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Ref: Erwin Kreyszig, “Advanced Engineering Mathematics,” John Wiley & Sons, Inc., 10th Ed., 2011. (Chapter 8)

Introduction

A matrix eigenvalue problem considers the vector equation

(1)   Ax = lx

• Here A is a given square matrix, l an unknown scalar, and
x an unknown vector.

• In a matrix eigenvalue problem, the task is to determine
l’s and x’s that satisfy (1).

• Since x = 0 is always a solution for any l and thus not
interesting, we only admit solutions with x ¹ 0.

• The l’s that satisfy (1) are called eigenvalues of A and the
corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.
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Consider multiplying nonzero vectors by a given
square matrix, such as

• In the first case, we get a totally new vector with a
different direction and different length when compared to
the original vector. This is what usually happens and is of
no interest here.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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• In the second case something interesting happens. The
multiplication produces a vector [30	40]�= 10[3	4]�,
which means the new vector has the same direction as the
original vector. The scale constant, which we denote by l
is 10.

• We formalize our observation. Let A = [��� ] be a

given nonzero square matrix of dimension n×n.
Consider the following vector equation:

(1)

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Remark:

• Geometrically, we are looking for vectors, x, for which
the multiplication by A has the same effect as the
multiplication by a scalar in other words, Ax should be
proportional to x. Thus, the multiplication has the effect
of producing, from the original vector x, a new vector that
has the same or opposite (minus sign) direction as the
original vector.

• A value of l for which (1) has a solution x ¹ 0, is called
an eigenvalue or characteristic value of the matrix A.
Another term for is a latent root. (“Eigen” is German and
means “proper” or “characteristic.”).

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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• The set of all the eigenvalues of A is called the
spectrum of A.

• We shall see that the spectrum consists of at least one
eigenvalue and at most of n numerically different
eigenvalues.

• The largest of the absolute values of the eigenvalues of A
is called the spectral radius of A, a name to be motivated
later.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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How to Find Eigenvalues and Eigenvectors (p.324)

Example1: Determination of Eigenvalues and 
Eigenvectors

We illustrate all the steps in terms of the matrix

Solution. (a) Eigenvalues. These must be determined first. 
Equation (1) is

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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in components,

Transferring the terms on the right to the left, we get

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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(2*)

This can be written in matrix notation

(3*)

We see that this is a homogeneous linear system. By
Cramer’s theorem in Sec. 7.7 it has a nontrivial solution (an
eigenvector of A we are looking for) if and only if its
coefficient determinant is zero, that is,

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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(4*)

• We call D(l) the characteristic determinant or, if
expanded, the characteristic polynomial, and D(l) = 0
the characteristic equation of A.

• The solutions of this quadratic equation are �� = −1	and
�� = −6 . These are the eigenvalues of A.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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( ��) Eigenvector of A corresponding to �� . This vector 
is obtained from (2* ) with, l = �� = −1	, that is

A solution is �� = 2��, as we see from either of the two
equations, so that we need only one of them. This
determines an eigenvector corresponding to �� = −1 up to
a scalar multiple. If we choose �� = 1 , we obtain the
eigenvector

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Check:

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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(��) Eigenvector of A corresponding to �� . For �� = −6
, equation (2* ) becomes

A solution is �� = − ��/2 with arbitrary ��. If we choose
�� = 2 , we get �� = −1 . Thus an eigenvector of A
corresponding to �� = −6 is

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Check:

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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This example illustrates the general case as follows.
Equation (1) written in components is

Transferring the terms on the right side to the left side, we
have

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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(2)

In matrix notation,

(3)

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 

17 of 93

A
d

va
n

ce
d

 E
n

gi
n

ee
ri

n
g 

M
at

h
em

at
ic

s;
 L

in
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, 
D

et
er

m
in

an
ts

. 
Li

n
ea

r 
Sy

st
em

s
D

r. 
M

as
ih

, N
. Z

ah
ab

i
By Cramer’s theorem in Sec. 7.7, this homogeneous linear
system of equations has a nontrivial solution if and only if
the corresponding determinant of the coefficients is zero:

(4)

• Equation (4) is called the characteristic equation of A. 
By developing we obtain a polynomial of nth degree in �.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Theorem 1

• For larger n, the actual computation of eigenvalues will,
in general, require the use of Newton’s method (Sec.
19.2) or another numeric approximation method in
Secs.20.7–20.9.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Theorem 2

Proof: Aw = lw and Ax = lx imply A(w+x) = Aw + Ax = lw
+ lx = l(w +x) and A(kw) = k(Aw) = k(lw) =l(kw); hence 
A(kw+lx) = l(kw+lx)

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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• In particular, an eigenvector x is determined only up to a
constant factor. Hence we can normalize x, that is,
multiply it by a scalar to get a unit vector (see Sec. 7.9).

• For instance,�� = [1	2]� in Example 1 has the length

�� = 1 + 4 = 5; hence [
�

�
		
�

�
]� is a normalized

eigenvector (a unit eigenvector).

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 

21 of 93

A
d

va
n

ce
d

 E
n

gi
n

ee
ri

n
g 

M
at

h
em

at
ic

s;
 L

in
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, 
D

et
er

m
in

an
ts

. 
Li

n
ea

r 
Sy

st
em

s
D

r. 
M

as
ih

, N
. Z

ah
ab

i
Example 2: Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

Solution. For our matrix, the characteristic determinant 
gives the characteristic equation

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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The roots (eigenvalues of A) are �� = 5, �� = �� = −3.

To find eigenvectors, we apply the Gauss elimination (Sec. 
7.3) to the system (A - �I)x = 0 , first with � = 5 and then 
with � = -3 . For � = 5 the characteristic matrix is

It row-reduces to

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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• Hence it has rank 2. Choosing �� = −1 we have �� = 2
and then �� = 1. Hence an eigenvector of A
corresponding to � = 5 is �� = [1		2		 − 1]� . For � = -3
the characteristic matrix

row-reduces to

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 

24 of 93

A
d

va
n

ce
d

 E
n

gi
n

ee
ri

n
g 

M
at

h
em

at
ic

s;
 L

in
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, 
D

et
er

m
in

an
ts

. 
Li

n
ea

r 
Sy

st
em

s
D

r. 
M

as
ih

, N
. Z

ah
ab

i



9/10/2014

7

• Hence it has rank 1. From �� + 2�� − 3�� = 0 we have
�� = −2��+ 3��. Choosing ��=1, �� = 0 and ��=0, ��
= 1, we obtain two linearly independent eigenvectors of
A corresponding to � = -3

and

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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• The order � � of an eigenvalue � as a root of the

characteristic polynomial is called the algebraic
multiplicity of �	.

• The number � � of linearly independent eigenvectors
corresponding to � is called the geometric multiplicity
of �	 .Thus � � is the dimension of the eigenspace
corresponding to this �.

• In general, � �£ � � , as can be shown. The difference Δ�
= � � − � � is called the defect of �.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Example 3: Algebraic Multiplicity, Geometric 
Multiplicity. Positive Defect

The characteristic equation of the matrix

• Hence � = 0 is an eigenvalue of algebraic multiplicity � �

= 2 . But its geometric multiplicity is only � � = 2,	since
eigenvectors result from 0�� + �� = 0 , hence�� = 0, in
the form [��		0]

� . Hence for � = 0	the defect is Δ� = 1.

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Similarly, the characteristic equation of the matrix

• Hence � = 3	is an eigenvalue of algebraic multiplicity � �

= 2 , but its geometric multiplicity is only � � = 1, since
eigenvectors result from 0�� + 2�� = 0 in the form
[��		0]

�

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Example 4: Real Matrices with Complex Eigenvalues 
and Eigenvectors

Since real polynomials may have complex roots (which
then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the
characteristic equation of the skew-symmetric matrix

It gives the eigenvalues �� = i(= − 1) , �� = − i .
Eigenvectors are obtained from − ��� + �� = 0 and , ���
+ �� = 0 respectively, and we can choose �� = 1 to get

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Theorem 3

The Matrix Eigenvalue Problem. Determining 
Eigenvalues and Eigenvectors 
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Example 1: Stretching of an Elastic Membrane

An elastic membrane in the x₁x₂-plane with boundary circle

is stretched so that a point P:(x₁,x₂) goes
over into the point Q:(y₁,y₂) given by

(1)

in components,

Some Applications of Eigenvalue 
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Some Applications of Eigenvalue 
Problems

Find the principal directions, that is, the directions of the
position vector x of P for which the direction of the position
vector y of Q is the same or exactly opposite. Solution.

We are looking for vectors x such that y = lx. Since y = lx ,
this gives Ax = lx , the equation of an eigenvalue problem.
In components, Ax = lx is

(2)
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The characteristic equation is

(3)

Its solutions are 	��= 8 and 	��= 2. These are the
eigenvalues of our problem. For 	��= 8 our system (2)
becomes
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For 	��= 2, our system (2) becomes

• We thus obtain as eigenvectors of A, for instance,
[1		1]�corresponding to 	�� and [1		 − 1]�	corresponding
to 	��(or a nonzero scalar multiple of these).

• These vectors make 45 ̊ and 135 ̊ angles with the positive
x1-direction.
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• The eigenvalues show that in the principal directions the 
membrane is stretched by factors 8 and 2, respectively;

• They give the principal directions, the answer to our 
problem. The eigenvalues show that in the principal 
directions the membrane is stretched by factors 8 and 2, 
respectively.

• if we choose the principal directions as directions of a
new Cartesian u₁u₂-coordinate system, say, with the
positive u₁ -semi-axis in the first quadrant and the positive
u₂ -semi-axis in the second quadrant of the x₁x₂-system,
and if we set u₁ = rsinφ, u₂ = rcos φ then a boundary
point of the unstretched circular membrane has
coordinates cos φ, sinφ. Hence, after the stretch we have
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Since cos²φ + sin²φ = 1, this shows that the deformed 
boundary is an ellipse

(4)
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Example 2: Eigenvalue Problems Arising from Markov 
Processes

Markov processes as considered in Example 13 of Sec. 7.2
lead to eigenvalue problems if we ask for the limit state of
the process in which the state vector x is reproduced under
the multiplication by the stochastic matrix A governing the
process, that is, Ax = x . Hence A should have the
eigenvalue 1, and x should be a corresponding eigenvector.
This is of practical interest because it shows the long-term
tendency of the development modeled by the process.

In that example,
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For the transpose,
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Hence �� has the eigenvalue 1, and the same is true for A
by Theorem 3 in Sec. 8.1. An eigenvector x of A for l = 1 is
obtained from

row-reduced to
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Taking �� = 1, we get	�� = 6 from −
��

�
+

��

�
= 0	and then

�� = 2	from
����

��
+

��

��
= 0.	

This gives x = [2		6		1]�. It means that in the long run, the
ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain
(about) the same. (We switched to ordinary fractions to
avoid rounding errors.)

Please see example 3 on page 331.
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Example 4: Vibrating System of Two Masses on Two 
Springs

Mass–spring systems involving several masses and springs
can be treated as eigenvalue problems. For instance, the
mechanical system is governed by the system of ODEs

(6)

Where y₁ and y₂ are the displacements of the masses from
rest, as shown in the figure, and primes denote derivatives
with respect to time t. In vector form, this becomes
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We try a vector solution of the form

(8)

This is suggested by a mechanical system of a single mass
on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution
into (7) gives
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Dividing by ��� and writing ��= l, we see that our
mechanical system leads to the eigenvalue problem

(9)

From Example 1 in Sec. 8.1 we see that A has the
eigenvalues �� = −1 and �� = −6. Consequently, �

= ± −1 = ±� and � = ± −6 = ±� 6		 respectively.
Corresponding eigenvectors are

(10)
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From (8) we thus obtain the four complex solutions [see 
(10), Sec. 2.2]

By addition and subtraction (see Sec. 2.2) we get the four 
real solutions
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A general solution is obtained by taking a linear 
combination of these,

with arbitrary constants a₁, b₁, a₂, b₂ (to which values can be
assigned by prescribing initial displacement and initial
velocity of each of the two masses). By (10), the
components of y are
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Symmetric, Skew-Symmetric,
and Orthogonal Matrices

Example 1: Symmetric, Skew-Symmetric, and 
Orthogonal Matrices

The matrices 

are symmetric, skew-symmetric, and orthogonal.
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 Any real square matrix A may be written as the sum of a

symmetric matrix R and a skew-symmetric matrix S,
where

(4)

Example 2: Illustration of Formula (4)
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Theorem 1

The proof is in Sec. 8.5.
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Orthogonal Transformations and Orthogonal Matrices (p.336) 

Orthogonal transformations are transformations

(5)                            y = Ax

With each vector x in �� such a transformation assigns a
vector y in �� . For instance, the plane rotation through an
angle θ

(6)

Symmetric, Skew-Symmetric,
and Orthogonal Matrices
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is an orthogonal transformation. It can be shown that any
orthogonal transformation in the plane or in three-
dimensional space is a rotation

Theorem 2

Symmetric, Skew-Symmetric,
and Orthogonal Matrices
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Proof: Let  u = Aa and v = Ab,

(9)

Theorem 3

Please see the proof on page 337        
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Theorem 4

Proof: (1) det (A���) = det (A) det(���) = 1(Sec. 7.8, 
Theorem 4)

(2) det (A) = det (��) = det (���) (Sec. 7.7,

Theorem 2d),

(1),(2): det² (A) = 1

Symmetric, Skew-Symmetric,
and Orthogonal Matrices

55 of 93

A
d

va
n

ce
d

 E
n

gi
n

ee
ri

n
g 

M
at

h
em

at
ic

s;
 L

in
ea

r 
A

lg
eb

ra
M

at
ri

ce
s,

 V
ec

to
rs

, 
D

et
er

m
in

an
ts

. 
Li

n
ea

r 
Sy

st
em

s
D

r. 
M

as
ih

, N
. Z

ah
ab

i

Theorem 5

Example 5: Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic 
equation

Eigenvalues: − 1	, 5 + � �	, 5 − � �

Symmetric, Skew-Symmetric,
and Orthogonal Matrices
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Eigenvectors of an � × � matrix A may (or may not!) form
a basis for ��. If we are interested in a transformation such
an “eigenbasis” (basis of eigenvectors)—if it exists—is of
great advantage because then we can represent any x in ��

uniquely as a linear combination of the eigenvectors
��,… , ��, say,

And, denoting the corresponding (not necessarily distinct)
eigenvalues of the matrix A by ��,… , �� ,we have ���
= ���� ,so that we simply obtain

Eigenbases. Diagonalization.
Quadratic Forms
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(1)

This shows that we have decomposed the complicated
action of A on an arbitrary vector x into a sum of simple
actions (multiplication by scalars) on the eigenvectors of A.
This is the point of an eigenbasis.
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Now if the n eigenvalues are all different, we do obtain a
basis:

Theorem 1

Please see the proof on page 339.

Eigenbases. Diagonalization.
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Example 1: Eigenbasis. Nondistinct Eigenvalues. 
Nonexistenc

has a basis of eigenvectors

On the other hand, A may not have enough linearly 
independent eigenvectors to make up a basis. For 
instance, A in Example 3 of Sec. 8.1 is

Eigenbases. Diagonalization.
Quadratic Forms

one eigenvector
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Theorem 2

Example 2: Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an
orthonormal basis of eigenvectors is

[
1

2
			
1

2
]�																		[

1

2
			−

1

2
]�

Eigenbases. Diagonalization.
Quadratic Forms
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Similarity of Matrices. Diagonalization (p.340)

Eigenbases also play a role in reducing a matrix A to a
diagonal matrix whose entries are the eigenvalues of A.
This is done by a “similarity transformation,” which is
defined as follows

Definition

Eigenbases. Diagonalization.
Quadratic Forms
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Theorem 3

Proof:
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Example 3: Eigenvalues and Vectors of Similar Matrices

Let,
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Eigenbases. Diagonalization.
Quadratic Forms

�� has the eigenvalues �� = 3, �� = 2.

A also has the eigenvalues �� = 3, �� = 2.

Eigenvectors: �� = [1			1]� and  �� = [3			4]�

Indeed, these are eigenvectors of the diagonal matrix ��.

Perhaps we see that �� and �� are the columns of P. This
suggests the general method of transforming amatrix A to
diagonal form D by using P = X , the matrix with
eigenvectors as columns.
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Theorem 4

See the proof on page 342.
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Example 4: Diagonalization

Diagonalize

Solution. characteristic equation:

�

�� = 3
�� = −4
�� = 0
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Quadratic Forms. Transformation to Principal Axes (p.343)

By definition, a quadratic form Q in the components
��,… , �� of a �� vector x is a sum of terms, namely,

(7)
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A = ��� 	 is called the coefficient matrix of the form.

Example 5: Quadratic Form. Symmetric Coefficient 
Matrix

Let

Here 4+6 = 10 = 5+5 From the corresponding symmetric 

matrix C = ��� 	, where ���=
�

�
(��� + ���)
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Thus ��� = 3, ��� = ��� = 5, ��� = 2 , we get the same 
result; indeed,

By Theorem 2, the symmetric coefficient matrix A of (7) 
has an orthonormal basis of eigenvectors. Hence if we take 
these as column vectors, we obtain a matrix X that is 
orthogonal, so that ��� = ��. From (5) we thus have �
= ����� = ����. Substitution into (7) gives
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(8)

If we set ��x = y , then, since �� = ���, we have ���x = y 
and thus obtain

(9)

Furthermore, in (8) we have ��� = (���)� = ��and ���
= y , so that Q becomes simply

Eigenbases. Diagonalization.
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(10)

Theorem 5
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Example 6: Transformation to Principal Axes. Conic 
Sections

Find out what type of conic section the following quadratic 
form represents and transform it to principal axes:

Solution. We have � = ����, where

Eigenbases. Diagonalization.
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Hence (10) becomes

We see Q = 128 that represents the ellipse

that is,
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If we want to know the direction of the principal axes in the
x₁x₂-coordinates, we have to determine normalized
eigenvectors from (A –lI) x = 0 with l = l₁ = 2 and l = l₂ = 32
and then use (9). We get

Hence

This is a rotation. Our results agree with those in Sec. 8.2, 
Example 1, except for the notations.
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The three classes of matrices in Sec. 8.3 have complex
counterparts which are of practical interest in certain
applications, for instance, in quantum mechanics.

Example 1: Notations

Complex Matrices and Forms
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Complex Matrices and Forms

Definition
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If A is Hermitian, the entries on the main diagonal must
satisfy ���� = ��� that is, they are real.

Similarly, if A is skew-Hermitian, then ���� = − ��� If we

set ��� = � + �� this becomes � − �� = − (� + ��) .

Hence so that ��� must be pure imaginary or 0.

Example 2: Hermitian, Skew-Hermitian, and Unitary
Matrices

are Hermitian, skew-Hermitian, and unitary matrices.

Complex Matrices and Forms
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Complex Matrices and Forms

If a Hermitian matrix is real, then �̅� = �� = �.	Hence a 
real Hermitian matrix is a symmetric matrix (Sec. 8.3).

Similarly, if a skew-Hermitian matrix is real, then �̅�

= �� = � Hence a real skew-Hermitian matrix is a skew-
symmetric matrix.

Finally, if a unitary matrix is real, then �̅� = �� = ���

Hence a real unitary matrix is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary 
matrices generalize symmetric, skew-symmetric, and 
orthogonal matrices, respectively.
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Eigenvalues (p.347) 

It is quite remarkable that the matrices under consideration
have spectra (sets of eigenvalues; see Sec. 8.1) that can be
characterized in a general way as follows

Location of the eigenvalues of Hermitian, skew-Hermitian,and unitary matrices in the complex 
l-plane

Complex Matrices and Forms
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Theorem 1
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Example 3: Illustration of Theorem 1

For the matrices in Example 2 we find by direct calculation

Please see the proof on page 348.
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Theorem 2

Proof:

Complex Matrices and Forms
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Definition

Theorem 3 in Sec. 8.3 extends to complex as follows.

Complex Matrices and Forms
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Theorem 3

Theorem 4

Complex Matrices and Forms
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Example 4: Unitary Matrix Illustrating Theorems 1c 
and 2–4

�

�� = [2			 − �]

��� = [2			�]

�� = [1 + �			4�]
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as one can readily verify. This gives (�̅��)��� = −2 + 2�,
illustrating Theorem 2. The matrix is unitary. Its columns
form a unitary system,

and so do its rows. Also, det A = -1. The eigenvalues are 0.6
+ 0.8i and -0.6 + 0.8i with eigenvectors [1			1]� and
[1			 − 1]�	respectively.
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Theorem 5

For a proof see Ref. [B3], vol. 1, pp. 270–272 and p. 244 
(Definition 2).
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Example 5: Unitary Eigenbases

The matrices A, B, C in Example 2 have the following
unitary systems of eigenvectors, as you should verify.
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Hermitian and Skew-Hermitian Forms (p.351)

The concept of a quadratic form (Sec. 8.4) can be extended
to complex. We call the numerator �̅��� in (1) a form in
the components ��,… , �� of x, which may now be
complex. This form is again a sum of ��	terms

(7)

A is called its coefficient matrix.
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Example 6: Hermitian Form

For A in Example 2 and, say, x = [1 + �			5�]� we get

Clearly, if A and x in (4) are real, then (7) reduces to a
quadratic form, as discussed in the last section.
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