﬁ T Srprg + Srgry £ lt% = 3,1(% £ 0ryrg b%
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Eigenbases. Diagonalization.
Quadratic Forms

®) 0 = x' XDX 'x

If we set XTx =y, then, since X = X1, we have X 1x =y
and thus obtain

© x = Xy.

Furthermore, in (8) we have xTX = (XTx)T = yTand XTx
=y, so that Q becomes simply
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Eigenbases. Diagonalization.
Quadratic Forms

Example 6: Transformation to Principal Axes. Conic
Sections

Find out what type of conic section the following quadratic
form represents and transform it to principal axes:

0 = 17x3 - 30xxy + 17x3 = 128

Solution. We have Q = xT Ax, where

17 —15 x1
S X = .
-15 17 X2

Eigenbases. Diagonalization.
Quadratic Forms

0 =yDy=hp +hghtthnd

Theorem 5

Principal Axes Theorem

The substitution (9) transforms a quadratic form

n o
0 =x"Ax= X Dapxpr (ag = ap)

J=1k=1

to the principal axes form or canonical form (10), where Ay, - -, Ay, are the (not
sarily  distinel) lues of the (symmetric!) matrix A, and X is an
orthogonal matrix with corresponding cigenvectors Xu,- -+, Xp, respectively, as

colwmn vectors.
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Eigenbases. Diagonalization.
Quadratic Forms

(17 — % — 152 = 0 EEEp Ay = 2, Ay = 32
Hence (10) becomes

— 2 2

Q = 2y1 + 32y2.
We see Q = /28 that represents the ellipse Zy% + 32y§ =128,
that is, 5 5
y1 Y2
_|_ R

i =1
g2 22
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Eigenbases. Diagonalization.
Quadratic Forms

If we want to know the direction of the principal axes in the
xixz-coordinates, we have to determine normalized
eigenvectors from (4 —/[)x =0 withl =l =2and|=1,=32
and then use (9). We get

1/V2 . -1/V2
Hence 1/V2 . VA
V2 -1V2 Fl X1=y1/V2 = yo/ V2
x=Xy= ,
1/\/2 1/\/2 Yo Xo = }’1/\/i + yz/\/j

This is a rotation. Our results agree with those in Sec. 8.2,
Example 1, except for the notations.
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Complex Matrices and Forms

Definition

Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix A = [ i called

o0 - , _
Hermitian A=A tatls, =gy
skew-Hermitian if A= A tatls, =g

unitary A=A

Complex Matrices and Forms

The three classes of matrices in Sec. 8.3 have complex
counterparts which are of practical interest in certain
applications, for instance, in quantum mechanics.

Notations

A=[az] is obtaned from A = [a] by replacing each entry = o + iB
(e, Breal) with its complex conjugate ay, = @ — iB. Also, A = [ay,]is the transpose
of A, hence the conjugate transpose of A,

Example 1: Notations

Vi 1-] -4 14 Ged

IiA= Cthen A=

] and KT=

2-5 6 245 10 24§
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»If A is Hermitian, the entries on the main diagonal must
satisfy @;; = a;; that is, they are real.
>Similarly, if A is skew-Hermitian, then @;; = —a;; If we
set aj; =a+if this becomes a—iff =—(a+if).
Hence so that a;; must be pure imaginary or 0.
Example 2: Hermitian, Skew-Hermitian, and Unitary
Matrices
IS i 24 oo
A= B= C=]
1437 “1bi - Wi

are Hermitian, skew-Hermitian, and unitary matrices.
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»If a Hermitian matrix is real, then AT = AT = A. Hence a
real Hermitian matrix is a symmetric matrix (Sec. 8.3).

> Similarly, if a skew-Hermitian matrix is real, then AT
= AT = A Hence a real skew-Hermitian matrix is a skew-
symmetric matrix.

> Finally, if a unitary matrix is real, then AT = AT = A1
Hence a real unitary matrix is an orthogonal matrix.

»This shows that Hermitian, skew-Hermitian, and unitary
matrices generalize symmetric, skew-symmetric, and
orthogonal matrices, respectively.
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Theorem 1

Eigenvalues

(a) The eigenvalues of a Hermitian matrix (and thus of @ symmelric matrix)
are redl.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of ¢ skev-symmetric
malrix) are pure fmaginary or zero.

(¢) The eigenvalues of a wnitary matrix (and thus of an orthagonal matrix) have
absolute value 1.

Complex Matrices and Forms

Eigenvalues (p.347)

It is quite remarkable that the matrices under consideration
have spectra (sets of eigenvalues; see Sec. 8.1) that can be
characterized in a general way as follows
Im i | - Skew-Hermitian (skew-symmetric)
&1 .~ Unitary Corthogonal)

. Hermitian (symmetric)
/

1 Re

Location of the eigenvalues of Hermitian, skew-Hermitian,and unitary matrices in the complex
I-plane
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Example 3: Illustration of Theorem 1
For the matrices in Example 2 we find by direct calculation

Matrix Characteristic Equation Eigenvalues

A Hemitin E-1at8=0 92

B SewHemitn  -2+8=0 4 -

C  Unitary E-i-1=0 MWith Vg

and |[+3V3 +3iP=2 +1 =1

Please see the proof on page 348.
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Theorem 2

Invariance of Inner Product

Anitary transformation, shar is, y = AX with @ umitary matnix A, preserves the
value of the inner product (4), hence also the norm (5).

Proof:

uev=u'y=(Aa)Ab=a"A"Ab=alb=ah=a+b
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Theorem 3

Unitary Systems of Column and Row Vectors

A complex square matrix is unitary if and only if its column vectors (and also its
row vectors) form & unitary syster.

Theorem 4

Determinant of a Unitary Matrix

Let A be a unitary matrix, Then its determinant has absolute value one, that Is
ldetA| = 1.

)

Complex Matrices and Forms

Definition

Unitary System
Aunitary system s a set of complex vectors safisfying the relationships
S S e
(6) PRI '
I if j=k

Theorem 3 in Sec. 8.3 extends to complex as follows.
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Example 4: Unitary Matrix Illustrating Theorems 1c
and 24

al =2 =1
=2 P Tb=1+)-4=-24]
bT =[1+i 4i]
08 06 i 08 +3%
A= o Aa= ad  Ab=
06 08 2 -26+06i
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as one can readily verify. This gives (Aa)TAb = —2 + 2i,
illustrating Theorem 2. The matrix is unitary. Its columns
form a unitary system,

aja = -08i-08i+06°=1,  ajay=-08-06+06-08i =0,

agay = 067+ (<08708i = 1

and so do its rows. Also, det A =-1. The eigenvalues are 0.6
+ 0.87 and -0.6 + 0.8/ with eigenvectors[1 1]7 and
[1 —1]7 respectively.
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Example 5: Unitary Eigenbases

The matrices A, B, C in Example 2 have the following
unitary systems of eigenvectors, as you should verify.

‘ .

1
A ——[1-3i 57 A=9),

-3 2T =2
V33 V1

=l

1
B: —[1-2 =57 a=-2), —[5 1+2]" (A\=4i)
V30

i

v 1 17 A=%i-V3)

11" (=56 + V3),

g‘.—
[3%)

Complex Matrices and Forms

Theorem 5

Basis of Eigenvectors

A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for C"
that is a uritary system.

For a proof see Ref. [B3], vol. 1, pp. 270-272 and p. 244
(Definition 2).
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Hermitian and Skew-Hermitian Forms (p.351)

The concept of a quadratic form (Sec. 8.4) can be extended
to complex. We call the numerator ¥7 Ax in (1) a form in
the components xq,..,x, of X, which may now be
complex. This form is again a sum of n? terms
XTAx = > X apx;an
J=—1rlk=—1

= ayppxyxy + oo+ apXixy

Q)

+ agix2xy t - T+ odonXex,,

+ 1 XXy + - -

A is called its coefficient matrix.

+ XX
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Example 6: Hermitian Form
For A in Example 2 and, say, x = [1 + i 5i]7 we get

XTAX =
1+
5

A1+ 4+ =305

4 1 —3i

[1—i —5;’][

1+ 3§ 7

5
©
&
<
N
=
=
5
]
>
=
a

=[1—i -5i

a
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j}
[s]
w
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s}
=
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=

=223
(1 + 3ix1 +z‘)+7-5i1
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Clearly, if A and x in (4) are real, then (7) reduces to a
quadratic form, as discussed in the last section.
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